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Abstract 

In this work we present an accurate Quantitative Structure-Property Relationship 

(QSPR), derived from ab initio coupled-cluster calculations, which estimates the static molecular 

polarizability and bandgap in polyynes, as a function of their length. Static Molecular 

polarizabilities and bandgaps are computed at the CCSD(T)/cc-pVTZ//CCSD(T)/cc-pVTZ level 

of theory for the homologous sequence of linear polyynes, C2nH2 (n ≤ 9), and compared to results 

for several one-dimensional quantum-mechanical model systems. In the case of independent 

electron models, regardless of the form of the potential, the polarizabilities increase strongly with 

system size, scaling as L4, where L is the length of the model system. In contrast, the polyyne 

polarizabilities scale as L1.64, where L is taken as the distance between terminal carbon atoms. 

The reduction in exponent is shown to arise predominantly from electron-electron repulsion in 

contrast to electron correlation that were found to only play a minor role. To gain deeper insight 

into the length dependence of the polarizability, we also analyze the distortion of the molecular 

orbitals in polyynes, due to the presence of an external electric field and find that occupied states 

at the Fermi level in large molecular weight polyynes exhibit increasingly larger distortions 

(polarization) in the presence of an external electric field than the corresponding states in smaller 

polyynes, indicative of their higher electron mobility. The extrapolated to infinite length bond 
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length alternation in linear polyynes are found to be 0.1276 Å and 0.1523 Å at the center and the 

termination of the chain, respectively. A comparison of the polarizabilities computed by various 

computational methodologies, such as Hartree-Fock, density functional theory, Møller-Plesset 

perturbation theory, and coupled cluster theory showed that the computationally less intensive 

Hartree-Fock methodology yields polarizabilities close to the coupled-cluster results, whereas 

conventional density functional theory methodologies overestimate the polarizabilities by as 

much as 60% in some occasions. 

 

I. Introduction 

A fundamental understanding of the molecular polarizability at a molecular orbital level 

can aid in the design and analysis of molecular systems that are held together by weak forces 

such as π-π interactions. Molecular polarizabilities determine the strength of interaction between 

non-polar molecules, as described by the London1 equation. We have recently shown that for 

weak interactions, such as π-π interactions between polycyclic aromatic hydrocarbons, there is a 

linear correlation between the binding energy and the static molecular polarizability. 2,3 Hence, 

being able to compute the molecular polarizability from simplified relationships that correlate the 

molecular size to the molecular polarizability can prove very useful in quantifying these 

interactions in material coatings that are composed of polyyne-based materials. Furthermore the 

molecular polarizability is a physical parameter that is invoked very frequently invoked in the 

description of a wide range of physical phenomena, such as the interaction of photons 4 and 

particles with molecules5 as well as other molecular properties such as bond dissociation energy6, 

nonlinear optical properties7 , hardness/softness8 and electronegativity. 9 Conjugated polymers 

with delocalized electronic states constitute an important class of materials that exhibit non-
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linear optical properties. Accurate prediction of the polarizability in long chain conjugated 

polymers may aid to the molecular engineering of optically active compounds with high specific 

linear and non-linear response in the presence of an electric field.10 In particular, the 

polarizability of a material is intimately related to the refractive index11, which is a critical 

parameter in the design of planar polymer waveguides12, found in applications such as thermal 

optical switches13 (TOS), variable optical attenuators13 (VOA), optical couplers/splitters14 and 

arrayed waveguide gratings15 (AWG). 

In this study, we explore the dependence of polarizability on molecular size for the series 

of linear polyynes, C2nH2, where n ≤ 9. Polyynes are the simplest molecular system, with respect 

to their molecular structure, that exhibit π-conjugation. These molecules are 1-dimensional, with 

alternating single and triple bonds between carbon atoms, and their polarizabilities can be 

computed very accurately for a fairly wide range of lengths due to their high symmetry point 

group (D∞h). In particular, to minimize potential artifacts in the polarizabilities due to inadequate 

level of theory or basis set size, the polyyne geometries were optimized at the benchmark 

CCSD(T)/cc-pVTZ level (occasionally checked against aug-cc-pVTZ, cc-pVQZ, cc-pV5Z, and 

cc-pV6Z basis sets), and then polarizabilities were computed at the optimized geometries at 

several levels of theory (RHF, MP2, SCS-MP2, CCSD, CCSD(T), and DFT with B3LYP and 

PBE) using again the cc-pVTZ basis set (occasionally checked against aug-cc-pVTZ and cc-

pVQZ basis sets). 

