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Given the large amounts of screening data now available, empirical methods derived from matched-

molecular pairs are being used as a means for suggesting bioisosteric replacements to the medicinal

chemist. The pairwise analysis of compounds has been extended to the pairwise analysis of series to

bring further context to these suggestions. A validation dataset derived from recent literature has been

used to demonstrate that, given a series of active compounds, this approach would be expected to

predict a more potent compound, if it exists, in around 46% of cases. The approach has been

successfully applied to a series of TRPA1 antagonists.
Introduction

Bioisosteres are substituents or groups with similar physical or

chemical properties that produce, when introduced into a given

molecule, broadly similar biological properties. In the optimi-

sation of a lead compound, substituents or functional groups are

varied with the aim of not only improving potency against the

biological target of interest, but also parallel optimisation of

properties such as metabolic stability and selectivity over

secondary targets. The concept of bioisosterism is often utilised

whilst carrying out such modifications. To assist with this

process, a range of empirical and property-based methods has

been developed to select potential bioisosteres of given functional

groups that may retain or improve potency.1,2

Empirical methods for bioisostere selection have evolved from

tapping into the personal experience of the individual medicinal

chemist into more sophisticated in silico approaches that incor-

porate the collective experiences of many medicinal chemists, for

example the rule-based software Drug Guru.3Beyond this, access

to large databases of published and corporate structure activity

data has led to large-scale mining of bioisosteric pairs in which

both structure and biological activity are compared. Methods

such as MatchedMolecular Pairs4 (MMPs) andWizePairZ5 have

been developed to mine the vast amount of information available

in these datasets. Further analysis ofMMPs has led to approaches

forR-groupmodification that are likely to give rise tomore potent

compounds either in the general case,6 a family-specific context,7

or compounds with an alternative activity profile.8

Similarly, property-based methods have evolved from simple

decision-tree based methods such as the Topliss tree9 to large-

scale similarity searches in which the properties of a given group

are matched against the calculated properties of a set of potential

isosteric fragments;10 these methods have been implemented in
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software packages such as Brood,11 QID12 and Novartis’s

‘‘Substituent Bioisosteric Search’’.10

In this communication, we wish to present our own empirical

approach to series optimisation that combines pairwise

comparisons and automated structure–activity relationships

(SAR) analysis. This approach takes the bioisostere concept

a step further, developing the pairwise analysis of compounds

into a pairwise analysis of series that allows us to utilise historical

SAR more fully in series optimisation.

A novel approach to utilising prior SAR

In the traditional approach to isostere identification, the

medicinal chemist designer asks the question ‘‘When group A has

been used in other series against other targets, which other

groups have given rise to similar biological activity? Can I apply

these learnings to my series?’’. The designer may take this

information from their own personal (or colleague) experience,

knowledge of functional group replacements from literature

sources, or from in silico analyses of databases of structure–

activity data. However, if there are already further data available

from the same series (e.g. group B gave rise to a 10-fold more

potent compound than group A), it should be possible to refine

the suggestions based on the activity of these analogues to

suggest more context-specific alternative groups. In other words,

the inclusion of more data should implicitly build up a more

accurate picture of the binding pocket and therefore enable more

useful predictions.

A preliminary analysis based on Pfizer in-house data shows

that there are differences in pocket properties across different

SAR types (Fig. 1). Series (defined in this paper as a group of

compounds in which all variation occurs at one attachment

point) were classified on the basis of the relationship between

potency and clogP, and pockets were classified on the basis of

their degree of burial.13 At the simplest level, a series in which

potency is apparently driven by clogP is more likely to occur
This journal is ª The Royal Society of Chemistry 2012
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Fig. 1 Exploring the relationship between SAR type and the properties

of the sub-pocket known, from ligand-protein co-crystal information, to

contain the region of the molecule that varies. (a) 1670 binding sub-

pockets were assigned as high (green), medium (yellow) or low (red)

burial. 168 of the SARs for series were manually classified as (b) spiky, (c)

flat or (d) clogP-driven, according to the plotted relationship between

pIC50 and clogP (example shown above each pie chart). Spiky SAR

(large changes in potency that are independent of clogP) tend to occur

more often in buried pockets, flat SAR tend to occur more often when

a group is solvent–exposed, and clogP-driven SAR rarely occur when the

group is solvent-exposed.
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when the point of variability is located in a sub-pocket of high

burial. Therefore, if a functional group is known to be well-

buried, it is quite likely that a compound of higher clogP could

increase potency further. It should be noted however that these

are merely trends, and that there are examples of series with

clogP-driven SAR that have solvent-exposed sites of variability.

