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Abstract
Barren plateaus appear to be a major obstacle for using variational quantum algorithms to simulate large-scale quantum
systems or to replace traditional machine learning algorithms. They can be caused by multiple factors such as the expressivity
of the ansatz, excessive entanglement, the locality of observables under consideration, or even hardware noise. We propose
classical splitting of parametric ansatz circuits to avoid barren plateaus. Classical splitting is realized by subdividing an N
qubit ansatz into multiple ansätze that consist ofO(log N ) qubits. We show that such an approach allows for avoiding barren
plateaus and carry out numerical experiments, and perform binary classification on classical and quantum datasets. Moreover,
we propose an extension of the ansatz that is compatible with variational quantum simulations. Finally, we discuss a speed-up
for gradient-based optimization and hardware implementation, robustness against noise and parallelization, making classical
splitting an ideal tool for noisy intermediate scale quantum (NISQ) applications.

Keywords Parametric · Ansatz · Barren · Plateau

1 Introduction

Variational quantum algorithms (VQAs) [10] are a promising
approach to solve a wide range of problems, such as finding
the ground state of a given hamiltonian via the variational
quantum eigensolver (VQE) [35], solving combinatorial
optimization problems with the quantum approximate opti-
mization algorithm (QAOA) [14] or solving classification
problems using quantum neural networks [15].

Variational quantum algorithms are suitable for noisy
intermediate scale quantum (NISQ) [37] hardware as they
can be implemented with a small number of layers and gates
for simple tasks. However, a scalability problem arises with
the increasing number of qubits, hindering a possible advan-
tage. Variational quantum algorithms rely on a feedback loop
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between a classical computer and a quantum device. The for-
mer is used to update the parameters of the ansatz conditioned
on the measurement outcome obtained from the quantum
hardware. This procedure is iterated until convergence. Clas-
sical optimizers use the information on the cost landscape
of the parametric ansatz to find the minimum. The updates
on the parameters move the ansatz to a lower point on the
cost surface. In 2018, McClean et al. showed that for a wide
range of ansätze the cost landscape flattens with the increas-
ing number of qubits, making it exponentially harder to find
the solution for the optimizer [26]. The flattening was first
observed by looking at the distribution of gradients across
the parameter space, and the problem was named barren
plateaus (BPs). A variational quantum algorithm is said to
have a BP if its gradients decay exponentially with respect to
one of its hyper-parameters, such as the number of qubits or
layers.

Since the discovery of the BP problem, there has been sig-
nificant progress that improved our understanding of what
causes barren plateaus, and several methods to avoid them
have been proposed. It has been shown that noise [47],
entanglement [28], and the locality of the observable [11]
play an essential role for determining whether an ansatz
will exhibit barren plateaus. It has also been shown that the
choice of ansatz (e.g. its expressivity) for the circuit is one
of the decisive factors that impact barren plateaus [20]. For
instance, the absence of barren plateaus has been shown for
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quantum convolutional neural networks (QCNN) [12, 36]
and tree tensor networks (TTN) [18, 52]. In contrast, the
hardware efficient ansatz (HEA) [21, 26, 52] and matrix
product states (MPS) [52] have been shown to have barren
plateaus.

One of the essential discoveries showed that barren
plateaus are equivalent to cost concentration and narrow
gorges [3]. This implies that barren plateaus are not only a
result of the exponentially decaying gradient but also of the
cost function itself, and they can be identified by analyzing
random points on the cost surface. As a result, gradient-free
optimizers are also susceptible to barren plateaus, and do not
offer a way to circumvent this problem [2].

Many methods have been suggested to mitigate barren
plateaus in the literature. Some of these methods suggest to
use different ansätze or cost functions [49, 51], determining
a better initial point to start the optimization [17, 24, 39, 50],
determining the step size during the optimization based on
the ansatz [40], correlating parameters of the ansatz (e.g.,
restricting the directions of rotation) [20, 46], or combining
multiple methods [9, 30].

In this work, we propose a novel idea in which we claim
that if any ansatz of N qubits is classically separated to a
set of ansätze with O(log N ) qubits, the new ansatz will
not exhibit Barren Plateaus. This work is not the first pro-
posal in the literature that considers partitioning an ansatz.
However, our proposal is significantly different. Most work
in the literature first considers an ansatz and then emulates
the result of that ansatz through many ansätze (exponentially
many in general) with less number of qubits (which increases
the effective size of quantum simulations) using gate decom-
positions, entanglement forging, divide and conquer or other
methods [8, 13, 16, 25, 32, 34, 41, 44, 44]. On the other hand,
this work proposes using ansätze that are classically split,
meaning that there are no two-qubit gate operations between
the subcircuits before splitting. This way, there is no need for
gate decompositions or other computational steps. We also
investigate an extension of this ansatz design by combining
classically split layers with standard layers. Our results show
that this approach providesmany benefits such as better train-
ability, robustness against noise and faster implementation on
NISQ devices.

In the remainder of the paper, we start by giving an ana-
lytical illustration of the method in Sect. 2. Then, we provide
numerical evidence for our claim in Sect. 3 and extend our
results to practical use cases by comparing binary classifica-
tion performance of classical splitting (CS) for classical and
quantum data. Next, we propose an extension of the clas-
sical splitting ansatz and perform experiments to simulate
the ground state of the transversal-field Ising hamiltonian.
Finally, we discuss the advantages of employing CS, make
comments on future directions in Sect. 4 and give an outlook
in Sect. 5.

2 Avoiding Barren Plateaus

Barren plateaus (BPs) can be identified by investigating how
the gradients of an ansatz scale with respect to a parameter.
Here, we will start with the notation of McClean et al. and
extend it to CS [26]. The ansatz is composed of consecu-
tive parametrized (V ) and non-parametrized entangling (W )
layers. We define Ul(θl) = exp(−iθl Vl), where Vl is a Her-
mitian operator and Wl is a generic unitary operator. Then
the ansatz can be expressed with a multiplication of layers,

U (θ) =
L∏

l=1

Ul(θl)Wl . (1)

Then, for an observable O and input state of ρ, the cost is
given as

C(θ) = Tr[OU (θ)ρU †(θ)]. (2)

The ansatz can be separated into two parts to investigate
a certain layer, such that U− ≡ ∏ j−1

l=1 Ul(θl)Wl and U+ ≡∏L
l= j Ul(θl)Wl . Then, the gradient of the j th parameter can

be expressed as

∂ jC(θ) = ∂C(θ)