Several authors16 report ab initio computations of static polarizabilities (αxx) and first 

hyperpolarizabilities (γxxx) of small molecular weight π-conjugated molecules, such polyenes, 

polyynes and comulenes. Maroulis et al.17 examined polyynes C2nH2 (n ≤ 4) and showed that the 

longitudinal static polarizability and second hyper-polarizability exhibit an L1.5 and L3.0 (L = 
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molecular length) increase, respectively. Later on Archibond et al.18 using the finite field method 

and after studying the effects of basis set size on the computed (hyper)polarizabilities suggest 

αxx/n = 110 10 a.u. and γxxx/n = (1.0± ± 0.3)x10-3 a.u. as the infinite chain limit for the 

longitudinal static polarizability and first hyperpolarizability in polyynes, respectively. Other 

studies have focused on the effect of the π-bonding sequence19 in the linear π-conjugated 

molecules on the (hyper)polarizability or even the effect of electron donating-withdrawing 

functional groups20 terminating the linear chains. Champagne et al.21 showed that DFT based 

exchange functionals, such the Becke and the Slater, overestimate significantly the static 

polarizability. The same authors were able to assess the Young modulus, the force constants, the 

vibrational frequencies, and the phonon dispersion curves for linear polyynes. 22 Other research 

efforts focused on methodologies that can be applied to infinite periodic systems23,24,25 and were 

successfully applied to quasi-one dimensional molecule chains of water ([H2O]∞,26) and 

molecular hydrogen27.  

In a broader context, polyynes of structure XC2nX’ (X, X’ = hydrogen and various 

organic and organometallic end groups) have attracted increasing interest because their 

significant polarizabilities, hyperpolarizabilities, and current-voltage characteristics make them 

potential candidates as materials in nonlinear optics and molecular electronic devices28 and also 

because of their importance in interstellar chemistry and spectroscopy.29 In addition, progress in 

developing methodologies for synthesizing polyynes has allowed a number of derivatives to be 

available in sufficient quantity for their study. Recent synthetic methodologies30 allow the 

synthesis of long chain polyynes (C2nTIPS 2, n ≤ 10, TIPS = triisopropylsilyl) that appear to have 

some unusual optical properties that are length dependent. In particular, the authors show that no 

saturation of the second hyperpolarizability occurs, for n≤ 10 and that the power dependence of γ 
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(L4.28) is much greater than that of polyenes or polyenynes. Furthermore, the end groups have a 

significant effect on the physical properties of polyynes since their electron-donating or electron-

withdrawing character can affect the polarizability and higher hyperpolarizability of the π-

framework. 31 Electron correlation and careful choice of molecular geometry can lead to 

significant variations in the predicted hyperpolarizabilities of p-nitroaniline32, polyacetylenes 

(PA) and polyynes.33 Furthermore, Dalskov et al.34 have performed polarizability calculations for 

polyynes as larger as C100H2 using the uncorrelated random phase approximation (RPA) and the 

uncorrelated random phase approximation (SOPPA) using fixed bond lengths for the triple 

(1.18Å) and single (1.40Å) carbon-carbon bonds. They observe a converging trend of the static 

longitudinal polarizability difference (Δαzz = αn
zz - αn-1

zz) for n ≥ 9. 

In the present study, the dependence of polarizability on system size is first determined 

for four model 1-dimensional systems: an electron-in-a-box, an electron undergoing harmonic 

motion, an electron-in-a-box with a sinusoidal potential intended to mimic the potential an 

electron experiences in a polyyne, and π electrons within the Hückel model. The polarizabilities 

of the polyynes C2H2 to C18H2 are then computed by accurate ab initio methods. Since the size 

dependence of the polyyne polarizabilities differs significantly from that of the four simplistic 

models, we seek for an explanation of this phenomenon by systematically studying the 

polarizabilities of H2
+ and H2 as a function of internuclear distance and by analyzing the 

distortion of individual molecular orbitals, in C8H2 and the particle-in-box, due to the presence of 

a uniform external electric field. 
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II. Computational Methods 

The finite–field method35 was used to compute the polarizability parallel (longitudinal) 

and perpendicular (transverse) to the molecular axis of the polyynes and of H2
+ and H2.  In this 

method, a molecule’s energy is computed at a series of applied electric fields, and the static 

polarizability and hyperpolarizabilities are then determined from the derivatives at zero field of 

the energy with respect to electric field. If the electric field ε// is applied along the molecular axis, 

then a Taylor series expansion of the energy E about ε// =0 gives, 
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Note that for centro-symmetric molecules such as the polyynes (C2nH2), odd order terms 

in the energy expansions are zero by symmetry. Thus only even ordered terms are evaluated in 

order to obtain the longitudinal and transverse polarizability. 

 The molecular polarizability is very sensitive to molecular geometry, and in particular on 

the degree of bond length alternation, thus all polyynes were first optimized at a very high level 

of theory, CCSD(T), and with a relatively large basis set, Dunning’s correlation-consistent 

polarized valence triple-zeta (cc-pVTZ) basis set. 36 Optimization was performed using the 

numerical optimization capability of the software package, Molpro 2006.1. 37 The default of 

allowing valence, but not core, electron correlation was used. Convergence of the bond lengths 

with respect to basis set was tested for the smaller molecular weight (MW) polyynes (C2H2, 



 7

C4H2, C6H2, and C8H2), using larger basis sets, such as the cc-pVQZ and aug-cc-pVTZ. The 

effect of an applied electric field (0.004 au, highest field strength used) on the equilibrium 

structure geometries was also briefly investigated for the smaller MW polyynes, at the 

CCSD(T)/cc-pVTZ level of theory. No evidence of molecular distortion at this electric field 

strength could be observed. 