The approach described in this communication builds on the

pairwise analysis of compounds to incorporate more than two

compounds from each series in the data-mining step. Thus, once

the initial members of a series (the target series) of compounds

have been synthesised and biologically evaluated, the designer can

examine a structure–activity database across multiple targets and

series and determine whether a similar trend in activity has been

observed previously. If such corresponding series are identified,

the designer can extract further information from the SAR in

these series (the donor series) to identify functional groups that

resulted in equivalent or superior activity. Groups that gave

a potency advantage in the donor series and that have yet to be

incorporated into the target series can then be considered for

incorporation into the target series (Fig. 2).We envisaged that, by

implementing this SAR-mining approach, wewould be able to aid

the designer in selecting functional groups with an increased

probability of achieving improved potency. This should

contribute to an improvement in the efficiency of the lead opti-

mization process through a reduction in the number of compound

syntheses required to achieve target compound profiles.
Fig. 2 Schematic illustrating the process of SAR mining and its appli-

cation to compound design.

This journal is ª The Royal Society of Chemistry 2012
To illustrate the potential utility of this methodology, we

initially examined SAR described in the recent medicinal chem-

istry literature. We then successfully applied the approach to

a series in an active ion channel project.
Methods

Pairwise analysis

Two data sources for bioisostere mining were used in this work.

The Pfizer internal database of IC50 and EC50 values contains

endpoints covering around 2 million compounds and 400 targets

that could be unambiguously assigned. An alternative dataset of

some 117,000 compounds covering 730 targets has also been

assembled from a number of publicly available sources.14 This

dataset, although useful, tends to contain fewer compounds per

series, since organisations tend not to release all SAR generated

into the public domain. Indeed key data on inactive compounds

are often not included at all in publications. The database from

publications therefore provides fewer examples of matched

molecular pairs and therefore will be used in this publication

solely for method illustration.

There are a number of recently published methods that can be

used to calculate matched molecular pairs, all of which could be

applied equally well to our datasets.15,16 In this work, a simple

substructure search based method (named SWAP) was used to

probe the databases and identify pairs of molecules differing only

in the replacement of a user-defined input functional group. The

algorithm is illustrated in Fig. 3, illustrating how it identified

a pair of Factor Xa inhibitors from the literature.17

A set of 400 functional groups was selected from the most

common functional groups used in Pfizer drug discovery

programs. The SWAP methodology was applied to these groups

to generate a secondary database (the SWAP database) con-

taining matched pairs of compounds differing structurally by

a single functional group change from one of these groups. In

each case, both members of the pair had been evaluated for

activity at the same biological target. For every pair, each com-

pound’s structure, unique ID, potency, assay identifier and
Fig. 3 Schematic workflow for SWAP algorithm, illustrating the search

for isosteres of 2-CF3-Ph. In this case, the 2-methylsulphonyl-phenyl

group is identified as an isostere that provides a 5-fold improvement in

the potency of a Factor Xa inhibitor.
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molecular target were included. In order for comparisons to be

rigorous, pairs of compounds should only be considered if they

have been screened in the same assay. This for example avoids

the mixing of functional and binding data, which can introduce

unnecessary errors into analyses of this nature.
Table 1 Most common replacements for 2-trifluoromethyl phenyl as
observed in the Pfizer dataset, and their propensities (expressed as
a decimal 0–1) to increase, retain or decrease potency, using a 3-fold
window to define an increase or decrease in potency. The average change
in clogP observed for the molecular pairs is also reported