∂θ j
= i Tr[[Vj ,U

†
+OU+]U−ρU †

−]. (3)

The expected value of the gradients can be computed using
the Haar measure. Please see Appendix A for more details on
the Haar measure, unitary t-designs and details of the proofs
in this section. If we assume the ansatzU (θ) forms a unitary
2-design, then this implies that 〈∂kC(θ)〉 = 0 [26]. Since the
average value of the gradients are centered around zero, the
variance of the distribution, which is defined as,

Var[∂kC(θ)] = 〈(∂kC(θ))2〉 − 〈∂kC(θ)〉2, (4)

can inform us about the size of the gradients. The variance
of the gradients of the j th parameter of the ansatz, whereU−
and U+ are both assumed to be unitary 2-designs, and the
number of qubits is N , is given as [20, 26],

Var[∂ jC(θ)] ≈ O
(

1

26N

)
. (5)

This means that for a unitary 2-design the gradients of the
ansatz vanish exponentially with respect to the number of
qubits N . Details of this proof is provided in Appendix A.
Now, let us consider the CS case. We split the ansatz U (θ)

to k many m-qubit ansätze, where we assume without loss
of generality that N = k × m. Then, we introduce a new
notation for each classically split layer,

Ui
l (θ

i
l ) = e−iθ il V

i
l W i

l , (6)
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where index l determines the layer and index i determines
which sub-circuit it belongs to. This notation combines the
parametrized and entangling gates underUi

l . Then, the over-
all CS ansatz can be be expressed as,

U (θ) =
L∏

l=1

k⊗

i=1

Ui
l (θ

i
l ) =

k⊗

i=1

L∏

l=1

Ui
l (θ

i
l ) =

k⊗

i=1

Ui (θ i ).

(7)

TheCS ansatz can be seen in Fig. 1a. Next, wewill assume
the observable and the input state to be classically split, such
that they both can be expressed as a tensor product ofm-qubit
observables or states. This assumption restricts our proof to
be valid only form-local quantum states andm-local observ-
ables. It is important to note here that we use a definition that
is different from the literature throughout the paper. For this
proof, anm-local observable is an observable such that there
are no operators that act on overlapping groups of m qubits.

A generic m-local observable can be expressed as,

Om-local =
k∑

i=1

Oi ⊗ 1ī =
k∑

i=1

k⊗

j=1

(Oi − 1) δi, j + 1, (8)

where Oi is an observable over the qubits {(i −1)m+1, (i −
1)m+2, ..., im}, and ī represents the remaining N−m qubits.
Then, the cost function becomes;

C(θ) =
k∑

i=1

Tr[
k⊗

j=1

(
(Oi −1) δi, j +1

)
U j (θ j )ρ jU

j†(θ j )]

=
k∑

i=1

k∏

j=1

Tr[((Oi −1) δi, j + 1
)
U j (θ j )ρ jU

j†(θ j )]

=
k∑

i=1

Tr[OiU
i (θ i )ρiU

i†(θ i )].

(9)

Fig. 1 All types of ansätze used in this work. (a) An N -qubit generic
ansatz consisting of L layers of the parametrized unitaryU are separated
in to k = N/m manym-qubit ansätze. This ansatz will be referred to as
the classically split (CS) ansatz. The standard ansatz can be recovered
by setting m = N . (b) Extended classically split (ECS) ansatz. This
is an extension to the CS ansatz. First L layers of the ansatz consists
of k = N/m many m qubit U blocks. Then, T layers of N qubit V

layers are applied. (c) A simple ansatz that consists of RY rotation gates
and CX gates connected in a “ladder" layout. (d) Hardware Efficient
Ansatz (HEA) that is used to produce the quantum dataset. Parameters
of the first column of U3 gates are sampled from a uniform distribu-
tion ∈ [−1, 1], while the rest of the parameters are provided by the
dataset [42]. (e) EfficientSU2 ansatz with “full" entangler layers [45]
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This can be written as a simple sum,

C(θ) =
k∑

i=1

Ci (θ i ), (10)

where,

Ci (θ i ) = Tr[OiU
i (θ i )ρiU

i†(θ i )]. (11)

Then, the costs of each classically separated circuit are
independent of each other. The gradient of j th parameter of
the i th ansatz can be written as,

∂i, jC(θ) = ∂i, jC
i (θ i )

= ∂i, j (Tr[OiU
i (θ i )ρiU

i†(θ i )]). (12)

Now, let us consider each ansatz Ui (θ i ) to be a unitary
2-design. We want to choose the integer m such that it scales
logarithmically in N . Hence, we choose β and γ appropri-
ately, such that m = β logγ N holds. Then, if we combine
Eq. (5) with Eq. (12), the variance of the gradient of j th

parameter can be expressed as

Var[∂ jC(θ)] ≈ O
(

1

2(6m)

)
= O

(
1

N 6β logγ 2

)
. (13)

Here, the dependence on i or j becomes irrelevant (a sim-
pler choice for ansatz design would be to choose every new
ansatz to be the same), so it can be dropped for a simpler nota-
tion. Similar to Eq. (5) the variance scales with the dimension
of the Hilbert space (e.g. O(2m)). Then, the overall expres-
sion scales with,O(N−6β logγ 2), where β and γ are constant
(e.g.β = 1 and γ = 2 results inm = log2 N ). As a result, the
variance of the CS ansatz scales withO(poly(N )−1) instead
of O(exp(N )−1). Therefore, a CS ansatz, irrespective of its
choice of gates or layout, can be used without leading to
barren plateaus.

3 Numerical experiments

In this section, we report results of four numerical experi-
ments. We investigate the scaling of gradients under CS by
computing variances over many samples in Sect. 3.1. Then,
we perform three experiments to observe how CS affects the
performance of an ansatz. This task by itself leads to many
questions as there are multitudes of metrics that one needs to
compare and as many different problems one can consider.
For this purpose, we consider problems well known in the
literature, where trainability of ansätze plays a significant
role.

First, we perform binary classification on a synthetic
classical dataset in Sect. 3.2. The dataset contains two dis-
tributions that are called as classes. The goal is to predict the
class of each sample. We perform the same task for distribu-
tion of quantum states in Sect. 3.3. Then, we give practical
remarks in Sect. 3.4. Finally, we propose an extension to the
CS ansatz and employ it for quantum simulating the ground
state of the transverse field Ising Hamiltonian in Sect. 3.5.