 Polarizabilities at the CCSD(T)/cc-pVTZ optimized geometries were then computed for 

C2H2 through C18H2 using a range of theory levels, including RHF, MP2, SCS-MP2 (Ref. 38), 

CCSD, and CCSD(T) as well as DFT with the B3LYP and PBE exchange-correlation 

functionals.  The cc-pVTZ basis set was used, and results for several molecules were checked 

against those of two larger basis sets, the aug-cc-pVTZ and cc-pVQZ. The electric fields 

strengths used in the finite-field computations were 0, 0.002, and 0.004 au (1 au = 5.14 x 1011 

V/m). To ensure that higher order terms in Eq. (1) are unimportant at these electric field 

strengths, a number of polarizability computations were also performed at fields one order of 

magnitude smaller, i.e., 0, 0.0002, and 0.0004 au to ensure agreement with the results obtained at 

larger electric fields. 

For the particle-in-a-box (PIB) system in which the potential energy varied sinusoidally 

inside the box, energies and wavefunctions were determined numerically as a function of electric 

field by solving the Schrödinger equation with the shooting method. 39 A dedicated program 

written in Maple 9 was developed for this purpose. 40  

 

III. Results and Discussion 

The presentation of our results will be given in the following order. First we present the 

polarizability trends as a function of length (L) of various simple quantum mechanical systems 
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that lack electron-electron repulsion, such as the one-dimensional particle-in-box (1D-PIB), the 

one-dimensional simple harmonic oscillator (1D-SHO), the 1D-PIB under the influence of a 

sinusoidal potential and the polarizability of the molecular hydrogen cation (H2
+). Then we 

compare to the polarizability trends of the homologous molecular sequence of linear polyynes 

C2nH2 (n 9) and discuss the trends observed. ≤

A. Simplified quantum mechanical model systems 

1) Analytic polarizability for 1D-PIB: The Schrödinger equation for a particle in a 1-dimensional 

box (1D-PIB) subjected to a uniform electric field ε can be solved either exactly, with the 

wavefunctions expressed in terms of Airy functions,41,42 or more simply via perturbation theory. 

41,43 In either case, the polarizability is given by Eq. (3). If the particle is an electron and the 

potential energy operator is xeV x ⋅ε⋅−=ε⋅μ= , the polarizability of the electron in state n is 

derived in Appendix A and given by, 
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Here, me is the electron mass, L the length of the box, ħ Planck’s constant divided by 2π, 

e the elementary charge of an electron, and n and k the quantum numbers of the nth and kth energy 

states, respectively. As shown in Eq. (4), the polarizability scales as the fourth power of the 

length for any state n. The interesting feature of the 1D-PIB and polyyne polarizability 

calculations is that comparison of their wavefunctions show great similarity, nonetheless their 

polarizability length dependence scales very differently, L4 and L1.64, respectively, as shown in 

subsequent section. 

 2. Analytic polarizability of 1D-SHO: The Schrödinger equation for an electron bound 

harmonically to a positive charge and subjected to an electric field has an analytical solution. 43 
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The result is that the energy of all harmonic oscillator states are shifted down by e2ε2 / (2k), 

where k is the force constant. Thus, the polarizability is α = e2 / k, which of course is always 

positive, in contrast to all other systems studied here. To express the polarizability in terms of an 

extent of motion, we take the “length” L of the oscillator as twice the classical turning point, xtp.  

One can show that, 

2
2
12

42

)( +
=

v
Lemeα   (5) 

,where me is the mass of the electron, and ν is the quantum number. Thus, as in the particle-in-a-

box case, the polarizability scales with the fourth power of distance. 

3. Numerical polarizability of 1D-PIB with sinusoidal potential: The third model system 

considered is a modified PIB in which the potential inside the box varies sinusoidally with 

position. This modification was made to approximately mimic the coulombic potential an 

electron experiences due to the nuclei in polyynes. The potential inside the box is given by, 

x)(xπ2sinA ⋅⋅−⎥⎦
⎤

⎢⎣
⎡ +⋅= εϕ

λ
eV   (6) 

, where A, λ, and  φ are the amplitude,  period, and phase of the potential, respectively. Since the 

Schrödinger equation with such a potential does not have an analytical solution, wavefunctions 

and energies were determined numerically via the shooting method39 (see Appendix A) using a 

devoted computer program written in Maple.40  
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FIG. 1. Static longitudinal numerical polarizabilities 1D-PIB with sinusoidal potential 
amplitudes of 10 and 40 eV as a function of box length (L).  
 

 In order to examine the effect of the nuclei potential onto polarizability of the 1D-PIB we 

evaluated the polarizability systems that contained up to 4 electrons (n = 4). In Fig.1 we show the 

static longitudinal numerical polarizabilities 1D-PIB with sinusoidal potential amplitudes of 10 

and 40 eV as a function of box length (L). The results here clearly indicate that introduction of 

the sinusoidal potential generally increases the polarizability of a quantum system. This suggests. 

