

European Journal of Pharmacology 367 (1999) 119-123

# Selectivity of diadenosine polyphosphates for rat P2X receptor subunits

Scott S. Wildman <sup>a,b</sup>, Sean G. Brown <sup>a,b</sup>, Brian F. King <sup>a,b,\*</sup>, Geoffrey Burnstock <sup>a,b</sup>

<sup>a</sup> Autonomic Neuroscience Institute, Royal Free Hospital School of Medicine, Rowland Hill Street, Hampstead, London, NW3 2PF, UK <sup>b</sup> Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK

Received 19 October 1998; revised 21 December 1998; accepted 23 December 1998

#### Abstract

The pharmacological activity of diadenosine polyphosphates was investigated at three recombinant P2X receptors (rat P2X<sub>1</sub>, rat P2X<sub>3</sub>, rat P2X<sub>4</sub>) expressed in *Xenopus* oocytes and studied under voltage-clamp conditions. For the rat P2X<sub>1</sub> receptor, only P<sup>1</sup>,P<sup>6</sup>-diadenosine hexaphosphate (Ap<sub>6</sub>A) was a full agonist yet 2–3 folds less potent than ATP. At rat P2X<sub>3</sub>, P<sup>1</sup>,P<sup>4</sup>-diadenosine tetraphosphate (Ap<sub>4</sub>A), P<sup>1</sup>,P<sup>5</sup>-diadenosine pentaphosphate (Ap<sub>5</sub>A) and Ap<sub>6</sub>A were full agonists and more potent than ATP. Ap<sub>4</sub>A alone was equipotent with ATP at rat P2X<sub>4</sub>, but only as a partial agonist. Compared to known data for rat P2X<sub>2</sub> and human P2X<sub>1</sub> receptors, our findings contrast with rat P2X<sub>2</sub> where only Ap<sub>4</sub>A is a full agonist although four folds less potent than ATP. At rat and human orthologues of P2X<sub>1</sub>, Ap<sub>5</sub>A was a partial agonist with similar potency. These data provide a useful basis for selective agonists of P2X receptor subunits. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Adenine dinucleotide; Diadenosine polyphosphate; P2X receptor; ATP; Xenopus oocyte

# 1. Introduction

Diadenosine polyphosphates (Ap<sub>n</sub>A, n = 2-6) are naturally-occurring adenine dinucleotides, where two adenine molecules are linked at the 5' position of their ribose moieties by a chain of phosphates varying from 2 to 6 in length. These adenine dinucleotides possess both intracellular and extracellular actions, are concentrated in central synaptosomes, and are released in a Ca<sup>2+</sup>-dependent process from brain slices after nerve stimulation (for a review, see Pintor et al., 1997).

Extracellular diadenosine polyphosphates bind to and activate P2X and P2Y receptor subtypes for ATP in a number of mammalian tissues and with a variety of effects (Hoyle, 1990; Abbracchio and Burnstock, 1994; Pintor and Miras-Portugal, 1995; Ogilvie et al., 1996). For the P2X receptor family, seven subtypes ( $P2X_{1-7}$ ) have been cloned thus far (North and Barnard, 1997), although the pharmacological activity of the diadenosine polyphosphate family has only been studied at human  $P2X_1$  ( $hP2X_1$ ) receptors expressed in *Xenopus* oocytes and human embryonic kidney (HEK 293) cells (Evans et al., 1995) and at

rat  $P2X_2$  (rP2X<sub>2</sub>) receptors expressed in *Xenopus* oocytes (Pintor et al., 1996).

In the present study, we have extended this pharmacological survey of adenine dinucleotide activity to include three recombinant P2X receptors from rat tissue ( $rP2X_1$ ,  $rP2X_3$  and  $rP2X_4$ ) and have commented on their agonist and modulatory activities to reveal an emerging picture of selectivity for diadenosine polyphosphates at P2X subunits.