For the first three experiments (Sects. 3.1 to 3.3), we con-
sider the CS ansatz with layers that consist of RY rotation
gates and CX entangling gates applied in a ladder formation
for each layer. This layer can be seen inFig. 1c.As the observ-
able, we construct the 1-local observable defined in Eq. (14),
where Zi represents the Pauli-Z operator applied on the i th

qubit and �ī represents the identity operator applied on the
rest of the qubits.

O = 1

N

N∑

i=1

Zi ⊗ 1ī (14)

3.1 Barren Plateaus

Barren Plateaus are typically identified by looking at the vari-
ance of the first parameter over a set of random samples [26].
Recently, it has been shown that this is equivalent to looking
at the variance of samples from the difference of two cost
values evaluated at different random points of the parameter
space [3]. In particular, in the presence of barren plateaus
this difference is exponentially suppressed, and, thus, barren
plateaus also affect gradient-free optimizers [2]. For this rea-
son, we will focus on the variance of the cost function as a
more inclusive indicator for barren plateaus, rather than the
gradients to provide a broader picture.

The experiments were performed using analytical gra-
dients and expectation values, assuming a perfect quan-
tum computer and infinite number of measurements, using
Bergholm et al. (2020) and Paszke et al. 2019. Variances are
computed over 2000 samples, where the values of the param-
eters are randomly drawn from a uniform distribution over
[0, 2π ].

We start by presenting the variances over different values
of m and N in Fig. 2. We fix the number of layers (L) to
N , so that the ansatz exhibits barren plateaus in the setting
without CS (m = N ). The results indicate that a constant
value of m resolves the exponential behaviour, as expected
from Eq. (13). Furthermore, it is evident that larger values of
m can allow the ansatz to escape barren plateaus, given that
m grows slow enough (e.g. O(log N )). Note that we study
the varianceswith respect to randomly chosen parameter sets,
and not the variance during the optimization procedure to find
the optimal set of parameters minimizing the cost function.
Thus, our results essentially show the expected variance at
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Fig. 2 The variance of the change in cost vs. the number of qubits for
varying values of m. Each color/marker represents a certain value of m
and data points of the standard ansatz (m = N ) is plotted with a dashed
black line

beginning of the optimization procedure with a randomly
chosen initial point. Having a large variance at this state is
key to find the path towards the global minima. Throughout
the optimization procedure, the variance of the cost function
will eventually decrease as the algorithm converges.

Our theoretical findings illustrate that the CS can be used
to avoid barren plateaus irrespective of the number of lay-
ers. In our first experiment, we numerically showed that this
holds when we set L = N . Recent findings showed that, a
transition to barren plateaus happens at a depth of O(log N )

for an ansatz with a local cost function [11]. Therefore, there
is great importance in investigating the behaviour for larger
values of L . For considerably low values of N (e.g. N < 32),
we can assume a constant value for m (e.g. m = 4), such
that m is approximately O(log N ). We present variances of
two ansätze (m = 4, m = N ) for up to 200 layers and 16
qubits in Fig. 3. For the standard ansatz, we see a clear tran-
sition to barren plateaus with increasing number of layers,

Fig. 3 The variance of the change in cost vs. the number of layers for
m = 4 (solid lines) and m = N (dashed lines) with varying number of
qubits

as expected [11]. On the other hand, the CS ansatz (m = 4)
shows a robust behavior from small to large number of layers.

These two experiments show the potential of the CS in
avoiding barren plateaus. However, the question of whether
this potential can be transferred in-to practice (e.g. binary
classification performance or quantum simulation) still lacks
an answer. Next, we will be addressing this question.

3.2 Binary classification using a classical dataset

In this experiment, we will continue using the same ansatz
with same assumptions to perform binary classification using
a classical dataset. Our goal here is to compare performance
of the CS ansatz to the standard case for increasing number of
qubits. We need a dataset that can be scaled for this purpose.
However, datasets are typically constant in dimension and
do not offer an easy way to test the scalability in this sense.
Therefore, we employ an ad-hoc dataset that can be produced
with different number of features.

Three datasets (N = 4, 8 and 16) were produced using the
make_classification function of scikit-learn1 [31]. This tool
allows us to draw samples from an N -dimensional hyper-
cube, where samples of each class are clustered around the
vertices. Each dataset contains 420 training and 180 testing
samples. Each of the data samples were encoded using one
RY gate per qubit, such that each ansatz uses the same num-
ber of features of the given dataset. Please see Appendix C
for more details on the production of the dataset and distri-
butions of samples.

The binary classification was performed using the expec-
tation value over the observable defined in Eq. (14) and the
binary cross entropy function was used as the loss function
during training, such that,

L(y, ŷ) = −y log ŷ − (1 − y) log(1 − ŷ), (15)

where y (i.e. y ∈ {0, 1}) is the class label of the given data
sample and ŷ is the prediction (i.e. ŷ=Tr[OU(θ)ρ(x)U †(θ)],
where x is the data sample).2 TheADAMoptimizer [22]with
a learning rate of 0.1 was used and all models are trained for
100 epochs using full batch size (bs=420).3 We report our
results based on 50 runs for each setting.

Classification performance of ansätze for changing values
ofm using the three datasets are presented in Fig. 4. Here, the

1 The classical dataset is produced for 600 data samples with a 420/180
train/test split, a class separation value of 1.0, 2.0% class assignment
error and no redundant or repeated features.
2 Here, the expectation value can have values between [-1,1], we scale
it to be [0,1] to compensate for the discrepancy between the class labels.
3 In the case of N = m = L = 16 full batch size was not possible due
to vast memory requirement. Therefore, bs=60 was used only for this
case. In Appendix D, we show that using a smaller batch size does not
affect the performance of the model significantly.
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Fig. 4 Box plot of the best test accuracy obtained over 50 runs plotted
with respect to the relevant local number of qubits (m). Each column
represents a problemwith a different sample size (4, 8, 16). Eachmarker
is placed on the median, boxes cover the range from the first to third
quartiles and the error bars extend the quartiles by 3 times range. Each
m value is plotted with a different marker and color

results show the distribution of accuracies over the test set.
For the N = 4 case, we see that the standard (m = N ) ansatz
performs the best. However, this is not the case as we go to
more qubits. For the 8 and 16 qubit cases, it is evident that
m < N ansätze can match the performance of the standard
ansatz. We can also see that the constant choice of m = 4
can provide a robust performance with increasing number of
qubits (at least up-to N = 16), matching our expectations.
Training curves of all settings are presented in Appendix D.

