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Coexpression of Rat P2X, and P2Xg; Subunits in Xenopus Oocytes
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Transcripts for P2X, and P2X4 subunits are present in rat CNS
and frequently colocalize in the same brainstem nuclei. When
rat P2X,, (rP2X,) and rat P2X (rP2Xg) receptors were expressed
individually in Xenopus oocytes and studied under voltage-
clamp conditions, only homomeric rP2X, receptors were fully
functional and gave rise to large inward currents (2-3 uA) to
extracellular ATP. Coexpression of rP2X, and rP2Xg subunits in
Xenopus oocytes resulted in a heteromeric rP2X,,5 receptor,
which showed a significantly different phenotype from the wild-
type rP2X, receptor. Differences included reduction in agonist
potencies and, in some cases (e.g., Ap,A), significant loss of
agonist activity. ATP-evoked inward currents were biphasic at
the heteromeric rP2X,,, receptor, particularly when Zn?* ions
were present or extracellular pH was lowered. The pH range

was narrower for H* enhancement of ATP responses at the
heteromeric rP2X,,, receptor. Also, H™ ions inhibited ATP re-
sponses at low pH levels (<pH 6.3). The pH-dependent block-
ing activity of suramin was changed at this heteromeric recep-
tor, although the potentiating effect of Zn?* on ATP responses
was unchanged. Thus, the rP2X,, receptor is a functionally
modified P2X,-like receptor with a distinct pattern of pH mod-
ulation of ATP activation and suramin blockade. Although ho-
momeric P2Xg receptors function poorly, the P2Xs subunit can
contribute to functional heteromeric P2X channels and may
influence the phenotype of native P2X receptors in those cells
in which it is expressed.
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P2X receptors are ligand-gated cation channels that when acti-
vated by extracellular ATP mediate fast excitation in various cells,
including central and peripheral neurons (Burnstock, 1997). Neu-
ronal P2X receptors show considerable differences in their sensi-
tivity to naturally occurring agonists, P2 receptor antagonists,
and allosteric modulators and, furthermore, show differences in
kinetics of receptor activation and inactivation (Khakh et al.,
1995; King, 1998). Such diversity in the operational profiles of
ATP-gated ion channels may be attributable to the subunit com-
position of native P2X receptors, because other classes of iono-
tropic receptors show differing phenotypes that depend on sub-
unit composition (Barnard et al., 1998). Seven P2X receptor
subunits (P2X,_-) have been cloned, each of which is believed to
form functional homomeric assemblies (Buell et al., 1996). They
can also coassemble with other P2X subunits to form heteromeric
P2X receptors of three, or possibly four, protein subunits per
ATP-gated ion channel (Kim et al., 1997; Nicke et al., 1998;
Torres et al., 1999). Three functional heteromeric P2X receptors
have been reported: P2X, ; (Lewis et al., 1995; Radford et al,,
1997), P2X,s (L€ et al., 1998), and P2X, s (Torres et al., 1998;
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Haines et al., 1999; L¢é et al., 1999). Heteromeric channels com-
posed of splice variants of the same P2X subunit (e.g., mP2X, and
mP2X,,) can also generate a different phenotypic form of the
wild-type P2X receptor (Townsend-Nicholson et al., 1999).

The potential for heteropolymerization among P2X,_, recep-
tor subunits was recently investigated using coimmunoprecipita-
tion procedures (Torres et al., 1999). For P2X subunits concen-
trated in the CNS (namely P2X,, P2X,, and P2X,) (Collo et al.,
1996), epitope-tagged P2X, and P2X, subunits or P2X, and P2X,
subunits (but not P2X, and P2X, subunits) were shown to form
immunopositive heteromeric assemblies. The functional proper-
ties of heteromeric P2X, , receptors have been established (Lé et
al.,, 1998), but not yet the phenotype of heteromeric P2X,
receptors. The result of P2X, and P2X, subunit coexpression is of
considerable interest because of (1) the distinct pH modulation of
ATP responses at the homomeric P2X, receptor (King, 1998), (2)
a growing belief that the P2X, subunit might only contribute to
functional channels when other P2X subunits are present (Torres
et al., 1999), and (3) the recent identification of a pH-modulated
ATP receptor in those nuclei of rat brainstem where P2X, and
P2X, transcripts have been detected (Thomas et al., 1999;
Thomas and Spyer, 2000).