## 2. Materials and methods

# 2.1. Electrophysiology

*Xenopus* oocytes were harvested and prepared, as previously described (King et al., 1996, 1997). Defolliculated oocytes were injected cytosolically with capped ribose nucleic acid (cRNA) encoding either rat  $P2X_1$  (Valera et al., 1995), rat  $P2X_3$  (Chen et al., 1995) or rat  $P2X_4$  receptors (Bo et al., 1995). RNA-injected oocytes and sham-injected control oocytes were incubated for 48 h at 18°C in Barth's solution and kept for 5 to 10 days at 4°C until used in electrophysiological experiments. ATP-activated inward-currents ( $I_{ATP}$ ) were recorded from RNA-injected oocytes using a twin-electrode voltage-clamp amplifier (Axoclamp 2B; holding potential ( $V_{\rm h}$ ) = -60 to

<sup>&</sup>lt;sup>\*</sup> Corresponding author. Autonomic Neuroscience Institute, Royal Free Hospital School of Medicine, Rowland Hill Street, Hampstead, London, NW3 2PF, UK. Tel.: +44-171-794-0500 (ext. 5268); Fax: +44-171-830-2949; E-mail: ucgabfk@ucl.ac.uk

-90 mV). Control oocytes did not respond to either ATP nor adenine dinucleotides (the Ap<sub>n</sub>A series). Voltage-recording and current-recording microelectrodes (1–5 M $\Omega$  tip resistance) were filled with 3.0 M KCl. Oocytes were placed in a Perspex recording chamber and superfused with modified Ringer's solution containing (mM) NaCl, 110; KCl, 2.5; HEPES, 5; BaCl<sub>2</sub>, 1.8, adjusted to pH 7.5.

#### 2.2. Drug solutions

All solutions were made up in modified Ringer's solution which was nominally Ca<sup>2+</sup>-free. Omission of extracellular Ca2+ prevented the activation of Ca2+-dependent Cl<sup>-</sup>-channels in Xenopus oocytes secondary to Ca<sup>2+</sup> influx through ATP-activated ion-channels. ATP and adenine dinucleotides (the Ap, A series) were prepared in Ca<sup>2+</sup>-free Ringer's solution (at the concentrations stated in the text). Agonists were added for 120 s or until membrane currents peaked, then washed out for a period of 20 min. This extended washout period was necessary to ensure successive ATP-responses (applied at the  $EC_{50}$  value) were of constant amplitude. Adenine dinucleotides, when used as modulators, were superfused for 20 min prior to, and during, superfusion of submaximal concentrations of ATP (rP2X<sub>1</sub>, 0.1  $\mu$ M; rP2X<sub>3</sub>, 0.3  $\mu$ M; rP2X<sub>4</sub>, 3  $\mu$ M). The pH of the Ringer's solution, and all drugs used, was routinely adjusted to pH 7.5, by adding either 1.0 N HCl or 1.0 N NaOH, since agonist activity at P2X receptors is sensitive to changes in extracellular pH (King et al., 1996, 1997; Stoop et al., 1997; Wildman et al., 1998).

## 2.3. Statistics

Data are presented as mean  $\pm$  SEM of four sets of data from different oocyte batches. Significant differences were determined by Student's *t*-test, using a commercial software package (Instat, v2.05A; GraphPad).

#### 2.4. Chemicals

All common salts were AnalaR grade (BDH, UK). ATP disodium salt was purchased from Boehringer Mannheim (Germany) while all adenine dinucleotides (Ap<sub>3</sub>A, Ap<sub>4</sub>A and Ap<sub>6</sub>A ammonium salts, Ap<sub>2</sub>A and Ap<sub>5</sub>A sodium salts) were purchased from Sigma (Poole, Dorset UK). We have commented previously on the purity of commercially-prepared diadenosine polyphosphates and found little contamination (< 1%) with ATP (Pintor et al., 1996).

#### 3. Results

3.1. Agonist activity of adenine dinucleotides at rat  $P2X_1$  receptor

ATP (0.01–30  $\mu$ M) evoked inward membrane currents in defolliculated *Xenopus* oocytes expressing rP2X<sub>1</sub> receptors (EC<sub>50</sub> value,  $0.30 \pm 0.01 \mu$ M; Hill coefficient ( $n_{\rm H}$ ), 1.5 ± 0.1; n = 4). Of the dinucleotide series tested, only Ap<sub>6</sub>A was a full agonist (EC<sub>50</sub>,  $0.72 \pm 0.08 \mu$ M;  $n_{\rm H}$ , 1.2 ± 0.2; n = 4) yet 2–3 fold less potent than ATP. Both Ap<sub>4</sub>A and Ap<sub>5</sub>A were partial agonists with maximal responses as low as 40% of the maximal ATP effect (Fig. 1A). Ap<sub>4</sub>A (EC<sub>50</sub>, 38 ± 11 nM;  $n_{\rm H}$ , 1.2 ± 0.1; n = 4) was eight fold more potent than ATP, while Ap<sub>5</sub>A (EC<sub>50</sub>,