3.3 Binary classification using a quantum dataset

The binary classification performance of theCSover the clas-
sical datasets provides the first numerical evidence for their
advantage against the standard ansätze. It is also important
to investigate if they can be extended to problems where the
data consists of quantum states. Our proof in Sect. 2 assumed
the input states to be tensor product states. Now, we remove
this constraint and use a quantum dataset.

For this experiment, we use the NTangled dataset [42].
NTangled dataset provides parameters to produce distribu-
tions of quantum states that are centered around different
concentrable entanglement (CE) [5] values. CE is a measure
of entanglement, which is defined as follows,

CE(|	) = 1 − 1

2N
∑

α∈Q
Tr[ρ2

α], (16)

where Q is the power set of the set {1, 2, ...,N}, and ρα

is the reduced state of subsystems labeled by the elements
of α associated to |	. The NTangled dataset provides three
ansätze trained for different concentrable entanglement (CE)
values for N = 3, 4 and 8.We choose the Hardware Efficient

Ansatz (Fig. 1d)with depth=5, such that the parameters of the
first layer ofU3 gates are sampled from a unitary distribution
∈ [−1, 1] and the others are provided by the dataset. Then,
we apply the same CS ansatz used in Sect. 3.2 and perform
binary classification such that the CE values are the labels of
classes. The CE distributions of the produced quantum states
are presented in Appendix E.

For the binary classification task, the same training set-
tings are used as in Sect. 3.2, except this time models are
trained until 50 epochs, as most models were able to reach
100% test accuracy. We report our results using different
pairs of distributions in Table 1. In the case of N = 4, we
observed that CS can perform at similar accuracy, even if
the ansatz do not have any entangling gates (m = 1). We
see that entangling gates are needed for better performance
if the problem gets harder (e.g. 0.25 vs. 0.35 case). If we go
to a problem with more qubits, we can safely say that the CS
ansatz can match the performance of the standard ansatz and
converge faster.

3.4 Practical remarks on classical splitting

The efficacy of CS relies on the parts of the circuit before
and after the set of gates that undergo CS. This can be seen
most clearly if we set m = 1 and apply CS to the entire
circuit after a possible initialization. In this case, we only
perform single qubit operations after initialization. Hence,
if the initialization produces a tensor product state, then the
circuit subject to CS with m = 1 can no longer generate
any entanglement. Similarly, if we initialize with the HEA
(Fig. 1d) and apply CS with m = 1 to the remaining circuit,
then no tensor product state can be found.

More generally, m = 1 produces a circuit that cannot
change the amount of entanglement. For other choices of m,
the picture becomes more complicated but, generally, the set
of states that can be generated by the quantum circuit before
CS will be reduced to a subset based on the characteristics
of the remaining initialization.

A naïve implementation of CS therefore requires knowl-
edge of the correct initialization such that the final solution
can still be reachedwith the classically split circuit. In generic
applications, this knowledge is likely not available. Hence,
an adaptive approach to CS should be considered.

One adaptive approachwould be to increasem to check for
improvements. Afterwe observe no further training improve-
ment with m = 1, we could move to m = 2. This enlarges
the set of states the quantum circuit can reach, and thus may
lead to further training improvements, at the cost of possibly
stronger BP effects. However, if m = 1 has already con-
verged fairly well, then the state is already fairly close to the
m = 2 solution and it is unlikely to find a BP. With m = 2
converged, we can then move to m = 4 and continue the
process by doubling m one step at a time.

123



Quantum Machine Intelligence             (2023) 5:34 Page 7 of 19    34 

Table 1 Classification performance of ansätze with different values
of m over different distributions of quantum states from the NTangled
dataset [42]. Average of 50 runs are presented with errors showing the

difference to maximum and minimum observed values. Best average
value of each metric for the given task is printed in bold

N Task [CE
Values]

L m Train
Accuracy
(%)

Avg. epochs
to reach
90% Train
Accuracy

Avg. epochs
to reach
100% Train
Accuracy

Test
Accuracy
(%)

Avg. epochs
to reach
90% Test
Accuracy

Avg. epochs
to reach
100% Test
Accuracy

4 0.05 vs. 0.35 4 1 94.6+2.5
−1.7 6.7+11.3

−5.7 N/A 94.6+3.8
−1.8 6.1+11.9

−5.1 N/A

2 100.0+0.0
−0.5 4.9+12.1

−3.9 N/A 100.0+0.0
−0.0 3.9+11.1

−2.9 10.8+26.2
−9.8

4 99.9+0.1
−1.6 5.4+6.6

−4.4 N/A 100.0+0.0
−1.1 4.1+8.9

−3.1 N/A

4 0.25 vs. 0.35 4 1 90.4+4.1
−3.5 N/A N/A 86.4+6.9

−5.9 N/A N/A

2 98.2+1.5
−1.3 7.7+25.3

−5.7 N/A 97.1+2.3
−1.6 7.9+27.1

−6.9 N/A

4 100.0+0.0
−0.4 5.1+9.9

−4.1 N/A 100.0+0.0
−1.1 4.5+11.5

−3.5 N/A

8 0.15 vs. 0.45 8 1 99.9+0.1
−0.2 3.3+3.7

−2.3 N/A 100.0+0.0
−0.0 2.4+2.6

−1.4 6.1+10.9
−5.1

2 100.0+0.0
−0.0 2.5+2.5

−1.5 7.1+11.9
−6.1 100.0+0.0

−0.0 1.5+2.5
−0.5 3.2+6.8

−2.2

4 100.0+0.0
−0.0 2.4+1.6

−1.4 4.6+4.4
−3.6 100.0+0.0

−0.0 1.4+1.6
−0.4 2.9+7.1

−1.9

8 100.0+0.0
−0.0 2.8+2.2

−0.8 7.8+11.2
−5.8 100.0+0.0

−0.0 1.8+2.2
−0.8 4.8+8.2

−3.8

8 0.40 vs. 0.45 8 1 99.9+0.1
−0.4 3.1+2.9

−2.1 N/A 99.6+0.4
−0.7 2.2+2.8

−1.2 N/A

2 100.0+0.0
−0.0 2.8+4.2

−1.8 9.2+11.8
−8.2 100.0+0.0

−0.0 1.9+4.1
−0.9 5.2+5.8

−4.2

4 100.0+0.0
−0.0 2.4+1.6

−1.4 5.3+12.7
−4.3 100.0+0.0

−0.0 1.5+1.5
−0.5 3.2+9.8

−2.2

8 100.0+0.0
−0.0 2.9+3.1

−0.9 8.2+9.8
−6.2 100.0+0.0

−0.0 1.9+3.1
−0.9 5.7+5.3

−4.7

If, for example, we consider the N = 4 “0.25 vs. 0.3” case
of Table 1, we may start training with m = 1. This training
converges to about 90% accuracy. Increasing m to m = 2
will lead to further improvements that converge to about 98%
accuracy. Finally, we can further improve the 98% to 100%
accuracy by going to m = 4.