Thus, it was of interest to examine the contribution of the P2X
subunit, when coexpressed with the pH-modulated P2X, subunit,
to the operational profile of the resultant heteromeric P2X,,
receptor expressed in defolliculated Xenopus oocytes. Differences
in the ways heteromeric P2X,,, and homomeric P2X, receptors
respond to nucleotidic agonists, suramin, pH, and Zn>* ions were
investigated in the oocyte expression system. The results establish
the P2X, , receptor as the fourth example of a heteropolymeric
ATP-gated ion channel that, in this case, possesses a pattern of
pH modulation of ATP responses distinct from other known
homomeric and heteromeric P2X receptors.
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MATERIALS AND METHODS

Oocyte preparation. Xenopus laevis frogs were killed by immersion in a
lethal dose in Tricaine (0.4% w/v, in tap water) and then decapitated, and
ovarian lobes were removed by blunt dissection. Xenopus oocytes (stages
V and VI) were defolliculated by a two-step process involving (1)
collagenase treatment (Type IA, 2 mg/ml in Ca**-free Ringer’s solution,
for 2-3 hr) and (2) stripping away the follicle cell layer with fine forceps.
Defolliculated oocytes do not possess native P1 and P2 receptors (King
et al., 1996a,b) and are largely devoid of ecto-ATPases (Ziganshin et al.,
1995). Oocytes were stored in Barth’s solution (pH 7.5, at 4°C) contain-
ing (in mM): NaCl 110, KCI 1, NaHCO; 2.4, Tris HC1 7.5, Ca(NOs),
0.33, CaCl, 0.41, MgSO, 0.82, supplemented with gentamycin sulfate, 50
ung/l. Cells were injected cytosolically with cRNA for rP2X, (40 nl, 0.002
png/ul) or rP2X (40 nl, 1 wg/ul) or both rP2X, and rP2X, (40 nl of each)
and incubated for 48 hr at 18°C in Barth’s solution. Thereafter, injected
oocytes were kept at 4°C for up to 12 d until they were used in electro-
physiological experiments.

Electrophysiology. Membrane currents were recorded from cRNA-
injected oocytes using a twin-electrode voltage-clamp amplifier (Axo-
clamp 2A). The holding potential (V) was —50 mV, unless stated
otherwise. The voltage-recording and current-recording microelectrodes
(1-5 MQ tip resistance) were filled with 3.0 M KCI1. Oocytes were placed
in an electrophysiological chamber (volume, 0.5 ml) and superfused with
Ringer’s solution (5 ml/min, at 18°C) containing (in mm): NaCl 110, KC1
2.5, HEPES 5, CaCl, 1.8, adjusted to pH 7.5. Extracellular pH (pH,) was
adjusted with HCI1 (1.0N) or NaOH (1.0N) to reach the desired level.
Electrophysiological data were stored on magnetic tape using a DAT
recorder (Sony 1000ES) and displayed using a pen recorder (Gould
22008).

Drug solutions. ATP and other nucleotides were prepared in Ringer’s
solution, and the pH of stock solutions was readjusted to the desired
level. Agonists were superfused, at the concentrations given in the text,
by a gravity-feed continuous flow system allowing the rapid addition and
washout of drugs. ATP was added for 120 sec or until the current reached
a peak, then washed off with Ringer’s solution for a period of 5 min.
Where used, antagonists were applied for 5 min before and during the
application of agonists.

Agonist responses were normalized to the maximum inward current
(I1max) €evoked by ATP at pH 7.5, including agonist responses recorded at
lower pH levels. At pH 7.5, maximum responses were evoked by 300—
1000 um ATP. The agonist concentration required to evoke 50% of the
maximum response (ECs,) was taken from Hill plots, using the transform
log (I/,,.x — I), where [ is the peak current evoked by each concentration
of ATP.

The potentiating effects of extracellular Zn?* ions on agonist activity
were investigated in two ways. Zn>" ions were either applied simulta-
neously with ATP or added to the Ringer’s solution for 5 min before
ATP was applied (with Zn>" present).

Statistics and graphs. Data are presented as mean £ SEM of four to
seven sets of data from different oocyte batches. Concentration—response
curves and inhibition curves were fitted by nonlinear regression analysis
using Prism v2.0 (GraphPad). Significant differences were determined by
unpaired Student’s ¢ test or one-way ANOVA followed by Dunnett’s post
hoc test, again using Prism v2.0 (GraphPad).