Group Npairs Increase Retain Decrease DclogP

2-OMe-Ph 1212 0.13 0.70 0.17 �0.53
Ph 1009 0.24 0.56 0.21 �0.49
2-Cl-Ph 882 0.24 0.61 0.15 +0.26
2-Me-Ph 781 0.22 0.60 0.18 �0.01
2-F-Ph 763 0.22 0.58 0.20 �0.31
3-OMe-Ph 740 0.18 0.60 0.22 �0.52
4-OMe-Ph 716 0.21 0.50 0.28 �0.52
4-F-Ph 652 0.24 0.53 0.23 �0.32
3-Cl-Ph 601 0.25 0.56 0.18 +0.26
4-Cl-Ph 585 0.27 0.48 0.25 +0.25
Identification of donor series with well-matched SARs

It would not be expected that a given isosteric replacement

improves potency across all targets. Pockets that bind a given

functional group are likely to have significant differences in the

nature and spatial orientation of the interacting amino acid side-

chains. It was therefore important to determine a process to

triage the large number of potential isosteres identified from the

SWAPmethodology to allow the medicinal chemistry designer to

focus resources on those with the highest probability of success in

the series and protein target of interest. One process to triage the

number of potential isosteric replacements was to widen the

approach from simple compound pairwise analysis to series

pairwise analysis. Comparison of these historical data with

known SAR data from the target series could indicate to what

extent the donor series could inform the design of the test series.

In other words, we needed to determine how well matched

a historic series was before we utilised its SAR. For example, if

a replacement for a phenol was being sought and in the test series

it was known that a pyridine was more potent than the phenol, it

would seem logical to examine SAR from other series in which

replacing a phenol with a pyridine had also improved potency by

a similar magnitude. This is a purely empirical approach, in that

the precise origins of the SAR similarity are not explored. The

hypothesis is that by bringing in further series SAR, the dataset

of matched pairs can be enriched more towards those that are

more relevant. This could be because the binding pockets are

similar, especially if the SARs come from targets from the same

family, or that bind the same endogenous ligand. However, there

could equally well be alternative explanations, for example the

presence of similar imposed steric and conformational

constraints in the two series.

Members of the target series were selected with a single

template bearing R-group modifications at the same template

attachment point, for which biological data were available for all

analogues in the set. The SWAP database was then interrogated

to find all other series for which there were at least 4 compounds

containing the same combination of R groups as the target series.

Any such series was analysed further to assess the correlation

with the target series. In a plot of donor series activity vs. target

series activity for matched compounds, if a donor series were to

perfectly match the target series, a straight line with a gradient of

1 would be expected.

The initial approach used was to assess these series correla-

tions by eye, since a number of factors needed to be considered.

Confidence in the relevance of a correlation was more likely to be

increased by:

� a high degree of correlation of the activity values, taking into

account that fact that each IC50 value has an associated experi-

mental error

� a large range of potency values covered by the correlation, in

part to mitigate the risk of experimental error giving rise to false

positive correlations between series with small ranges of potency
176 | Med. Chem. Commun., 2012, 3, 174–178
� an even spread of potency values within each series, to avoid

the issue created by one outlier dominating the relationship

� the two series being active at similar protein targets, or

targets with the same endogenous ligand, to increase the confi-

dence that the donor series is more relevant to the target series.

However, in our experience, a genuinely useful correlation

does not necessarily require all of these criteria to be met.

Attempts were made to automate the recognition of similar

SARs but assigning relative weightings to each of the criteria

listed above did not yield rules that could be applied consistently

with success (data not shown).

Results and discussion

Pairwise analysis

A typical set of results obtained using the SWAP methodology is

illustrated using the example of replacing a 2-tri-

fluoromethylphenyl group. Table 1 shows the performance of the

most commonly observed potential isosteres, in terms of the

likelihood of retaining potency within 3-fold of the starting

group. Although there are broad trends relating increase of

potency with increase in clogP (in that chloro substitution

increases potency more often and methoxy substitution decreases

potency more often), there are enough examples of the opposite

behaviour to warrant further explanations. This analysis identi-

fied the 2-chlorophenyl group as an isostere with a statistically

significant increased (chi-squared test P < 0.02) probability of

retaining and increasing potency.

However, analysis by gene family (Table 2) shows that this

isosteric replacement is more successful in some target families

than in others. For example there are 262 pairs of compounds in

the database with this transformation in which the potency

difference has been measured against kinase family targets, with

42% instances of the replacement resulting in an improvement in

potency and 53% instances of retaining potency. Only in 8% of

cases did this change result in a reduction in potency against

kinases. However, the same transformation is more likely to

result in similar potency values when applied to ion channel

targets (79%) or to decrease potency against GPCRs (20%).