For a nuclei amplitude of 10 eV, the increase is typically 2-3% compared to the value obtained 

using a zero amplitude sinusoidal potential, while for an amplitude of 40 eV, the increase is as 

large as 40% in some cases. From these results we expect that for polyynes the increase in 

polarizability due to the potential of the nuclei will be 2-3%, since the actual nuclei potential the 

electrons feel in conjugated π-systems based on the ionization potential44 (IP) of ethylene 

(12.2eV) and acetylene (12.3eV) is of the order of 10 eV. Fitting of a power function of the form 

y = a⋅xb yielded b = 4 for all curves and an a that roughly linearly decreases with the number of 

electrons in the system (n). The scaling of the polarizability with system size is essentially L4, for 

a given states and sinusoidal amplitude similar to the 1D-PIB and the 1D-SHO. 
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4. Polarizability of H2
+ and H2:  The molecular hydrogen cation (H2

+) is one of the few 

molecular systems where electron-electron repulsions are absent. Thus, the Hartree-Fock method 

is sufficient to yield accurate results and basis set saturation is relatively computationally 

inexpensive. The one electron wavefunction of H2
+ were expanded within the aug-cc-pVQZ 

basis with the use 114 primitive gaussians to ensure near basis set saturation. We evaluated the 

second derivative of the energy with respect to the electric field to obtain the longitudinal and 

transverse polarizabilities, αxx and αzz, respectively (Fig. 2).  

The static polarizability of the molecular hydrogen cation scales as L3.9, in very close 

agreement with the L4 dependence of the simple quantum mechanical systems that lack electron-

electron repulsion (1D-PIB, 1D-SHO). The small difference between the two can be attributed to 

the potential well in H2
+, is not infinitely steep at the boundaries of the quantum mechanical 

system. It is evident that the L4 scaling of the polarizability applies also to simple three-

dimensional molecular systems in which electron-electron repulsion is absent. Another 

interesting feature in the static polarizability of H2
+ and H2 is that the polarizability (αzz) vertical 

to the internuclear axis is roughly constant and scales linearly with the inter-nuclear hydrogen 

separation (L1.164 and L1.056, respectively). This is expected since the “box” length in the z 

direction (and y direction) is roughly constant with respect to variation of the hydrogen-hydrogen 

bond length. Concerning the polarizability along the molecular axis the reduction of the 

polarizability length dependence, from L3.916 to L2.056 can be attributed to the existence of 

electron-electron repulsion that is absent in the H2
+ and present in H2. We will see in the 

subsequent section that the increase of electron-electron repulsion causes the coefficient of L to 

further decrease, reducing further the nonlinear polarizability characteristics of the molecule. 
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FIG. 2. Static polarizability of molecular hydrogen cation (H2
+) and molecular 

hydrogen (H2) as a function of the internuclear hydrogen-hydrogen distance (L). 
Calculation carried out at UHF/aug-cc-pVQZ level theory.  

 

TABLE I.  Restricted Hartree-Fock (RHF) optimized molecular geometries of C10H2 using 
various basis sets. All values are given in Angstroms. 
 

 
 

 

 

 

 

 

 

 

 

 

Labelsa ccpVDZ augccpVDZ ccpVTZ augccpVTZ augccpVQZ

r(H-C1) 1.064 1.062 1.054 1.054 1.054 

r(C1≡C2) 1.194 1.194 1.183 1.183 1.182 

r(C2-C3) 1.386 1.385 1.379 1.379 1.380 

r(C3≡C4) 1.198 1.197 1.186 1.186 1.186 

r(C4-C5) 1.381 1.380 1.374 1.375 1.375 

r(C5≡C6) 1.199 1.198 1.187 1.187 1.187 
a Numbering scheme of the carbon atoms in C10H2:  
H—C1≡C2—C3≡C4—C5≡C6—C7≡C8— C9≡C10— H 
 
B. Polyynes 

1. Optimized molecular geometries Previous workers have found that computed polarizabilities 

of polyynes are sensitive to the single and triple carbon-carbon bond lengths used.45 

Consequently, in this study we have examined a series of basis sets for 1,3,5,7,9-decapentayne 

(C10H2) to determine the one that would result in convergence of the geometric parameters of 

C10H2 to within a thousand of an Angstrom. These results are tabulated in Table I and show that 
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the cc-pVTZ basis set is sufficient to yield molecular geometries of aug-cc-pVQZ quality. 

Additionally, we briefly investigated the possible influence of core-valence correlation on the 

optimized geometries of C4H2 and C6H2, using Dunning’s correlation-consistent polarized core-

valence triple-zeta basis set36 (cc-pcVTZ) and allowing all core orbitals to participate in the 

electron correlation computation. We observe that bond length differences due to inclusion of 

core orbitals in the optimizations are less than 0.0005 Å compared to cc-pVTZ optimizations, 

thus the computationally less expensive cc-pVTZ basis set was eventually used. Table II presents 

the CCSD(T)/cc-pVTZ optimized geometries for C2H2 through C18H2 The bond length 

alternation (Δδ) in an infinite polyyne chain approaches the value of 0.1276Å whereas Δδ close 

to the polyyne terminals is 0.1523 Å. Recently the bond length alternation of polyynes has been 

estimated to be 0.13Å in very good agreement with our present findings. 46 This range of bond 

length alterations is due to the edge effect caused by the finite size of these polyynes. The 

extrapolated single and triple carbon-carbon bond lengths in polymeric polyynes are 1.357 Å and 

1.229 Å, respectively. Comparison of the CCSD(T)/cc-pVTZ optimized bond lengths to the 

existing gas phase experimental bond length data47,48 of acetylene (C2H2) and 1,3-butadiyne 

(C4H2) shows excellent agreement. 
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TABLE II.  Optimized CCSD(T)/cc-pVTZ bondlengths, distance L between terminal carbon 
atoms, and bond length alternation for the carbon atoms in the middle (Δrmid) and at the ends 
(Δrend) of the polyynes. All distances are in Angstroms. Values of Δrmid and Δrend extrapolated to 
the infinite chain are given in the final column. Values in parentheses are the corresponding 
experimental gas phase bondlengths taken from Ref. 47 and 48 for C2H2 and C4H2, respectively. 
 