Drugs and reagents. All common salts and reagents were AnalaR grade
(Aldrich Chemicals, Poole, UK). ATP and ATPaS were purchased from
Boehringer (Mannheim, Germany). 2-Methylthio ATP (2-MeSATP) was
obtained from RBI (Natick, MA), and other nucleotides [ATPvS, ADP,
AMP, adenosine, UTP, UDP, UMP, uridine, CTP, GTP, ITP, diade-
nosine polyphosphates (Ap,A; n = 2-6), o,f-meATP, B,y-meATP, and
2'- and 3'-O-(4-benzoyl-benzoyl) ATP (BzATP)] came from Sigma
(Poole, UK). Suramin was a gift from Bayer (Newbury, UK).

RESULTS

ATP responses of P2X receptors

In initial experiments, the functionality of homomeric rP2X, and
rP2X, receptors expressed in Xenopus oocytes was tested against
a near-saturating concentration of ATP (100 um), according to
available pharmacological data on homomeric P2X receptors
(King, 1998). At a holding potential of —50 mV, ATP-activated
rP2X,, receptors produced fast-activating and slowly inactivating
inward currents (1993 = 147 nA; n = 6) (Fig. 14,C). rP2X,
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Figure 1. Expression of homomeric and heteromeric P2X receptors. A4,
Whole-cell inward currents by homomeric rP2X, and rP2X, receptors
activated by a near-saturating ATP concentration (100 uM, for 60 sec), at
the given holding potentials (V}). B, Whole-cell inward currents by
ATP-activated heteromeric rP2X,  receptors. ATP responses were often
biphasic, showing a transient component ( filled arrow) followed by a
sustained current. The deactivation of inward current occasionally
showed two phases of current decay (open arrow). C, Averaged whole-cell
inward currents by homomeric rP2X,, rP2X,, and heteromeric rP2X,
receptors activated by ATP (100 um). The y-axis of the histogram has
been truncated to help reveal the small responses by rP2X, receptors.
Data are expressed as mean *= SEM for six to seven cells per
determination.

receptors failed to respond to ATP at a holding potential —50
mV, but where increased to —90 mV, the agonist did evoke
low-amplitude slowly activating inward currents (4.57 = 1.31 nA,
n = 7) (Fig. 14,C). Control (water-injected) oocytes failed to
respond to ATP, at either —50 or —90 mV.

In further experiments, coexpression of rP2X, and rP2X sub-
units resulted in fast-activating and slowly inactivating inward
currents (1516 * 286 nA, n = 6) (Fig. 1B, C), which were broadly
similar in their time course to the ATP responses produced by
homomeric rP2X, receptors. However, ATP-activated hetero-
meric rP2X, ¢ receptors uniquely showed biphasic (transient and
sustained) components to the evoked inward currents (Fig. 1B,
closed arrow). Such biphasic responses were seen in all cRNA-
injected oocytes tested (n = 175), although the amplitude of each
component of biphasic currents was variable from response to
response. Furthermore, evoked responses would change in an
unpredictable manner from biphasic to monophasic currents (and
back again) over several successive ATP applications. However,
the reproducibility of biphasic inward currents by rP2X, , recep-
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Figure 2. ATP activity at homomeric and heteromeric P2X
receptors. A, C-R relationship for ATP-activated inward
currents at rP2X, and rP2X,, receptors, at pH 7.5. B, The
relationship between the amplitude of ATP responses
(rP2X,, 3 uM; 1P2X, 6, 10 uM; each producing 5% of the
maximum response) and the extracellular pH level (range,
pH 8.3-5.0) at homomeric and heteromeric P2X receptors.
C, The C-R curves for ATP activation of rP2X, receptors
at the pH, levels indicated. ATP efficacy was markedly re-
duced at pH 5.5. D, The C-R curves for ATP activation of
rP2X, receptors. ATP efficacy was not altered at pH 5.5.

7 8 5 4 3 2 -8 7 8 5
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tors was enhanced when pH, was lowered or Zn*" ions were

present in the bathing solution (see Fig. 5). Deactivation of
rP2X,,, receptors frequently comprised two phases of current
decay (Fig. 1B, open arrow). Neither biphasic inward currents nor
biphasic current decays were seen at rP2X, receptors.