Fig. 1. Adenine dinucleotide activity at rat P2X<sub>1</sub>, P2X<sub>3</sub> and P2X<sub>4</sub> receptors. Concentration–responses curves for ATP and the adenine dinucleotide series (Ap<sub>n</sub>A, n = 2-6) at P2X<sub>1</sub> (A), P2X<sub>3</sub> (B) and P2X<sub>4</sub> (C). Agonist activity was normalized to the maximal response to ATP in each experiment. Agonist potency was determined as the EC<sub>50</sub> value for each curve, for four determinations per agonist. EC<sub>50</sub> values are given in Table 1 and in the text. Hill coefficients for agonists are also given in the text. Curves were fitted using the Hill equation, as defined by Prism v2.0 (GraphPad).

 $0.90 \pm 0.1 \ \mu$ M;  $n_{\rm H}$ ,  $1.0 \pm 0.1$ ; n = 4) was 2–3 fold less potent. P<sup>1</sup>,P<sup>3</sup>-diadenosine triphosphate (Ap<sub>3</sub>A; 0.3–100  $\mu$ M) showed weak agonist activity and, at the highest concentrations used, elicited inward currents as low as 10% of the maximal ATP effect. P<sup>1</sup>,P<sup>2</sup>-diadenosine pyrophosphate (Ap<sub>2</sub>A; 0.1–30  $\mu$ M) was inactive as an agonist and, furthermore, neither antagonized nor potentiated ATP-responses.

# 3.2. Agonist activity of adenine dinucleotides at rat $P2X_3$ receptor

ATP (0.01–100  $\mu$ M) evoked inward membrane currents in oocytes expressing rP2X<sub>3</sub> receptors (EC<sub>50</sub>,  $1.8 \pm$ 0.3  $\mu$ M;  $n_{\rm H}$ , 0.7  $\pm$  0.05; n = 4). Three dinucleotides were full agonists and more potent than ATP:  $Ap_4A$  (EC<sub>50</sub>,  $0.80 \pm 0.12 \ \mu M; \ n_{\rm H}, \ 0.9 \pm 0.1; \ n = 4$ ); Ap<sub>5</sub>A (EC<sub>50</sub>,  $1.3 \pm 0.3 \ \mu M, \ n_{\rm H}, \ 0.7 \pm 0.1; \ n = 4$ ); Ap<sub>6</sub>A ( $1.6 \pm 0.4$  $\mu$ M;  $n_{\rm H}$ , 0.8  $\pm$  0.1; n = 4). Ap<sub>3</sub>A was a partial agonist with maximal responses as low as 60% of the maximal ATP effect (Fig. 1B), although this dinucleotide ( $EC_{50}$ ,  $1.0 \pm 0.5 \ \mu\text{M}; \ n_{\text{H}}, \ 0.8 \pm 0.1; \ n = 4$ ) was more potent than ATP. Ap<sub>2</sub>A (0.1–30  $\mu$ M) was inactive as an agonist. However,  $Ap_2A$  (100  $\mu$ M) caused a modest potentiation  $(175 \pm 26\%)$  of control responses (taken as 100%) to submaximal concentrations of ATP (0.3 µM, approximately  $EC_{25}$ ), and this effect was reversed on washout. The EC<sub>50</sub> value for this potentiation was  $8.3 \pm 0.7 \ \mu M$ (n = 4).