Labelsa C2H2 C4H2 C6H2 C8H2 C10H2 C12H2 C14H2 C16H2 C18H2 C∞H2 

r(H-C1) 
1.0637 
(1.059) 

1.0639 
(1.062) 1.0640 1.0642 1.0643 1.0643 1.0644 1.0644 1.0644 — 

r(C1≡C2) 
1.2097 
(1.209) 

1.2150 
(1.206) 1.2165 1.2169 1.2171 1.2171 1.2171 1.2172 1.2172 — 

r(C2-C3) — 1.3789 
(1.380) 1.3725 1.3707 1.3701 1.3698 1.3696 1.3696 1.3696 — 

r(C3≡C4) — — 1.2219 1.2240 1.2247 1.2249 1.2250 1.2251 1.2251 — 

r(C4-C5) — — — 1.3647 1.3626 1.3617 1.3613 1.3611 1.3610 — 

r(C5≡C6) — — — — 1.2263 1.2271 1.2274 1.2276 1.2276 — 

r(C6-C7) — — — — — 1.3601 1.3592 1.3588 1.3586 — 

r(C7≡C8) — — — — — — 1.2280 1.2283 1.2285 — 

r(C8-C9) — — — — — — — 1.3583 1.3578 — 

r(C9≡C10) — — — — — — — — 1.2287 — 

L 1.2097 3.8089 6.3998 8.9878 11.5750 14.1614 16.7474 19.3334 21.9191 — 

 Δrmid — 0.1639 0.1505 0.1407 0.1363 0.1330 0.1313 0.1299 0.1291 0.1276 

 Δrend — 0.1639 0.1560 0.1537 0.1530 0.1526 0.1525 0.1524 0.1523 0.1523 
a Numbering scheme of the carbon atoms in the polyyne, illustrated for C8H2: 
H—C1≡C2—C3≡C4—C5≡C6—C7≡C8—H 
 

2. Polarizability: All polyyne geometries in this work were optimized at the same level of theory 

that subsequent polarizability calculations are carried out due to the sensitivity of the 

polarizability on the molecular geometry adopted. 45 As we will show in section I, the optimized 

molecular structures exhibit a strong bond length alternating (Δδ) character. The carbon-carbon 

framework alternates between triple (~1.2172 Å) and single (~1.3696 Å) carbon-carbon bonds. 

This phenomenon has been explained in terms of the first order Peierls49 distortion that result in 

Δδ and the formation of a significant bandgap (HOMO-LUMO) at the Fermi level. Conjugated 

π-systems with a high degree of Δδ are considered semiconductors50 in contrast to zero-bandgap 

π-conjugated molecules that have metallic properties. Previous studies have shown that the 
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degree of Δδ will decrease the static longitudinal polarizability that is considerably weaker than 

the dependence on the length of the π-conjugated chain. Fig. 3 shows the dependence of the 

static longitudinal and transverse polarizability as a function of the molecular length in polyynes. 
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 The graphs exhibit a linear and non-linear dependence of the longitudinal and transverse 

polarizability as a function of molecular length. Both curves when fit by a power function of the 

form a + b·Ln  yield an exponent n of 1.64 and 1.00, respectively. A similar value (n = 1.5) for 

the static longitudinal polarizability is found by Maroulis et al.17 in smaller MW polyynes (n ≤ 4) 

using smaller basis sets. Static molecular polarizabilities are not directly comparable to 

experimental dynamic polarizabilities obtained from Kerr effect measurements thus limited 

experimental measurement static polarizabilities are available in the literature. Keir et al.51 report 

values of 5.21, 3.21, 3.88 ± 0.08 (10-40·C2m2J2) for the transverse, longitudinal and molecular 

polarizability of acetylene (C2H2), respectively. We find at CCSD(T)/aug-cc-

pVTZ//CCSD(T)/cc-pVTZ 5.07, 3.11, 3.76 (10-40·C2m2J2), respectively. Comparison of the 
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experimental and theoretical values shows that this level of theory underestimates the 

experimental polarizabilities by only 3%. Nevertheless, due to the prohibitive basis set size of 

aug-cc-pVTZ for larger MW polyynes we eventually used CCSD(T)/cc-pVTZ//CCSD(T)/cc-

pVTZ to study the performance of various methodologies in the assessment of polarizability 

compared to the higher-level coupled-cluster results. Thus molecular geometries and 

polarizabilities were calculated using a wide range of methodologies (e.g. RHF, MP2, SCSMP2, 

CCSD, B3LYP and PBE). In Table ΙΙΙ and ΙV we present the static longitudinal and transverse 

polarizability in polyynes with the various computational methods examined. The percent 

difference (%diff) is a measure of the agreement between the various methods and the high-level 

CCSD(T) results. We observe that for the longitudinal polarizability RHF, MP2, SCSMP2 and 