The concentration—response (C—R) relationship was studied
for ATP responses at rP2X, and rP2X, , receptors, at pH 7.5 (Fig.
2A4). ATP was more potent (approximately twofold) at rP2X,
receptors (ECsy, 18 + 2.1 uMm; ny = 2.0 £ 0.2) than rP2X,
receptors (ECs, 32 £ 1.6 um; n; = 1.7 £ 0.2) (p < 0.05, unpaired
t test). Since the potency of agonists at rP2X,, receptors is strongly
affected by pH,, the above differences in ATP activity could
potentially be attributed to incorrect pH, measurements. How-
ever, rP2X, and rP2X,  receptors responded in different ways to
changes in pH, (Fig. 2B). The amplitude of ATP responses at
rP2X,, receptors increased over the range of pH 8.0 to 6.3 and was
maintained at lower pH, levels (up to pH 5.0). ATP responses at
rP2X, ¢ receptors initially increased in size over the range of pH
8.0 to 6.3, then decreased in amplitude as pH,, levels were lowered
further. The pK, value for the potentiating phase of the H™ effect
was 7.04 £ 0.05 (n = 4) at P2X,, receptors, a value not signifi-
cantly different from that of P2X,, receptors (7.05 = 0.05; n = 4).
However, the slopes of the curves describing the potentiating H™
effect were significantly different (P2X,,, 1.83 = 0.31; P2X,,
3.04 = 0.22; p < 0.05).

The C-R relationship for ATP was reexamined at different pH,
levels for rP2X, , receptors. ATP potency was increased fourfold
at pH 6.5 and 15-fold at pH 5.5 (Table 1; see ECs, values). The
maximum response to ATP was unchanged at pH 6.5, but agonist
efficacy was significantly reduced (by 76 = 3%) at pH 5.5 (Fig.
20). At rP2X, receptors, acidification of the bathing solution
shifted the ATP C-R curve to the left without a reduction in the
maximum (Fig. 2D). ATP potency was increased 12-fold at pH
6.5 and 30-fold at pH 5.5 at rP2X, receptors (Table 1; see ECs,
values). The effects of lowering pH, were reversed on restoration
to pH 7.5 for both rP2X, and rP2X, 4 receptors.

Curves were fitted by the Hill equation in A-D (solid lines)
and by a single exponential function in B (dashed line). Data
given as mean = SEM for four to six cells per curve.

Agonist activity at P2X receptors

ATP, ATPaS, ATP»S, and 2-meSATP are known to be full
agonists at rP2X, receptors (King et al., 1997), and consequently
their ability to activate rP2X,, receptors was investigated. Each
nucleotide (30 um) elicited large, slowly inactivating inward cur-
rents at rP2X, ¢ receptors, with an apparent potency order of
(estimated ECs, value) ATP (29.9 um) = ATP4S (30.8 um) >
2-MeSATP (34.8 um) > ATPaS (40.6 um) (Fig. 34,C). BZATP
was a weak agonist at rP2X,, receptors (ECs,, 399 um) (Fig.
34,C). P2X, , receptors did not respond to ADP, AMP, adeno-
sine, UTP, UDP, UMP, uridine, CTP, GTP, ITP, «,8-meATP,
and B,y-meATP (each tested at 30 and 100 um) (data not shown).
Of the diadenosine polyphosphates tested (Ap,A, n = 2-6),
Ap,A alone showed activity but proved to be a weak agonist
(ECs, >1 mm) (Fig. 3B,C). This weak activity contrasted with
results from rP2X, receptors, at which Ap,A is a full agonist
(ECsp, 15.2 uMm) (Pintor et al., 1996).

Suramin blockade at P2X receptors

Suramin is an effective antagonist at rP2X,, receptors, at which its
potency is enhanced when pH, levels are lowered (King et al.,
1997). Similar results were obtained for P2X, , receptors, with
suramin reducing ATP responses in a concentration-dependent

Table 1. Effect of extracellular pH on ATP potency

pH. rP2X, receptor rP2X, s receptor

pH 7.5 162 + 1.4 32.0 = 1.6*
(1.8x0.2) (1.7=0.2)

pH 6.5 1302 75+ 1.1*
(20x0.2) (1.5*+0.3)

pH 5.5 0.55 = 0.04 22=*0.7*
(21=0.3) (25=0.3)