Clearly introducing further context, in this case target type, can

add value to predictions arising from pairwise analysis. It should

be noted here that although these differences are statistically
This journal is ª The Royal Society of Chemistry 2012
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Table 2 Propensity (expressed as a decimal 0–1) of the 2-tri-
fluoromethylphenyl to increase, maintain or decrease potency relative to
the equivalent 2-chlorophenyl compound, assessed for different target
classes

Target Class Npairs Increase Retain Decrease

GPCR 433 0.21 0.60 0.19
Ion channel 234 0.10 0.79 0.11
Kinase 262 0.39 0.53 0.08
Protease 83 0.29 0.68 0.03
Transporter 115 0.39 0.58 0.03

Fig. 4 Example of SAR mining. A. Equivalent series were sought for an

A2B antagonist series, plotting pIC50 of donor series compounds against

pIC50 for the equivalent A2B compounds. B. Triage of the donor series

reduced the four illustrated series down to the 5-HT4 series. C. Further

mining of the 5-HT4 series identified 2-pyrazine as a substituent gener-

ating a further improvement in potency. D. Incorporation of this moiety

into the A2B series was predicted to improve potency.
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significant (chi-squared test, P < 0.01) when taken at face value,

no normalisation was carried out to prevent a small number of

targets dominating this analysis, a problem prevalent in the

analysis of corporate data. However, isostere performance has

been shown to vary across target families by previous studies.6,7

An alternative way to add further context to this pairwise

analysis was to introduce another compound from the same

series. Table 3 illustrates the results when the relative potency of

the unsubstituted phenyl group was known. In this particular

case (and others, not reported here), local SARwas a more useful

guide to prediction than the nature of the target. If the phenyl

group gave rise to a more potent compound than the 2-tri-

fluoromethyl-substituted phenyl group, the equivalent 2-chlor-

ophenyl compound was more potent 73% of the time. If the

phenyl group gave rise to a less potent compound, this propor-

tion reduced statistically significantly (chi-squared test, P < 0.01)

to 6%.
Identification of similar SARs

The process for identification of similar SARs is illustrated in

Fig. 4 for a test series taken from Zablocki et al.,18 in which the

SAR of adenosine-2B (A2B) antagonists was presented. A

number of series containing the same combination of R groups

were identified in the collated publicly available activity dataset,

including the four in Fig. 4. Of these series, only the 5-HT4

series19 was defined by eye to be similar. Further mining within

this donor series indicated that the 2-substituted pyrazine was

more potent against the 5-HT4 receptor than any of the other

compounds in this series. This would suggest that this might be

a productive group to introduce into the A2B test series to

generate a more active compound. However, as this was a liter-

ature example, it was not possible to assess whether this

replacement would have been successful. A more generic
Table 3 Propensity (expressed as decimal 0–1) of 2-chloromethylphenyl
to increase, retain or decrease potency relative to 2-trifluoromethylphenyl
in the cases in which the equivalent unsubstituted phenyl has an
increased, retained or decreased potency relative to the 2-tri-
fluoromethylphenyl compound

2-chloromethyl potency is

Phenyl potency is Ntriplets Increased Retained Decreased

Increased 101 0.73 0.26 0.01
Retained 287 0.26 0.67 0.09
Decreased 108 0.06 0.56 0.39

This journal is ª The Royal Society of Chemistry 2012
validation experiment was therefore carried out making use of

a larger sample of literature series.
Prediction of compounds with improved potency

To validate the applicability of this SAR-mining method and its

expected success rate in the general case, the single-point of

variation SAR was extracted from around 50 recent publications

to serve as a test set. For each series, the most potent compound

was removed and the ability of the methodology to predict the

success of this compound was tested. Donor series in the Pfizer

dataset were sought that contained the same set of R groups.

These were split into series that did or did not correlate with the

input SAR (in this case on the basis of visual inspection of plots

akin to that shown in Fig. 4). A donor series was defined to be

predictive if the predicted potency of the removed compound

from the test series was, at worst, within 3-fold of the next best

compound in the test series. In the 210 cases in which the series

did correlate, there was a prediction success rate of 46%. This fell

to 23% for the remaining 21,053 series, illustrating a 2-fold

enrichment.