In this way, we utilize the efficiency of CS to obtain
an approximate solution which we then refine by trading
efficiency for circuit expressivity through increasing m. At
this point, the efficiency reduction should no longer lead to
insurmountable complications as we already are close to the
optimal solution for the current m value.

Another adaptive approach would be to use CS to check
and bypass plateaus. For example, if a VQE appears to be
converged, it may also just be stuck in a plateau. Applying
CS at this point would reduce the effect of the plateau. Thus,
if the VQE continues optimizing after classically splitting a
seemingly converged circuit, we can conclude that this was
in fact a plateau. After a suitable number of updates using the
classically split circuit, we can then return to the full circuit
in the hopes of having passed the plateau.

Unfortunately, this approach cannot be used to positively
distinguish between true local optima and plateaus since
the CS reduces expressivity and thus introduces artificial
constraints. Hence, if the set of states expressible by the clas-
sically split circuit is orthogonal to the gradient in the cost
function landscape, then a plateau will be replaced with a
local optimum and, thus, no improvements will be obtained.

In this case, we therefore cannot conclude that the VQE has
converged simply becauseCS showsno improvements.How-
ever, experimenting with different implementations of CS
may result in cases that do not replace the plateau with an
artificial local optimum.

3.5 Extending classical splitting to VQE

Until now, we have investigated using CS for binary classi-
fication problems. It succeeded by showing an overall better
training performance in Sect. 3.2 and a competitive perfor-
mance and faster convergence in Sect. 3.3. In this section, we
consider simulating the ground state of the transverse-field
Ising hamiltonian (TFIH) on a 1D chain. The TFIHwith open
boundary conditions can be defined as

H = −J
N−1∑

i=1

Zi Zi+1 − h
N∑

i=1

Xi , (17)

for N lattice sites, where J determines the strength of inter-
actions and h determines the strength of the external field.
Simulating the TFIH on a 1D link requires at least nearest
neighbour interactions between qubits on the 1D lattice as
the ground state. This contradicts with the assumption we
made, when we proved absence of barren plateaus for clas-
sically split ansätze in Sect. 2, since the TFIH does not fit
the definition we had for an m-local observable in Eq. (8).
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Therefore, we need to rely on the numerical experiments to
talk about barren plateaus under the new constraints.

The CS ansätze can only produce local entangled states,
for this reason we need an extension of the ansatz in Fig. 1a.
Wepropose to extend theCS ansatz by adding standard layers
at the end. The reason for adding them at the end is to keep the
base of light cones4 produced by the classically split layers
constant. Then, when we add the standard layers, the light
cones will grow at a pace that is determined by the newly-
added part.5 This way, the overall ansatz can still escape
barren plateaus as long as the newly-added part does not
exhibit barren plateaus.

We define the extended classically split (ECS) ansatz with
two types of layers. First L layers consist of classically split
m qubit gate blocks. Then, there are T layers of any no-
BP ansatz (see Fig. 1b). Since the first L layers can only
produce m-local product states (i.e. m < O(log N )), the
existence of barren plateaus depends only on the remaining
T layers. This way we can choose very large L , but need to
keep T small as standard ansätze reach BPs rather rapidly
(e.g. depth > O(log N ) leads to barren plateaus for such
an ansatz [11]). In Fig. 5, we provide numerical evidence to
show that addition of L layers do not decrease the size of
the gradients. The variance saturates faster to higher values
and the Renyi-2 entropy to lower values respectively with
increasing total depth for constant T layers.

These results suggest that it might be possible to leverage
this feature of the ECS ansatz to add more layers which can
contribute to finding the ground state with a better success
rate without sacrificing trainability [1]. This is also impor-
tant from an overparameterization perspective as it improves
generalization capacity of QML models [23]. We perform
experiments with the TFIH to test this idea.

We consider the Hamiltonian defined in Eq. (17) with
J = 1, h = 1. Then, we implement the ECS ansatz with
m = 3, N = D = 12 and m = 4, N = D = 16. Each
side of the ansatz consists of EfficientSU2 layers with ladder
connectivity (similar to Fig. 1e). Then, we consider different
values for L and T layers, where the percentage of split lay-
ers correspond to p = L/D and L + T = D. Total depth
(D) corresponds to L + T , where p = 100% is equivalent
to the CS ansatz, p = 0% is equivalent to the standard Effi-
cientSU2 ansatz and other values explore hybrid use cases of
the ECS ansatz.

4 A light cone or a causal cone of an ansatz is an abstract concept that
illustrates how information spreads asmore gates are applied. The types
of gates and their connectivity determines the opening angle of the cone.
The evidence from the literature suggests that there is a correspondence
between the opening angle of the cone, barren plateaus and quantum
circuit complexity [11, 19].
5 It also depends on the choice of m, but since we already have a con-
straint on m (i.e. m = O(log N )) the newly-added ansatz will be the
dominant component.

Fig. 5 The variance of the change in cost vs. the total number of layers
for m = 3, N = 12 and the observable Ô = Z0Z1 with varying
number of the L and T layers (L + T = D) are shown in the upper
panel. The lower panel shows the Renyi-2 entropies of the same system
for a subsystem size of two. T = D line is shown with a black dashed
line to emphasize that it is the standard case. Other colors represents
different values the ECS ansatz can take. Both figures shows that the
variances and entanglement entropy saturate faster and to higher and
lower values respectively for constant values of T

We report the final fidelities of 100 runs in Fig. 6. Each
run starts with a set of parameters drawn from a uniform
distribution [−0.1, 0.1]. The ADAM [22] optimizer with 0.1
learning rate is used and optimization was performed for
1000 iterations and reached a convergence in all cases. Cir-
cuits are simulated with no shot noise. This choice was made
to investigate if the ECS ansatz can achieve the same level
of success compared to its standard equivalent under infinite
resources assumptions. Otherwise, results in Fig. 5 shows us
that the ECS ansatz needs orders of magnitudes less number
of shots.