ECs values (um) and Hill slopes (ny, in brackets) for ATP activation of rP2X, and
rP2X, s receptors at the given extracellular pH (pH,) levels are shown. At each pH,
level tested, ECs values were significantly different (*p < 0.05, by unpaired ¢ test).
Data are expressed as mean = SEM (n = 4).
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Figure 3. Nucleotide activation of rP2X,, receptors. In A, whole-cell
inward currents at the heteromeric rP2X, ¢ receptor were evoked by ATP,
ATP~S, 2-MeSATP, ATPaS, and BzATP (30 um), each of which is a
known agonist of rP2X, receptors (King et al., 1997). In B, the 1P2X,
receptor was activated weakly by Ap,A (30 and 300 uMm), and the kinetics
of activation and deactivation were considerably slower than ATP re-
sponses. C, C-R relationship for agonist activation of rP2X,  receptors at
pH 7.5. Estimates of ECs, values (micromolar concentration) were made
using the “2 + 2 assay” method of Arunlakshana and Schild (1959): ATP,
29.9 = 1.9; ATP»S, 30.8 = 2.9; ATPaS, 40.6 = 8.0; 2-MeSATP, 34.8 =
5.1; BZATP, 399 = 66; Ap,A, >1000 (n = 4-6). The dashed line shows the
position of the full C-R curve for ATP (redrawn from Fig. 24). Open and
filled arrows (in A and B) draw attention to biphasic components of
receptor activation and deactivation. Data are given as mean = SEM for
four to six cells per determination.

manner and its potency enhanced with acidification of the bathing
solution (Fig. 44,B). At pH 7.5, suramin was equipotent at rP2X,
and rP2X, , receptors (Table 2; see ICs, values). Differences in
blocking activity were only observed at lower pH_ levels where, at
pH 6.5, the inhibition curve for suramin was biphasic for rP2X, ¢
receptors and monophasic for rP2X, receptors (Fig. 4C). Com-
parison of ICs, values at pH 6.5 revealed that activity indices for
each of the two phases of P2X, , receptor blockade was signifi-
cantly different (p < 0.05, unpaired ¢ test) compared with the ICs,,
value for rP2X, receptors (Table 2). The blocking activity of
suramin at rP2X, and rP2X, , receptors was reversed on washout,
at all pH, levels studied.

Actions of Zn?" ions at P2X receptors

Extracellular Zn?* is known to potentiate ATP responses at
P2X, receptors (Wildman et al., 1998), although the degree of
potentiation depends on whether Zn?" is applied before, or
simultaneously with, the agonist. When applied 5 min before
ATP, Zn?* ions (1-30 um) progressively increased ATP re-
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Figure 4. Suramin antagonism of rP2X,, receptors. Shown is antago-
nism of ATP responses (V;, = —50 mV) at heteromeric rP2X, receptors
by suramin at pH 7.5 (4) and pH 6.5 (B). Suramin was effective at
micromolar concentrations at pH 7.5, but the concentration range for
suramin blockade was extended at pH 6.5. C, Inhibition curves for
suramin blockade of ATP responses at rP2X, and rP2X, , receptors at the
given pH levels. At pH 6.5, the inhibition curve for rP2X, , was fitted best
by a biphasic curve. ICs, values are given in Table 2. Open arrows draw
attention to biphasic current decays. Data are expressed as mean = SEM
for four to eight cells per curve. The biphasic curve for rP2X,, was
constructed from eight sets of data, using the results from the first two
log;, units of concentration (suramin, 0.001-0.01 uM) to represent the
first component of the inhibition curve.

sponses at rP2X, , receptors, by 6- to 14-fold (averaging 9.82 =
2.29, n = 6), whereas higher concentrations (30-300 uMm) progres-
sively decreased and abolished ATP responses in a concentration-
dependent manner (Fig. 54). The potentiating and inhibitory
effects were reversed on washout. Zn?* preincubation also af-
fected ATP responses by clearly increasing the incidence of
biphasic inward currents, a phenomenon also seen when pH,
levels were lowered (Fig. 5A4,C). Where applied simultaneously
with ATP, Zn*" ions (1-300 uM) only caused a concentration-
dependent increase (8- to 25-fold; averaging 16.35 = 4.28, n = 5)
in the amplitude of ATP responses at P2X, , receptors (Fig. 5B).
Without Zn?" preincubation, the above inhibitory Zn** effect
was not seen, and the incidence of biphasic ATP responses was
inconsistent and infrequent for each oocyte tested. ECs, values
for the potentiating effects of Zn>" ions at rP2X, and rP2X,
receptors were similar (Fig. 5, see legend).