At the outset of this work it was unclear whether any enrich-

ment would be achievable through the use of this SAR-mining

approach because similarity of SAR between series against

different targets could be coincidental, or merely clogP-driven.

However, the enrichment seen suggests that this methodology

can increase the probability of identifying R groups to incorpo-

rate that may give rise to analogues with improved potency. It is

unsurprising that the predictivity is no higher than the 46%

obtained, because no two series are going to be driven by iden-

tical issues e.g. the binding pockets are unlikely to be identical, so

perfect SAR correlations would not be expected. However, there

does appear to be value added by narrowing down suggestions to

those predicted by well-matched donor series.
Application to TRPA1 compound design

The method has been applied to compound design on the

TRPA1 project at Pfizer. TRPA1 is a member of the Transient

Receptor Potential (TRP) ion channel family and is involved in

the perception of nociceptive and inflammatory pain triggered by

mechanical stimuli, endogenous mediators such as bradykinin

and 4-hydroxynonenal, peroxides, prostaglandins and
Med. Chem. Commun., 2012, 3, 174–178 | 177
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Fig. 5 Application of SAR mining to a TRPA1 series. A. SAR mining

identified a 5-HT6 series with similar SAR, in that the plot of pIC50 for

the 5-HT6 compounds against pIC50 for the matched TrpA1 compounds

followed the same gradient as the line of equivalence (shown in bold). B.

The plot of pIC50 vs. clogP for the matched compounds (circles) and the

remainder of the 5-HT6 series showed around 20 compounds with pre-

dicted further increases in potency. Five of these compounds (squares)

were selected and when the R groups were introduced into the TRPA1

series, this yielded compounds with increased potency relative to the

original series.
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exogenous chemical substances including pungent natural

compounds and environmental irritants.20,21 In an effort to assess

TRPA1 as a therapeutic target for sensory disorders, around 50

compounds had been made in a lead series (Fig. 5), with the

project unable to achieve potency below a threshold of 500 nM

despite preparation of compounds across a wide range of lip-

ophilicity and molecular weight chemical space. Using the SAR

mining approach on the R group structure–activity data in Fig. 5

yielded a well matched 5-HT6 series with a similar trend in

activity. This series consisted of further compounds with potency

increased relative to the best R group present in the TRPA1

series. Five of these R-groups were introduced into the TRPA1

series, with all five analogues synthesised proving more potent

against TRPA1 than had previously been achieved in this series.

The R groups suggested by this methodology were not of

common structural classes that the medicinal chemist designer

would have been likely to incorporate without the guidance of

the SAR-mining methodology. They were also not obvious in

terms of structural similarity to the starting structures: in other

words this methodology is capable of suggesting novel structural

motifs for inclusion into series.

Conclusions

This work has extended bioisostere selection from the concept of

pairwise compound analysis to pairwise series analysis, adding

further sophistication to the search for potential bioisosteres. It

has been demonstrated to provide around two-fold enrichment

in identification of isosteres with improved potency over cases

where SARs were not seen to correlate. Thus this methodology
178 | Med. Chem. Commun., 2012, 3, 174–178
can be used by the medicinal chemistry designer as a tool for idea

generation to increase the probability of incorporating R groups

that will lead to improved potency: the selected R groups are

supported by data from other targets. However, as with all

in silico design tools, this methodology should not be used as

a ‘‘black box’’: the ideas should be analysed and interpreted by an

experienced medicinal chemist to prioritise the emerging ideas

such that they also satisfy other needs of the project e.g. opti-

misation of ADMET properties or selectivity over related

targets.

This work can also provide a powerful resource for increasing

understanding of what drives SAR when it is combined with the

increasing wealth of structural data now available to us. In this

case, the expected relationship between degree of solvent acces-

sibility and nature of the SAR was confirmed, though, perhaps

more interestingly, exceptions were identified. Further work will

be required to understand if there are common explanations for

these exceptions, and to expand the definitions of SAR types

using some of the more elegant metrics that have recently been

published.22
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