The upper panel shows results for the N = D = 12 set-
ting.Here,we see that the standard ansatz (p = 0%)manages
to find the ground state with a success probability (amount
of runs reaching close to 1.0 fidelity) of approximately 0.5.
Increasing the percentage of split layers improve the suc-
cess rate. As expected, increasing it too much and eventually
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Fig. 6 Fidelity values after optimizationwith 100 different initial points
using different values of normal and split layers

making it 100% results in loss of performance, as the ansatz
becomes inadequate to represent the TFIH ground state.

The lower panels shows results for the N = D = 16.
The effect of moving to a regime with more qubits is seen
as a drop in success probability for the p = 0% ansatz.
This time increasing the percentage of split layers improve
success probability at larger values. This suggests that the
relationship between number of qubits and the amount of the
split layer might be more intricate than it seems.

4 Discussion

In thiswork,we showed that theCSof the ansätze can be used
to escape barren plateaus both analytically and numerically.
Then, we investigated if the CS hinders the learning capacity
of the ansatz.Our experiments showed that this is not the case,
and the classically split ansatz can match the performance at
low number of qubits and is potentially superior at larger
number of qubits.

In general the benefits of CS comes from the reducing
the effective Hilbert Space that the CS ansatz can explore.
CS only allows the ansatz to producem-qubit tensor product

states, if the input state is also a tensor product state follow-
ing our assumptions in Sect. 2. This, as a result, reduces the
expressivity of the ansatz. Nevertheless, this also allows the
ansatz to avoid barren plateaus [20] by limiting the scaling
behavior to themore favorable case ofm-qubit systems. In the
case of the CS, the exponential increase of the Hilbert space
dimension is prevented and instead a polynomial scaling is
enforced. For them-local CS ansatz, each local Hilbert space
have dim(Hk) = 2m = Nβ log2 γ . Although the advantage
of using classical splitting may look trivial, there are many
benefits of employing such an ansatz besides the numerical
experiments we performed in Sect. 3.

In our binary classification experiments using a classical
dataset, we relied on single qubit and single rotation gate data
encoding. Thismeant that any classically split ansatz had less
information in each group. This could in fact be improved
with embedding methods such as data re-uploading, where
one can encode all the data points to each single qubit inde-
pendently, such that there are alternating layers of rotation
gates that encode the data and parametrized gates that are
to be optimized [33]. Data re-uploading ansätze shows great
classification performance even for low number of qubits.
Since the classical splitting doesn’t have a limit on the amount
of layers, data re-uploading would potentially be great way
to get a performance increase.

CS can provide faster training when used with gradient
based optimizers. In general, the exact gradients of ansätze
are computed with the well-known parameter shift rule [27,
43]. However, this requires two instances of the same cir-
cuit to be executed per parameter. This quickly results in a
bottleneck for the optimization procedure. An ansatz with
L = N layers, where each layer has N parameters, requires
O(N 2) circuit executions to compute gradients for a single
data sample. On the other hand, CS provides cost functions
that are independent of each other, as itwas shown inEq. (11).
This allows gradients to be computed simultaneously across
different instances of the classically split ansatz. As a result,
the classically split ansatz optimization requiresO(N log N )

circuit executions for m = O(log N ).
The bottleneck in optimization is only one of the chal-

lenges of implementing scalable Variational quantum algo-
rithms. Another problem that is worth mentioning here is the
amount of two-qubit gates. NISQ hardware provides limited
connectivity of qubits. The topology of the devices plays
an essential role in the efficient implementation of quantum
circuits [48]. Typically, a quantum circuit compilation (or
transpilation) procedure is required to adapt a given circuit
to be able to be compatiblewith the capabilities of the devices
(e.g. converting gates to native gates, applying SWAP gates
to connect qubits which are not physically connected) [7].

Classical splitting provides a significant reduction in num-
ber of two qubit gates as it divides a large qubit to many
circuits with less qubits. To show the scale of the reduction,
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Table 2 Two qubit gate counts of different ansätze transpiled for hypo-
thetical devices that has a 2D grid topology (square lattice with no
diagonal connections)

amount of two qubit gates
linear entanglement full entanglement

m L N = 4 N = 16 N = 36 N = 4 N = 16 N = 36

N 2 6 33 121 24 696 3601

N 12 240 1362 46 5372 65040

4 2 6 24 54 24 92 250

N 12 192 978 46 964 4376

2 2 4 16 36 4 16 42

N 8 128 654 8 134 648

we can construct a set of hypothetical devices that has a 2D
grid topology (square lattice with no diagonal connections).
We start by considering theCSansatz that consists the ansätze
in Fig. 1c and extend it to a fully entangled architecture.A lin-
ear entangled ansatz hasO(N ) two qubit gates, while a fully
entangled one has O(N 2) per layer. Then, we use Qiskit’s
transpiler6 [45] to fit these ansätze to the hypothetical devices
and report the two qubit gate counts in Table 2.

The amount of gates are not only important to have a better
implementation but also to have a more precise results, since
NISQ devices come with noisy gates. We consider the CX
gate errors reported by IBM for their devices, which can be
taken as O(10−2) on average7. Then, as a figure of merit,
we can assume 50% to be the limit, in which we can still
get meaningful results. This would allow us to use 50 CX
gates at most. Now, the results from Table 2 implies that it
is possible to construct a 36 qubit, 2 layer ansatz with linear
entanglement, if we employ CS. This would not be possible
for the standard case as it comes with more than twice two
qubit gates. The reductiononlygets better ifwe consider a full
entanglement case. Following the same logic, to implement
a 36 qubit, 36 layer, fully entangled ansatz, a CX gate error
ofO(10−6) is needed, while the classically split ansatz only
requires a CX gate error of O(10−4). A similar reduction in
noise is also possible for other types of circuit partitioning
methods [4].

Classically splitting an ansatz further allows faster imple-
mentation on hardware. A generic ansatz consists of two-
qubit gates that follow one and another, matching a certain
layout. We mentioned some of these as ladder/linear or full.

6 Qiskit’s transpiler algorithm is a stochastic algorithm, meaning that
it is possible to get better values if the algorithm is executed many
times. Here, we run the algorithm two times and take the best results
using optimization level 3, and sabre-sabre layout and routing methods.
Although, It is possible to obtain better gate counts with more runs
or different transpilation algorithms, the best values obtained wouldn’t
change our conclusions.
7 This value is chosen after a survey of devices listed on IBMQuantum
Cloud.