CCSD perform well compared to CCSD(T), whereas commonly used DFT methods (B3LYP, 

PBE) overestimate considerably the polarizability, in some cases by 60%. This picture changes 

for the static transverse polarizability (α//) in polyynes where all methodologies seem to perform 

well to within 5-6% accuracy. This suggest that the polarizability errors that are present in DFT 

methods appear only along the molecular axis where error introduced by the inaccurate 

description of the XC functionals are stronger due to increased orbital overlap. 
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TABLE ΙΙΙ. Comparison of the static longitudinal polarizability (α//) in polyynes (C2nH2, 
n ≤ 9) computed using CCSD(T)/cc-pVTZ//CCSD(T)/cc-pVTZ to other ab initio and density 
functional theory methods. The molecular length (L) is taken as the distance between the 
terminal carbon atoms in the optimized molecules. The percent difference is given by, %diff = 
[αCCSD(T) – αi]·200/[αCCSD(T) + αi], where i = RHF, MP2, SCS-MP2, CCSD, B3LYP or PBE. 
 

 L / Å α// / a.u. % diff % diff % diff % diff % diff % diff 
  CCSD(T) RHF MP2 SCS-MP2 CCSD B3LYP PBE 

C2H2 2.2861 29.5 4.2 -1.1 -0.9 -0.4 3.6 3.5 
C4H2 7.1977 79.6 4.0 -0.3 -1.3 -1.7 8.9 10.7 
C6H2 12.0939 155.7 3.2 0.6 -2.0 -3.0 14.3 18.2 
C8H2 16.9845 256.6 2.4 1.7 -1.5 -4.3 19.4 25.7 
C10H2 21.8736 380.0 1.5 2.8 -1.4 -5.5 24.6 33.3 
C12H2 26.7611 523.6 0.6 3.9 -1.4 -6.6 29.6 41.0 
C14H2 31.6481 684.0 -0.2 4.7 -1.5 -7.6 34.7 48.9 
C16H2 36.5348 858.0 -0.9 5.5 -1.5 -8.5 39.8 57.0 
C18H2 41.4211 1044.8 -1.7 6.2 -1.6 -9.4 44.6 65.1 

 
 
TABLE ΙV. Comparison of the static transverse polarizability (α⊥) in polyynes (C2nH2, n ≤ 9) 
computed using CCSD(T)/cc-pVTZ//CCSD(T)/cc-pVTZ to other ab initio and density 
functional theory methods. The molecular length (L) is taken as the distance between the 
terminal carbon atoms in the optimized molecules. The percent difference is given by, %diff = 
[αCCSD(T) – αi]·200/[αCCSD(T) + αi], where i = RHF, MP2, SCS-MP2, CCSD, B3LYPor PBE. 
 

 L / Å α⊥ / a.u. % diff % diff % diff % diff % diff % diff 
  CCSD(T) RHF MP2 SCS-MP2 CCSD B3LYP PBE 

C2H2 2.2861 13.7 3.1 -1.4 -1.4 -0.2 3.1 3.9 
C4H2 7.1977 23.0 2.9 5.5 5.5 -1.1 2.3 2.9 
C6H2 12.0939 31.7 4.1 1.1 -6.8 -0.1 3.3 3.6 
C8H2 16.9845 40.2 5.5 2.3 2.3 -0.1 4.4 4.7 
C10H2 21.8736 49.1 5.3 0.6 0.5 -0.1 4.1 4.4 
C12H2 26.7611 57.4 6.2 2.3 1.2 -0.0 4.9 5.1 
C14H2 31.6481 65.5 7.3 2.5 3.5 0.1 5.9 6.1 
C16H2 36.5348 74.6 6.8 2.5 2.4 0.1 5.4 5.6 
C18H2 41.4211 83.9 6.1 1.5 0.3 0.1 4.7 4.9 

 
Finally we report a Quantitative-Structure-Property-Relationship (QSPR) that that can be 

used as a predictive tool to obtain coupled-cluster quality static longitudinal and transverse 

polarizabilities in polyynes as a function of their length (L). These relationships are 

α// = (3.248 + 0.384 L1.64) x 10-40 C2m2/J2  (7), 
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α⊥ = (1.613 + 0.302 L1.00) x 10-40 C2m2/J2  (8) 

,where L is the length between terminal carbon atoms. was obtained by fitting a second order 

polynomial and a straight line to the longitudinal and transverse polarizability as a function of L, 

respectively, and then using the definition of the average static molecular polarizability the 

average static molecular polarizability which is given by 

α = (0.226L2 + 6.526L + 11.784) x 10-41 C2m2/J2  (9). 

3. Wavefunctions: Another very interesting feature we examine in this work is the shape of MOs 

in polyynes and the 1D-PIB and the effects of an electric field to them. Fig. 4 compares the 

wavefunctions of the 1D-PIB and the molecular orbitals found in a polyyne. The molecular 

orbitals shown correspond to all the valence σ- and π- orbitals in 1,3,5,7-octatetrayne (C8H2). In 

both quantum mechanical systems the energy of the molecular orbitals or wavefunctions 

increases as a function of the number of nodes. In particular π-orbitals are doubly degenerate 

having a node either along the σxy or σxz plane and are also higher in energy than the σ-band. Our 

computations show that the core, σ- and π- electronic bands in polyynes are completely 

separated. The molecules also have a considerably large bandgap that progressively decreases for 

higher MW polyynes. A comparison between the molecular orbitals of C8H2 (Fig. 4b) to the 1D-

PIB (Fig. 4c) shows the good agreement of the MOs obtained from the relatively simplistic 

single electron PIB approach to that of a multi-electron, molecular system.  