# 3.3. Agonist activity of adenine dinucleotides at rat $P2X_4$ receptor

ATP (0.1–100  $\mu$ M) evoked inward membrane currents in oocytes expressing rP2X<sub>4</sub> receptors (EC<sub>50</sub>, 4.1 ± 1.0  $\mu$ M;  $n_{\rm H}$ , 1.2 ± 0.1; n = 4). Ap<sub>4</sub>A was as potent as ATP at rP2X<sub>4</sub> (EC<sub>50</sub>, 3.0 ± 0.4  $\mu$ M;  $n_{\rm H}$ , 1.1 ± 0.2; n = 4), although a partial agonist with maximal responses as low as 30% of the maximal ATP effect (Fig. 1C). Ap<sub>6</sub>A (30–300  $\mu$ M) was much less active than either ATP or Ap<sub>4</sub>A, evoking maximal responses as low as 10% of the maximal ATP effect (n = 4). Ap<sub>2</sub>A, Ap<sub>3</sub>A and Ap<sub>5</sub>A (10–300

Agonist activity of ATP and adenine dinucleotides at rat  $P2X_{1-4}$  receptors

Table 1

 $\mu$ M) were inactive as agonists. However, Ap<sub>2</sub>A and Ap<sub>3</sub>A (1–100  $\mu$ M) potentiated ATP-activated currents at rP2X<sub>4</sub> receptors in a concentration-dependent manner. ATP-responses (to 3  $\mu$ M, approximately EC<sub>40</sub>) were maximally increased by 146 ± 7% (Ap<sub>2</sub>A: EC<sub>50</sub>, 1.6 ± 0.8  $\mu$ M) and 154 ± 13% (Ap<sub>3</sub>A: EC<sub>50</sub>, 0.93 ± 0.12  $\mu$ M). The potentiating effects of Ap<sub>2</sub>A and Ap<sub>3</sub>A were reversed on washout. Ap<sub>5</sub>A (1–30  $\mu$ M) was inactive, either as a modulator or an antagonist, against ATP-activated currents.

# 4. Discussion

In the present study, we found that the diadenosine polyphosphate series (Ap<sub>n</sub>A, n = 2-6) showed different patterns of pharmacological activity at three rat P2X receptors (rP2X<sub>1</sub>, rP2X<sub>3</sub>, rP2X<sub>4</sub>). These data, when compared to like studies of human P2X<sub>1</sub> (Evans et al., 1995) and rat P2X<sub>2</sub> receptors (Pintor et al., 1996), reveal agonist selectivity for dinucleotides at the P2X<sub>1-4</sub> subunits (see Table 1).

Only  $Ap_6A$  was a full agonist at rP2X<sub>1</sub>, although the potency order of dinucleotides showing agonist properties was  $Ap_4A > ATP > Ap_6A = Ap_5A$  (on the basis of EC<sub>50</sub>) values). Ap<sub>5</sub>A and Ap<sub>4</sub>A were partial agonists at  $rP2X_1$ .  $Ap_5A$  is also a partial agonist at the human orthologue  $(hP2X_1)$  (Evans et al., 1995), although its potency is similar at the rat (EC<sub>50</sub>, 0.9  $\mu$ M) and human (EC<sub>50</sub>, 0.8  $\mu$ M) orthologues of the P2X<sub>1</sub> receptor. Four dinucleotides were as potent as ATP, or more so, at rP2X<sub>3</sub> with a potency order  $Ap_4A$   $Ap_3A > Ap_5A = Ap_6A \ge ATP$ (based on  $EC_{50}$  values). However,  $Ap_3A$  was a partial agonist while the other three dinucleotides were full agonists. Ap<sub>4</sub>A and Ap<sub>6</sub>A activated the rP2X<sub>4</sub> receptor with a potency order  $Ap_4 A \ge ATP \gg Ap_6 A$  (based on EC<sub>50</sub> values), although neither dinucleotide was a full agonist.  $Ap_4A$  gave about 30% of the maximal activity of ATP, while  $Ap_6A$  was weaker (10% maximal activity). The results for rP2X<sub>1</sub>, rP2X<sub>3</sub> and rP2X<sub>4</sub> contrast with known data for  $rP2X_2$ , where  $Ap_4A$  is the only dinucleotide to activate this P2X subunit and is less potent than ATP (Pintor et al., 1996). However, a consistent finding with all

