Deep Learning architecture to assist with steering a powered wheelchair

Haddad, Malik J and Sanders, David A (2020) Deep Learning architecture to assist with steering a powered wheelchair. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28 (12). pp. 2987-2994.

Abstract

This paper describes a novel Deep Learning architecture to assist with steering a powered wheelchair. A rule-based approach is utilized to train and test a Long Short Term Memory (LSTM) Neural Network. It is the first time a LSTM has been used for steering a powered wheelchair. A disabled driver uses a joystick to provide desired speed and direction, and the Neural Network provides a safe direction for the wheelchair. Results from the Neural Network are mixed with desired speed and direction to avoid obstacles. Inputs originate from a joystick and from three ultrasonic transducers attached to the chair. The resultant course is a blend of desired directions and directions that steer the chair to avoid collision. A rule-based approach is used to create a training and test set for the Neural Network system and applies deep learning to predict a safe route for a wheelchair. The user can over-ride the new system if necessary.

Actions (login required)

Edit Item Edit Item