 In Fig. 5 we study the influence of an electric field onto the shape of the n = 1, π- and σ-

orbitals in the (a) 1D-PIB and (b,c) C8H2. The top images show the symmetric shape of the 

orbitals in the absence of an electric field. The situation changes once the electric field is turned 

on. There we observe a shift of the orbitals towards the positive end of the electric field. This 

behavior is in agreement with the common notion where the negative charge of the electronic 
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distribution is attracted by the positive end of the electric field. Furthermore, it can be seen that 

large distortions are present in the molecules of greater chain length. This result correlates well 

with the L4 dependence of the longitudinal polarizability found earlier for the 1D-PIB. 
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(a) (b) (c) 
π-orbitals σ-orbitals PIB wavefunctions 
1,3,5,7-octatetrayne (C8H2) MO-9                 n = 1 n=1 
 

 
 

MO-18                n = 1 MO-10                n = 2 n=2 

 

MO-19                n = 1 MO-11                n = 3 n=3 

 
 

MO-20                n = 2 MO-12                n = 4 n=4 

 
 

MO-21                n = 2 MO-13                n = 5 n=5 

 
 

MO-22                n = 3 MO-14                n = 6 n=6 

  
 

MO-23                n = 3 MO-15                n = 7 n=7 

  
 

MO-24                n = 4 MO-16                n = 8 n=8 

  
 

MO-25                n = 4 MO-17                n = 9 n=9 

  
 

 
 

FIG. 4. Two-electron wavefunction isosurfaces of 1,3,5,7-octaterayne (C8H2) and 1D-PIB. (a) Three-dimensional 
isosurface of occupied π-orbitals and (b) σ-orbitals of C8H2. (c) 1D-PIB wavefunctions for n =1 through n=9.  
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(a) (b) (c) 
1D PIB wavefunctions n=1, π-orbital in polyynes n=1, σ-orbitals in polyynes 
FIELD OFF FIELD OFF FIELD OFF 

 

FIELD ON FIELD ON FIELD ON 
L = 16.747 Å               C14H2                          α = 524.092 a.u. C14H2                           α = 583.94 a.u. 

 
L = 14.161 Å          C12H2                           α = 358.833 a.u. C12H2                           α = 411.79 a.u.

 

L = 11.575 Å   C10H2                           α = 217.904 a.u. C10H2                           α = 260.42 a.u. 

 

L = 8.988 Å      C8H2                            α = 112.087 a.u. C8H2                            α = 139.59 a.u. 

 

L = 6.400 Å          C6H2                              α = 48.686 a.u. C6H2                              α = 61.30 a.u. 

 

L = 3.809 Å              C4H2                              α = 19.384 a.u. C4H2                              α = 25.21 a.u. 

 

L = 1.210 Å            C2H2                                α = 5.201 a.u. C2H2                                α = 7.94 a.u. 

 

 
FIG. 4. Isosurface of the (a) n=1 wavefunction in the 1D-PIB, (b) π-orbitals, and (c) σ-orbitals of the homologous 
molecular sequence C2nH2. Polyyne geometries were optimized at the CCSD(T)/cc-pVTZ level of theory and 
polarizabilities and wavefunctions computed at the RHF/cc-pVTZ level. The electric field strength was set to 0.01 
a.u. to make the polarization of the orbitals visually obvious. Isosurfaces were obtained at a cutoff value of 0.01 au. 
For the PIB, the length (L) is set to the terminal carbon-terminal carbon separation of the corresponding polyyne. 
 
 

Conclusions 
 

In independent electron models, such as the 1-dimensional particle-in-box in the presence 

and in the absence of a sinusoidal nuclei potential, the harmonic oscillator, and the molecular 

hydrogen cation (H2
+) the polarizabilities scale as L4, where L is the length of the model system. 
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Such a strong length dependence would be very desirable in order to enhance the nonlinear 

optical properties of a material. In contrast, in a multi-electron molecular system, where electron-

electron repulsion is present the exponent of the polarizability length dependence is significantly 

smaller, reducing at the same time the nonlinear properties of a material. For polyynes the static 

longitudinal polarizability scales as L1.64 whereas for molecular hydrogen it scales as L2.06. To 

provide an explanation for the exponent decrease we carry out an extensive comparison of the 

polarizability calculated on various simple quantum mechanical systems that lack electron-

electron repulsion as well as electron correlation and compare these to methods that take in 

account electron-electron repulsion (Hartree-Fock theory) and electron correlation (Coupled 

cluster theory). Our findings show that the excellent performance of the RHF method in 

calculating polarizabilities with respect to the computationally intensive CCSD(T) method 

suggests that the decrease the exponent cannot be attributed to electron correlation effects in 

contrast to first and second order hyperpolarizability computations where such effects were 

found to be important.45 Furthermore comparison of the longitudinal polarizability of the 