DISCUSSION

In the present study, expression of homomeric rP2X receptors in
defolliculated Xenopus oocytes resulted in functional P2X recep-
tors that, even under heightened conditions for channel activa-
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Table 2. Blockade by suramin of P2X receptors

pH. rP2X, receptor rP2X, s receptor
pH 7.5 104 £ 1.2 6.06 = 1.22
(—0.83 £ 0.12) (—1.19 £ 0.14)
pH 6.5 0.078 = 0.005 0.013 = 0.003 (1,)*
(—1.19 = 0.08) (—1.28 £ 0.15)
1.61 = 0.28 (I)*
(—0.96 £ 0.16)

ICs, values (M) and Hill slopes (nyy, in brackets) for suramin blockade of rP2X, and
rP2X, s receptors at the given extracellular pH (pH,) levels are shown. The inhibi-
tion curve for suramin blockade of rP2X, 4 receptors was biphasic at pH 6.5, showing
high-affinity (/;) and low-affinity (/) components of blockade of ATP responses
(Fig. 4C). The ICs, values of rP2X, and rP2X,, receptors, at pH 6.5, were
significantly different (*p < 0.05, by unpaired ¢ test). Data are expressed as mean *
SEM (n = 4 for rP2X, at pH 7.5 and 6.5, and for rP2X, s at pH 7.5; n = 8 for rP2X, s
at pH 6.5).

tion, only managed to produce low-amplitude responses. Such
weak ATP responses were attributed to the activation of just a
small number of functional rP2X, receptors, because defollicu-
lated oocytes do not possess native P1 or P2 receptors to com-
plicate the analysis of agonist actions (King et al., 1996a,b).
Homomeric rP2X, receptors have thus far been reported to
function well in human embryonic kidney (HEK) 293 cells (Buell
et al., 1996; Collo et al., 1996), to be silent in HEK 293 cells
(Torres et al., 1999), or not to function at all in Xenopus oocytes
(Soto et al., 1996; L¢ et al., 1998). Our initial experiments thus
confirmed that there are difficulties associated with rP2X recep-
tor expression in Xenopus oocytes and, in all probability, in other
cell systems. It is possible that Xenopus oocytes and occasionally
HEK 293 cells fail to produce an essential protein necessary to
insert P2X subunits into the cell membrane. One plausible can-
didate for this protein is another P2X subunit, perhaps the P2X,
subunit, on the grounds that a P2X,-like cDNA (AF012903) has
been isolated from HEK 293 cells (direct submission GenBank by
Chang and Chang in 1996) and the P2X, protein is present at low
levels in these cells (Worthington et al., 1999). The heteromeric
rP2X,,, receptor is similar in its functional properties to the
operational profile of homomeric rP2X, receptors (L& et al,
1998). Because <5% of HEK 293 cells transfected with rP2Xy
cDNA go on to assemble a functional P2X, (or possibly P2X,, -
like) receptor (Collo et al., 1996), the P2X, subunit may not be
present in all HEK 293 cells.

Where coexpression of P2X, and P2X, subunits in Xenopus
oocytes was concerned, our experiments were based on a com-
parison of the operational profiles of wild-type rP2X, receptors
and heteromeric rP2X, , receptors. The rP2X, receptor has al-
ready been characterized in our laboratory in an extensive survey
of agonists, antagonists, and modulators at this ATP-gated ion
channel (King et al., 1996c, 1997; Pintor et al., 1996; Wildman et
al.,, 1997, 1998, 1999a,b,c). Torres and colleagues (1999) have
demonstrated that epitope-tagged rP2X, and rP2X, subunits will
coprecipitate when expressed in a heterologous expression sys-
tem. Thus, our present results confirm that functional hetero-
meric P2X, , receptors are indeed formed and inserted into the
membrane of Xenopus oocytes. Several key observations were
made on this new heteromeric P2X receptor, particularly (1) the
nature of the evoked inward currents, (2) the potency of agonists,
and (3) the effect of pH on ATP responses and suramin blockade.