| -                 |                                                  |                                       |                                         |                                                  |
|-------------------|--------------------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------------------|
|                   | rP2X <sub>1</sub>                                | rP2X <sub>2</sub>                     | rP2X <sub>3</sub>                       | rP2X <sub>4</sub>                                |
| ATP               | full agonist (0.30 $\pm$ 0.01 $\mu$ M)           | full agonist (3.7 $\pm$ 0.7 $\mu$ M)  | full agonist (1.8 $\pm$ 0.3 $\mu$ M)    | full agonist (4.1 $\pm$ 1.0 $\mu$ M)             |
| $Ap_2A$           | inactive (0.1–30 μM)                             | inactive (1–100 µM)                   | inactive (0.1–30 $\mu$ M)               | inactive (0.1–30 μM)                             |
| Ap <sub>3</sub> A | partial agonist (EC <sub>50</sub> > 100 $\mu$ M) | inactive (1–100 µM)                   | partial agonist $(1.0 \pm 0.5 \ \mu M)$ | inactive (0.1–30 μM)                             |
| Ap <sub>4</sub> A | partial agonist (0.04 $\pm$ 0.01 $\mu$ M)        | full agonist (15.2 $\pm$ 1.0 $\mu$ M) | full agonist (0.80 $\pm$ 0.12 $\mu$ M)  | partial agonist (3.0 $\pm$ 0.4 $\mu$ M)          |
| Ap <sub>5</sub> A | partial agonist ( $0.9 \pm 0.1 \ \mu M$ )        | inactive (0.1–100 μM)                 | full agonist (1.3 $\pm$ 0.3 $\mu$ M)    | inactive (0.1-30 μM)                             |
| Ap <sub>6</sub> A | full agonist (0.72 $\pm$ 0.08 $\mu$ M)           | inactive (0.1–100 $\mu$ M)            | full agonist (1.6 $\pm$ 0.4 $\mu$ M)    | partial agonist (EC <sub>50</sub> > 100 $\mu$ M) |

Agonist activity and potency of ATP and the adenine dinucleotide series (Ap<sub>n</sub>A, n = 2-6) at homomeric rat P2X<sub>1</sub>-P2X<sub>4</sub> receptors expressed in *Xenopus* oocytes. Potency indices are expressed as EC<sub>50</sub> values (mean ± SEM; n = 4). Dinucleotides were full agonists if they matched the maximal activity of ATP; partial agonists failed to do so. Data for rat P2X<sub>2</sub> taken from the work of Pintor et al. (1996). Ap<sub>5</sub>A is a partial agonist (~ 50% of maximal ATP activity, with an EC<sub>50</sub> value of 0.8  $\mu$ M) at human P2X<sub>1</sub> receptors (Evans et al., 1995).

four P2X subunits was an inability by  $P^1,P^2$ -diadenosine pyrophosphate (Ap<sub>2</sub>A) to act as an agonist. P2X<sub>1-4</sub> subunits are relatively insensitive to ADP and related adenine diphosphates (e.g., adenosine 5'-O-(2-thiodiphosphate) (ADP $\beta$ S) and 2-methylthio ADP (2-MeSADP)) compared to ATP and related adenine triphosphates (e.g., adenosine 5'-O-(3-thiotriphosphate) (ATP $\gamma$ S) and 2-methylthio ATP (2-MeSATP) (King, 1998), and this trend appears to hold true for the diphosphate represented by Ap<sub>2</sub>A.

The combined results shown in Table 1 reveal the potential to discriminate between certain P2X subunits on the basis of the activity and potency of diadenosine polyphosphates relative to ATP. Ap<sub>6</sub>A is a full agonist at both fast desensitizing P2X subunits ( $P2X_1$  and  $P2X_3$ ), but  $rP2X_3$  is also activated fully by  $Ap_4A$  and  $Ap_5A$  while  $rP2X_1$  is not. Also, Ap<sub>3</sub>A is a potent agonist at  $rP2X_3$  but relatively inactive at rP2X<sub>1</sub>. For the slowly-desensitizing P2X subunits (P2X<sub>2</sub> and P2X<sub>4</sub>),  $Ap_4A$  is a full agonist at rP2X<sub>2</sub> but not at rP2X<sub>4</sub>. These two slowly-desensitizing P2X subunits are found throughout the peripheral and central nervous systems (Vulchanova et al., 1996; Lê et al., 1998) and their different pharmacological profiles to dinucleotides may provide the means to identify these functional P2X subunits in native P2X receptors of neural tissues.