However, this means that the hardware implementation of
such an ansatz requires execution of these gates sequentially,
taking a significant amount of time. To overcome such obsta-
cles, ansätze such as the HEA (see Fig. 1d) are widely used in
the literature [21]. CS an ansatz can reduce the implementa-
tion time significantly since it allows simultaneous two-qubit
gates across different local circuits. This can mean a speed-
up of from O(N/ log N ) to O((N/ log N )2) depending on
the connectivity of the original ansatz.

The formulation we used in Sect. 3.2 allows the CS ansatz
to be implemented on smaller quantum computers instead of
a single large quantum computer. This means that for similar
problems, there are many implementation options available.
These include using one large device, using many small
devices (e.g., O(N/ log N ) many O(log N ) qubit devices)
and parallelizing the task or using one small device and per-
forming all computation sequentially. All of these features
makes the classical splitting an ideal approach for Quantum
Machine Learning (QML) applications using NISQ devices.

Simulating larger size systems requires a deep ansatz (lin-
ear or larger in system size) in general [10]. Although a
problem-agnostic ansatz can perform well at small sizes,
BPs preclude the scalability. Our results show that the ECS
can help circumvent this issue and allow deeper ansätze. On
the other hand, the ECS ansatz also brings the quantum cir-
cuit closer to the classically simulatable limit. It appears that
there might be a transition point where the ECS ansatz is
deep enough to represent the ground state of interest without
leading to BPs. We were not able to formulate how or if this
point can be identified for an arbitrary system size of a given
problem.

5 Conclusion

In this work, we presented some foundational ideas of apply-
ing CS to generic ansätze. Our results indicate many benefits
of usingCS, such as better trainability, faster hardware imple-
mentation, faster convergence, robustness against noise and
parallelization under certain conditions. These suggest that
CS or variations of this idea might play an essential role in
how we are designing ansätze for QML problems. We also
presented an extension to the initial CS idea so that these
types of ansätze can be used in VQE. The initial results that
we presented in this work suggest that CS can help improve
the trainability and reach better error values. However, it
is still an open question to what extent VQE can benefit
from classical splitting. Our results encourage employing
approaches that are based upon classically splitting or parti-
tioning parametrized quantum circuits [8, 13, 16, 25, 32, 34,
41, 44], as they are in general more robust against hardware
noise. We consider in-depth analysis and applications with
VQE and QAOA as future directions for this work.
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Appendix A

When analyzing the size of the gradients of an ansatz we
need tools that allows integration over all states allowed by
the ansatz over the d-dimensional Hilbert Space. This can
be achieved by using the Haar measure. Haar measure is
an invariant measure over the SU(d) group. An ensemble of
unitary operatorsU is called as a unitary t-design if they are
equal to the Haar measure μ(U ) up-to polynomial order t .
Then, the expectation of ensemble U , where unitary Vi can
be sampled with probability pi is given as,

E
t
H (ρ) =

∫
U⊗tρ(U⊗t )† dU =

∑

i

pi V
⊗t
i ρ(V⊗t

i )†. (18)

Then, to perform symbolic integration over the Haar mea-
sure we will need to use some properties of the measure [38].
For the first moment we have,

∫
dμ(U )Ui jU

∗
km = δikδ jm

d
, (19)

where d is the dimension of the Unitary, such that d = 2N

and N is number of qubits. Then, for the second moment we
have,

∫
dμ(U )Ui1 j1Ui2 j2U

∗
k1m1

U∗
k2m2

=

= δi1k1δ j1m1δi2k2δ j2m2 + δi1k2δi2k1δ j1m2δ j2m1

d2 + 1

− δi1k1δ j2m2δ j1m2δ j2m1 + δi1k2δi2k1δ j1m1δ j2m2

d(d2 + 1)

(20)

Then one can derive the following identities for integrals
over the Haar measure [11, 20, 26],

∫
dμ(U )Tr[U AU †B] = Tr[A]Tr[B]

d
. (21)

We can extend this to the second moment to obtain the
following identity,

∫
dμ(U )Tr[U AU †BUCU †D] =

= Tr[A]Tr[C]Tr[BD] + Tr[AC]Tr[B]Tr[D]
d2 − 1

− Tr[AC]Tr[BD] + Tr[A]Tr[B]Tr[C]Tr[D]
d(d2 − 1)

.

(22)

We also have,

∫
dμ(U )Tr[U AU †B]Tr[UCU †D] =

= Tr[AC]Tr[B]Tr[D] + Tr[AC]Tr[BD]
d2 − 1

− Tr[AC]Tr[B]Tr[D] + Tr[A]Tr[C]Tr[BD]
d(d2 − 1)

.

(23)

Now, we can use these identities to compute the average
value of the gradients. Let’s start by reminding ourselves the
definitions we used before. The ansatz is composed of con-
secutive parametrized (V ) and non-parametrized entangling
(W ) layers. We define Ul(θl) = exp(−iθl Vl), where Vl is
a Hermitian operator and Wl is a generic unitary operator.
Then, the curcuit ansatz can be expressed with a multiplica-
tion of layers,

U (θ) =
L∏

l=1

Ul(θl)Wl (24)

For an observable O and an input state ρ, the cost function
is given as

C(θ) = Tr[OU (θ)ρU †(θ)] (25)

The ansatz can be separated into two parts to investigate
a certain layer, such that U− ≡ ∏ j−1

l=1 Ul(θl)Wl and U+ ≡∏L
l= j Ul(θl)Wl . Then, the gradient of the j th parameter can

be expressed as [26]

∂ jC(θ) = ∂C(θ)

∂θ j
= i Tr[[Vj ,U

†
+OU+]U−ρU †

−] (26)

Then the expected value of the gradient with respect to
the unitary group can be computed by using the Haar integral
such that,

〈∂ jC(θ)〉 = i
∫

dμ(U−)dμ(U+)Tr[[Vj ,U
†
+OU+]U−ρU†

−] (27)

= iTr[ρ]
d

∫
dμ(U+)Tr[[Vj ,U

†
+OU+] = 0, (28)

where we use Eq. (21) to obtain (27) and use the fact that
trace of the commutator is zero in (28). This proves that the
gradients are centered around zero. Then, the variance of the
gradient can inform us about the size of the gradients. The
variance is defined as,

Var[∂ jC(θ)] = 〈(∂ jC(θ))2〉 − 〈∂ jC(θ)〉2
= 〈(∂ jC(θ))2〉 (29)
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We can compute the expected value of the variance using
the same logic. Then we have,