ATP-evoked inward currents at heteromeric rP2X, , receptors
were sometimes biphasic in nature, involving transient and sus-
tained components that varied in amplitude from response to
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Figure 5. Modulation of ATP responses by Zn?* and H* at rP2X,
receptors. 4, Concentration-dependent potentiation and inhibition of
agonist-evoked inward currents by extracellular Zn?* (1-100 uM) given 5
min before and during ATP application at rP2X, receptors, at pH 7.5.
ECs, values (micromolar concentration) for Zn** potentiation of ATP
responses was rP2X,, 6.8 * 1.0 versus rP2X,, 6.9 * 1.1 (n = 4). B,
Concentration-dependent potentiation of ATP-evoked inward currents by
extracellular Zn?" (1-100 um) applied simultaneously with the agonist.
Under these circumstances, biphasic currents were rarely seen, and the
inhibitory action of Zn?* was lost. ECs, values (micromolar concentra-
tion) for Zn*" potentiation of ATP responses were rP2X,, 82 = 0.5
versus rP2X,, 11.7 = 2.8 (n = 6). C, Concentration-dependent potentia-
tion and inhibition of ATP-evoked inward currents by extracellular H*
ions (pH 7.0-5.5) at rP2X,, receptors. pK,, values (—log,o[H "] causing
50% potentiation) were rP2X,q, 7.04 = 0.05 versus rP2X,, 7.05 = 0.05
(n = 4). D, Paired biphasic inward currents evoked by ATP (100 um, at
pH 7.5) at rP2X,, receptors with either Mg?* or Ca®* (1.8 mm) present
in the bathing solution. Substitution of Ca®" with Mg?" resulted in a
reduction of ATP potency [as shown for rP2X, receptors (King et al.,
1997)] without significantly altering the appearance of biphasic currents.
Filled arrows draw attention to transient component of ATP-evoked
inward currents (4, C). Data are expressed as mean = SEM for four to six
cells per determination.

response in the same cell. However, the incidence and reproduc-
ibility of biphasic responses in each oocyte varied in an unpre-
dictable manner. The incidence of biphasic currents was greater
and reproducibility more consistent when extracellular Zn?* was
present (Fig. 54) or extracellular pH was lowered (Fig. 5C).
Biphasic currents have already been reported at homomeric
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rP2X, receptors, at which time-dependent changes in channel
permeability were observed and shifts in the reversal potential for
ATP-evoked currents noted (Khakh et al., 1999; Virginio et al.,
1999). The binary permeability properties of rP2X, receptors
were seen only when extracellular Ca®* levels were lowered or
zero Ca*" conditions imposed (Khakh et al., 1999). Therefore,
we explored this possibility and found that biphasic responses at
heteromeric rP2X,,; receptors were not enhanced when Ca®*
was replaced with equimolar Mg>* (Fig. 5D). Ca**-independent
binary permeability properties have been reported for homomeric
rP2X, receptors, although the time- and concentration-
dependent changes in permeability do not result in biphasic
currents to ATP (Khakh et al., 1999; Virginio et al., 1999). Others
have reported, however, that rP2X, receptor ion channels do not
show significant changes in unitary conductance or reversal po-
tential of whole-cell currents (Ding and Sachs, 1999b). This
inconsistency with the P2X, receptor is reminiscent of the vari-
ability of agonist responses (monophasic and biphasic) at the
heteromeric P2X,,, receptor. Currently, there is no satisfactory
explanation for biphasic ATP responses at heteromeric P2X, ¢
receptors.

The potency of ATP was lower at heteromeric rP2X,, recep-
tors than homomeric rP2X,, receptors, regardless of the pH level
studied (Table 1). Although ATP potency was decreased overall,
the rank potency order for mononucleotidic agonists at the het-
eromeric receptor remained the same as at the rP2X, receptor,
namely ATP = ATPyS > 2-MeSATP > ATPaS > BzATP. One
significant difference in agonist activity involved the dinucleotide
diadenosine tetraphosphate (Ap,A), which is a full and potent
agonist at rP2X, receptors (Pintor et al., 1996; Wildman et al.,
1999a) and only a weak agonist at rP2X, ; receptors. This differ-
ence in Ap,A activity is potentially important, because this dinu-
cleotide occurs naturally and is released in a Ca®*-dependent
manner from central synaptosomes in rat brain (Pintor et al.,
1992). Therefore, Ap,A may subserve a transmitter role at ho-
momeric rP2X, receptors but not at heteromeric rP2X,,
receptors.