Transcripts for  $rP2X_1$ ,  $rP2X_2$  and  $rP2X_4$  co-localise in blood vessels (Nori et al., 1998). Potentially, the relative activities of Ap<sub>6</sub>A and Ap<sub>4</sub>A at these three P2X subunits  $(rP2X_1, rP2X_2, rP2X_4)$  could help reveal the presence of homomeric and heteromeric P2X receptor subtypes in different vascular beds. Transcripts for rP2X<sub>2</sub> and rP2X<sub>4</sub> also co-localise with rP2X<sub>3</sub> in neurons of sensory ganglia (Collo et al., 1996). The relative activities of diadenosine polyphosphates at native P2X receptors in rat dorsal root ganglia (DRG) is of some interest, since it is believed that the pharmacological and biophysical profiles of the P2X receptors on sensory neurons change with age. The P2X receptor in neonatal rat DRG tissue appears to show a P2X<sub>3</sub> phenotype (Robertson et al., 1996) whereas, in older DRG, the P2X receptor appears to change its phenotype to that of  $P2X_{2/3}$  heteromultimers (Evans and Surprenant, 1996). Ap<sub>5</sub>A (EC<sub>50</sub>, 3.2  $\mu$ M) is a full agonist, but Ap<sub>4</sub>A  $(EC_{50}, 5.2 \mu M)$  a partial agonist, at the P2X receptor in neonatal rat DRG (Rae et al., 1998). In adult rat nodose ganglia, where the P2X receptor is thought to be a heteromultimeric assembly of P2X<sub>2</sub> and P2X<sub>3</sub> (Lewis et al., 1995),  $Ap_4A$  is a weak partial agonist while  $Ap_2A$ ,  $Ap_3A$ and Ap<sub>5</sub>A are considered to be antagonists (Krishtal et al., 1988). Neither of the above pharmacological profiles matched the agonist activities of dinucleotides at the recombinant rP2X<sub>3</sub> receptor (see Table 1).

We also found that several adenine dinucleotides devoid of agonist activity were modulators of ATP-activity at P2X subunits. Ap<sub>2</sub>A was not an agonist at the rP2X<sub>3</sub> receptor but, instead, reversibly potentiated ATP-responses. Similarly, Ap<sub>2</sub>A and Ap<sub>3</sub>A were not agonists at rP2X<sub>4</sub> yet reversibly potentiated ATP-activated currents at this subtype. These modulatory actions are reminiscent of the actions of Ap<sub>5</sub>A which selectively potentiates ATP-responses at rP2X<sub>2</sub> receptors by shifting the concentrationresponse curve for the agonist leftwards (Pintor et al., 1996). In the present study,  $Ap_2A$  and  $Ap_3A$  caused a similar displacement of ATP concentration-response curves without altering the maximum ATP effect. The degree of Ap<sub>2</sub>A potentiation at rP2X<sub>3</sub> and rP2X<sub>4</sub> receptors was modest, increasing the amplitude of ATP-responses by 1-2 fold. Ap<sub>5</sub>A potentiation at rP2X<sub>2</sub> receptor was modest also, showing a 1-2 fold increase in agonist activity (Pintor et al., 1996). Recently, Ap<sub>5</sub>A has been shown to potentiate ATP-responses in rat cerebellar astrocytes, although such ATP-responses appear to be mediated by a metabotropic ATP receptor (Jimenez et al., 1998). If true, these data indicate that some diadenosine polyphosphates have the capacity to potentiate ATP responses at both P2X (ionotropic) and P2Y (metabotropic) receptor subtypes.