molecular hydrogen cation (H2
+), a system that inherently lacks electron-electron repulsion, and 

molecular hydrogen (H2), shows that decrease of the polarizability length dependence is mainly 

attributed to the existence of electron-electron repulsion. We explore the effect of an isotropic 

electric field on the shape of the wavefunctions of the 1D-PIB and σ- and π-orbitals in polyynes 

and show that molecular orbitals with relatively few nodes undergo considerable polarization 

towards the positive end of the electric field where the non-linear (L1.64) increase of the 

polarizability as a function of polyyne length suggests the possibility of higher electron mobility 

along the longitudinal axis, which is attributed to the conjugated π-system. At the infinite chain 

length limit our highly accurate CCSD(T)/cc-pVTZ optimizations showed a bond length 
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alternation of 0.1276 Å in the center of polyynes, which suggest that all polyynes, regardless of 

size remain semiconductors. Finally, we derive a Quantitative-Structure-Property-Relationship 

(QSPR) for the prediction of static longitudinal, transverse and molecular polarizabilities in 

polyynes. 
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Appendix A 
 
Derivation of Eq. 4: Analytic polarizability for 1D-PIB  
 

The expression of the second order correction to the energy derived from non-degenerate 

time-independent perturbation theory is,   

E
' '

E En
k n n

k nn k

H H
(2)

(0) (0) (0) (0)

(0) (0)=
−≠

∑ Ψ Ψ Ψ Ψ k    (9) 

,where  and  are the zeroth order wavefunctions, and  and   the zeroth order 

eigenvalues of the kth and nth energy levels, respectively. These for the 1D-PIB confined to a 

potential energy well that is zero between 0 and L (0 < x < L), but infinite outside that range are 

given by Eqns. (10) and (11). 
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, (11), where n = 1, 2, 3, … . 



 24

The perturbation Hamiltonian in the x-direction is given by, 

H' E e Ex= ⋅ = − ⋅ ⋅μ x , (12). 

Substitution of the perturbation Hamiltonian into Eqn. 9 yields the following expression 

for the 2nd order corrected energy of a wavefunction, 

E
E En

k n n

k nn k
e E

x x
(2)

(0) (0) (0) (0)

(0) (0)= ⋅
−≠

∑2 2 Ψ Ψ Ψ Ψ k , (13). 

The bracket terms in this relationship after substituting the wavefunction of the 1D-PIB given in 

Eqn. (10), evaluate as, 
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k n n k
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π π
, (14), 

which after symbolical evaluation and simplification reduces to the following expression, 
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The 2nd order corrected energy of a wavefunction for the simple 1D-PIB is given by 

substitution of Eqns. (11) and (15) into Eqn. (13). This results to the following relationship, 
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that after a few algebraic steps reduces to, 
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Using the 2nd order corrected energy of a wavefunction for the simple 1D-PIB one can 

calculate the polarizability tensor x-component using the definition of polarizability given in 

Eqn. (8). So the polarizability in the x-direction for the 1D-PIB is, 

( )[ ]
( )

α
πxx

2
e

4

4 2

2 2 n k 2

2 2 5
n k

256 e m L
h

n k 1 1

n k
=

− ⋅ ⋅ ⋅
⋅

⋅ − −

−

+

≠
∑ , (8), 

where me is the electron mass, L the length of the box, h Planck’s constant, e the elementary 

charge of an electron and n and k the nth and kth energy levels, respectively. 

 

Methodolgy in section C: Numerical polarizability for 1D-PIB with sinusoidal potential 

Here we derive the equations required to numerically solve the 1D-PIB using the linear 

“shooting” method. Again the equation solved is the time-independent non-relativistic 

Schrödinger equation which for a single dimension is given by, 

Ψ=Ψ+
Ψ

⋅− EV
dx
d

2 2

22

em
, (18) 

where h/2π  and V is the potential under the influence of which electrons move. In the 

approach taken here, the potential is set equal to the sum of a sinusoidal potential generated by 

an array of nuclei and an isotropic homogeneous external electric field given by the expression,  

=

[ ] xEq)π(x2sinA ⋅⋅−ϕ+⋅=V , (19), 

where A is the amplitude and φ is the phase of the sin-wave, respectively, and E the electric field 

strength. The external electric field is used to study the how the wavefunctions get polarized as a 

result of the perturbation by the field. Combining Eqns. (18) and (19) yield a second order 

differential equation that is solved numerically using the linear “shooting” method with the use 

of the boundary conditions that the wavefunctions have to vanish at x = 0 and x = L, 
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[ ] 0)(E
2
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d

22

2
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Ψ xEq)π(x2sinA

me , (20). 

Once the eigenvalues, which satisfy the boundary conditions are found, the 

wavefunctions are evaluated which then can be used to calculate the polarizability,   

E
μ−

=α , (21), 

where μ is the induced dipole moment given by the usual expression, 

∫
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L

0

d

dx̂
, (22). 

Our results show that the approximate treatment of 2nd order perturbation theory is sufficient to 

yield results as good as the exact numerical solutions. Differences between the two mathematical 

approaches are found to be less than 5%. We observe that as long as the perturbations studied are 

small, which is achieved by a small external electric field strength, the two methods yield 

comparable results. 
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