Extracellular pH is known to exert a profound effect on ATP
potency at homomeric rP2X, receptors (King et al., 1996c, 1997,
Stoop et al., 1997; Wildman et al., 1997, 1998, 1999b,c; Stoop and
Quayle, 1998; Ding and Sachs, 1999a). A secondary inhibitory
effect is observed at very low pH levels (e.g., pH 4.2), at which
ATP responses rapidly desensitize, yet recover quickly, if pH, is
reversed to levels above pH 5.0, a phenomenon called “fade and
rebound” (Stoop and Quayle, 1998). The heteromeric rP2X,
receptor showed both the potentiating and inhibitory effects of
extracellular H ™, and the pH ranges for these two separate effects
are compressed when compared with rP2X, receptors. The inhib-
itory effect was caused by a reduction in agonist efficacy alone and
not a decrease in agonist potency, as evidenced by the lower
maximum for the ATP C-R curve at pH 5.5 (Fig. 2C). Because
some homomeric P2X receptors (rP2X,;, rP2X;, rP2X,, and
rP2X,) also show a reduction in ATP activity when pH. is
lowered (Virginio et al., 1997, Wildman et al., 1999c), it is con-
ceivable that the observed H " inhibitory effect at rP2X,,, recep-
tors is caused as much by an action of H* ions at the rP2Xj
subunit as at the rP2X, subunit.

The potency of suramin is progressively enhanced at rP2X,
receptors as pH is lowered, with blockade occurring at nanomolar
concentrations at pH 5.5 (King et al., 1997). The present results
now show that this is an attribute shared by heteromeric rP2X, ¢
receptors, although subtle differences were observed at pH 6.5 for
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suramin blockade of homomeric rP2X, and heteromeric rP2X, ¢
receptors. There appeared to be high-affinity (/,) and low-affinity
(1) sites for suramin at rP2X,  receptors, and activity indices for
each component failed to match the corresponding ICs, value at
rP2X, receptors. The precise cause of this unusual effect is as yet
unresolved. However, one possibility may involve differences in
the subunit composition of heteromeric P2X, , receptors, if sub-
populations of oligomeric assemblies containing different num-
bers of rP2X, subunits were generated. Where shown to be
functional, the homomeric rP2X, receptor (or even the hetero-
meric rP2X,  receptor) has been reported to be relatively insen-
sitive to suramin blockade (Collo et al., 1996; L¢é et al., 1998). The
suramin insensitivity of the P2X, subunit might help contribute to
biphasic inhibition curves seen at pH 6.5 with the heteromeric
P2X, receptor.

The potentiating effect of extracellular Zn>" was not signifi-
cantly different at rP2X, and rP2X, , receptors. However, one
subtle difference was noted when using high concentrations (=
100 um) of this transition metal, which appeared to directly
activate the heteromeric rP2X, , receptors without the need for
exogenous ATP (data not shown). It is known that Xenopus
oocytes continuously extrude small amounts of intracellular ATP
via a mechanogated transport pathway (Nakamura and Strittmat-
ter, 1996), and consequently the potency of locally released ATP
may be sufficiently elevated by Zn?" ions to explain the apparent
Zn?**-activated inward currents. The subsequent inhibition of
ATP responses by high concentrations of Zn?* ions may be
caused by a gradual desensitization of the receptor pool by locally
released ATP.

In conclusion, the heteromeric P2X,, receptor possesses a
significantly different operational profile from the wild-type P2X,
receptor. It is of interest to us that rP2X, and rP2X, transcripts
are found in rat brainstem (Collo et al., 1996; Comer et al., 1997)
in nuclei with demonstrable pH-dependent chemoreceptive in-
puts (Thomas et al., 1999). The pH modulation of the homomeric
P2X, and heteromeric rP2X,  receptor forms an interesting basis
for examining the recently discovered involvement of ATP recep-
tors in the CO,-evoked (and pH-dependent) changes in central
respiratory drive in rat (Thomas et al., 1999; Thomas and Spyer,
2000). At this point in time, however, the present results establish
the P2X, , receptor as the fourth example of a heteropolymeric
ATP-gated ion channel, which in this case possesses a pattern of
pH modulation of ATP responses distinct from other known
homomeric and heteromeric P2X receptors.
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