#### 5. Conclusion

In conclusion, it is evident that there is some selectivity in the actions of the adenine dinucleotides for those P2X subunits tested thus far (hP2X<sub>1</sub>, rP2X<sub>1</sub>, rP2X<sub>2</sub>, rP2X<sub>3</sub> and  $rP2X_4$  receptors). A picture is emerging that these P2X subunits are affected by certain adenine dinucleotides in different ways. Of the dinucleotides tested, Ap<sub>6</sub>A seems the best choice as an agonist for  $rP2X_1$  although  $Ap_6A$ will also fully activate rP2X<sub>3</sub>. However, Ap<sub>5</sub>A and Ap<sub>4</sub>A are full agonists at rP2X<sub>3</sub> but not rP2X<sub>1</sub> and, accordingly, they can help discriminate between  $rP2X_3$  and  $rP2X_1$ . Ap<sub>4</sub>A is the best agonist for P2X<sub>2</sub> although it will also fully activate  $P2X_3$  and partially activate  $P2X_1$ . However, all agonist responses at  $P2X_2$  are enhanced under acidic conditions, whereas they are either unaffected or reduced under similar conditions at  $P2X_3$  and  $P2X_1$  (King et al., 1996, 1997; Stoop et al., 1997; Wildman et al., 1998). Also,  $P2X_2$  is a slow desensitizing receptor while the kinetics of activation and inactivation are faster for P2X<sub>3</sub> and  $P2X_1$  (King, 1998).  $P2X_3$  is identified by full agonist activity of Ap<sub>4</sub>A, Ap<sub>5</sub>A and Ap<sub>6</sub>A and by Ap<sub>2</sub>A potentiation of ATP-responses at this fast desensitizing receptor.  $rP2X_4$  is the most difficult to identify by the actions of dinucleotides, but potentiation of ATP-responses by Ap<sub>2</sub>A and Ap<sub>3</sub>A appears to be signatory. However,  $rP2X_4$  is also marked by its insensitivity to blockade by suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (for reviews, see North and Barnard, 1997; King, 1998). Thus, adenine dinucleotides may prove to be useful tools in identifying P2X subtypes in endogenous P2X receptors in whole tissues when, currently, there is a lack of selective agonists and antagonists for these ligand-gated ion channels.

## Acknowledgements

This work was supported by the British Heart Foundation, Roche Bioscience (Palo Alto, USA) and Gilead Sciences (Foster City, CA). We are grateful to Dr. G. Buell (formerly Glaxo, Geneva) for the gift of cDNA encoding the rat  $P2X_1$  receptor, Professor J. Wood (UCL, London) for cDNA encoding the rat  $P2X_3$  receptor, and Dr. X. Bo and Dr. R. Schoepfer (UCL, London) for cDNA encoding the rat  $P2X_4$  receptor. We thank Dr. Charles Hoyle (UCL, London) and Dr. J. Pintor (Madrid, Spain) for their critical review of this paper.

#### References

- Abbracchio, M.P., Burnstock, G., 1994. Purinoceptors: are there families of P2X and P2Y purinoceptors?. Pharmacol. Ther. 64, 445–475.
- Bo, X., Zhang, Y., Nassar, M., Burnstock, G., Schoepfer, R., 1995. A P2X purinoceptor cDNA conferring a novel pharmacological profile. FEBS Lett. 375, 129–133.
- Chen, C.C., Akopian, A.N., Sivilotti, L., Colquhoun, D., Burnstock, G., Wood, J.N., 1995. A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377, 428–431.
- Collo, G., North, R.A., Kawashima, E., Merlo-Pich, E., Neidhart, S., Surprenant, A., Buell, G., 1996. Cloning of P2X<sub>5</sub> and P2X<sub>6</sub> receptors and the distribution and properties of an extended family of ATP-gated ion channels. J. Neurosci. 16, 2495–2507.
- Evans, R.J., Surprenant, A., 1996. P2X receptors in autonomic and sensory ganglia. Semin. Neurosci. 8, 217–223.
- Evans, R.J., Lewis, C., Buell, G., Valera, S., North, R.A., Surprenant, A., 1995. Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2X purinoceptors). Mol. Pharmacol. 48, 178–183.
- Hoyle, C.H.V., 1990. Pharmacological activity of adenine dinucleotides in the periphery: possible receptor classes and transmitter function. Gen. Pharmacol. 21, 827–831.
- Jimenez, A.I., Castro, E., Delicado, E.G., Miras-Portugal, M.T., 1998. Potentiation of adenosine 5'-triphosphate calcium responses by diadenosine pentaphosphate in individual rat cerebellar astrocytes. Neurosci. Lett. 246, 109–111.
- King, B.F., 1998. Molecular biology of P2X purinoceptors. In: Burnstock, G., Dobson, J.G., Laing, B.T., Linden, J. (Eds.), Cardiovascular Biology of Purines, Chap. 10. Kluwer Academic, Boston, pp. 159– 186.
- King, B.F., Ziganshina, L.E., Pintor, J., Burnstock, G., 1996. Full sensitivity of P2X<sub>2</sub> purinoceptor to ATP revealed by changing extracellular pH. Br. J. Pharmacol. 117, 1371–1373.

- King, B.F., Wildman, S.S., Ziganshina, L.E., Pintor, J., Burnstock, G., 1997. Effects of extracellular pH on agonism and antagonism at a recombinant P2X<sub>2</sub> receptor. Br. J. Pharmacol. 121, 1445–1453.
- Krishtal, O.A., Marchenko, S.M., Obukhov, A.G., Volkova, T.M., 1988. Receptors for ATP in rat sensory neurones: the structure–function relationship for ligands. Br. J. Pharmacol. 95, 1057–1062.
- Lê, K.T., Villeneuve, P., Ramjaun, A.R., McPherson, P.S., Beaudet, A., Séguéla, P., 1998. Sensory presynaptic and widespread somatodendritic immunolocalization of central ionotropic P2X ATP receptors. Neuroscience 83, 177–190.
- Lewis, C., Neidhart, S., Holy, C., North, R.A., Buell, G., Surprenant, A., 1995. Coexpression of P2X<sub>2</sub> and P2X<sub>3</sub> receptor subunits can account for ATP-gated currents in sensory neurones. Nature 377, 432–435.
- Nori, S., Fumagalli, L., Bo, X., Bogdanov, Y., Burnstock, G., 1998. Coexpression of mRNAs for P2X<sub>1</sub>, P2X<sub>2</sub> and P2X<sub>4</sub> receptors in rat vascular smooth muscle: an in situ hybridization and RT-PCR study. J. Vasc. Res. 35, 179–185.
- North, R.A., Barnard, E.A., 1997. Nucleotide receptors. Curr. Opin. Neurobiol. 7, 346–357.
- Ogilvie, A., Blasius, R., Schulze-Lohoff, E., Sterzel, R.B., 1996. Adenine dinucleotides: a novel class of signalling molecules. J. Auton. Pharmacol. 16, 325–328.
- Pintor, J., Miras-Portugal, M.T., 1995. P<sub>2</sub> purinergic receptors for diadenosine polyphosphates in the nervous system. Gen. Pharmacol. 26, 229–235.
- Pintor, J., King, B.F., Miras-Portugal, M.T., Burnstock, G., 1996. Selectivity and activity of adenine dinucleotides at recombinant P2X<sub>2</sub> and P2Y<sub>1</sub> purinoceptors. Br. J. Pharmacol. 119, 1006–1012.
- Pintor, J., Hoyle, C.H.V., Gualix, J., Miras-Portugal, M.T., 1997. Diadenosine polyphosphates in the central nervous system. Neurosci. Res. Commun. 20, 69–78.
- Rae, M.G., Rowan, E.G., Kennedy, C., 1998. Pharmacological properties of P2X<sub>3</sub>-receptors present in neurones of the rat dorsal root ganglia. Br. J. Pharmacol. 124, 176–180.
- Robertson, S.J., Rae, M.G., Rowan, E.G., Kennedy, C., 1996. Characterization of a P2X-purinoceptor in cultured neurones of the rat dorsal root ganglia. Br. J. Pharmacol. 118, 951–956.
- Stoop, R., Surprenant, A., North, R.A., 1997. Different sensitivities to pH of ATP-induced currents at four cloned P2X receptors. J. Neurophysiol. 78, 1837–1840.
- Valera, S., Hussy, N., Evans, R.J., Adami, N., North, R.A., Surprenant, A., Buell, G., 1995. A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371, 516–519.
- Vulchanova, L., Arvidsson, U., Riedl, M., Wang, J., Buell, G., Surprenant, A., North, R.A., Elde, R., 1996. Differential distribution of two ATP-gated ion channels (P2X receptors) determined by immunohistochemistry. Proc. Natl. Acad. Sci. USA 93, 8063–8067.
- Wildman, S.S., King, B.F., Burnstock, G., 1998. Zn<sup>2+</sup> modulation of ATP-responses at recombinant P2X<sub>2</sub> receptors and its dependence on pH. Br. J. Pharmacol. 123, 1214–1220.