Var[∂ jC(θ)] =
= −

∫
dμ(U−)dμ(U+)Tr[[Vj ,U

†
+OU+]U−ρU †

−]2

= − 1

d2 − 1

∫
dμ(U+)

(
Tr[ρ]2Tr[[Vj ,U

†
+OU+]]2

+Tr[ρ2]Tr[[Vj ,U
†
+OU+]2]

)

+ 1

d(d2 − 1)

∫
dμ(U+)

(
Tr[ρ2]Tr[[Vj ,U

†
+OU+]2]

+Tr[ρ]2Tr[[Vj ,U
†
+OU+]]2

)

(30)

= −
(
Tr[ρ2] − 1

d

)
1

d2 − 1

∫
dμ(U+)Tr[[Vj ,U

†
+OU+]2]

(31)

We use Eq. (23) to obtain Eq. (30). Then, use the fact
that commutator being traceless to obtain Eq. (31). To com-
pute the integral of Eq. (31) we need another identity such
that [20],

Tr[[Vj ,U
†
+OU+]2] =

2Tr[U+VjU
†
+OU+VjU

†
+O] − 2Tr[U+V 2

j U
†
+O2]. (32)

Then, the variance becomes,

Var[∂ jC(θ)] =
−

(
Tr[ρ2] − 1

d

)
2

d2 − 1

∫
dμ(U+)

(
Tr[U+V 2

j U
†
+O2]

+Tr[U+VjU
†
+OU+VjU

†
+O]

)
. (33)

The first integral can be computed using Eq. (21) and the
second can be computed using Eq. (22). Then we obtain,

Var[∂ jC(θ)] =
−

(
Tr[ρ2] − 1

d

)
2

d2 − 1
(

1

d2 − 1
(Tr[V ]2Tr[O]2

+ Tr[V 2]Tr[O2]) − 1

d(d2 − 1)
(Tr[V ]2Tr[O]2

+ Tr[V 2]Tr[O2]) − 1

d
Tr[V 2]Tr[O2] )

= −
(
Tr[ρ2] − 1

d

)
2Tr[V 2]Tr[O2]

d2 − 1

(
d − 1

d(d2 − 1)
(1

+Tr[V ]2Tr[O]2) − 1

d

)
.

(34)

Finally, the asymptotic behavior of the variance can be
expressed as

Var[∂ jC(θ)] ≈ O
(

1

d6

)
≈ O

(
1

26N

)
, (35)

where d = 2N . Thus, the variance vanishes exponentially
with respect to N.

Appendix B

Fig. 7 The variance of the
gradients of the first parameter
of the ansatz as a function of the
number of qubits for varying
values of m. Each color/marker
represents a certain value of m
and data points of the standard
ansatz (m = N ) is plotted with a
dashed black line
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Fig. 8 The log plot of variance
of the gradients of the first
parameter of the ansatz vs.
number of layers for m = 4
(solid lines) and m = N (dashed
lines) with varying number of
qubits
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Fig. 9 Cost landscapes of ansätze with different settings. Parameters of
the ansatz are reduced down to two using PCA and the x and y axis of
the plots represents the PCA variables in same scale but with arbitrary
units. The cost values (shown with the color map) are obtained using
the definitions in Sect. 3.2. First column shows cost values of an L = 2
standard ansatz for increasing number of qubits. Second column shows

the results for the same ansatz but with L = N layers. As, expected
the landscape flattens with more qubits and we see a single color for
N > 12. Third column shows results for splitting (for m = 4) of the
ansatz in the case of L = N layers. We see that the landscape does not
become flatter with more qubits
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Appendix C

Fig. 10 Distributions of the ad-hoc dataset used in Sect. 3.2. Each panel
shows distribution of a single feature from one of three datasets. N
denotes the size of the dataset (number of features), while f denotes
the feature number. There exists 600 samples of N features for a size N
dataset. Colors represent two classes. During training, data samples are

divided with a 420/180 train/test ratio. The dataset is produced using
make_classification function of scikit-learn [31] with a class separation
value of 1.0, 2% class assignment error and no redundant or repeated
features
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Appendix D

Fig. 11 Training curves showing four different metrics for the problem
described in Sect. 3.2. Panels of each row show a different metric. First
three columns show training results from L = 2 ansätze, the last three

columns show training results from L = N ansätze for N ∈{4,8,16}.
Each value of m is plotted with a different color. Lines are obtained by
averaging 50 runs and their standard deviation is shown with shades

Fig. 12 Batch size comparison for the training of N = 16,m = 16 and
m = 4. Training the N = L = 16 model requires vast computational
resources, especially memory. This restricted us from using a full batch
size during the training of N = m = L = 16 setting. Therefore, we
presented results from a training that used a batch size of 60 instead

of 420 (full). Here, we show training curves for m = 4 on addition
to m = 16 for two different batch size (bs). Behaviour of the curves
show that the gain in performance has nothing to do with the batch size
difference
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Appendix E

Fig. 13 Distributions of the NTangled [42] dataset with respect to the
CE values described in Sect. 3.3. The HEA ansatz (Fig. 1d) is used to
produce the distributions. Each training set has 420 and each test set
has 180 data samples. We see a mismatch for CE ∈{0.40,0.45} in the 8
qubit case. We are not sure what causes this, but it is not an issue for our

problem as we are not interested in the CE values themselves but the
quantum states as a whole. So, they are valid quantum state distributions
as long as they can be separated with a given metric for our problem.
Our results show that this is in fact true

Fig. 14 Training curves showing four different metrics for the problem
described in Sect. 3.3. Panels of each row show a different metric. Each
column presents a different task, where N determines the problem size

and the CE values are the labels of the classes. Each value ofm is plotted
with a different color. Lines are obtained by averaging 50 runs and their
standard deviation is shown with shades

123



   34 Page 18 of 19 Quantum Machine Intelligence             (2023) 5:34 

Acknowledgements We thank Lena Funcke for valuable discussions.

Author Contributions C.T. developed the main idea, performed the
numerical experiments and wrote the main manuscript text and pre-
pared the figures. G.C. performed some of the numerical simulations.
All authors contributed to discussions, helped developing the ideas and
reviewed the manuscript.

Funding C.T. and A.C. are supported in part by the Helmholtz
Association - “Innopool Project Variational Quantum Computer Sim-
ulations (VQCS)”. S.K. acknowledges financial support from the
Cyprus Research and Innovation Foundation under project “Future-
proofing Scientific Applications for the Supercomputers of Tomorrow
(FAST)”, contract no. COMPLEMENTARY/0916/0048, and “Quan-
tum Computing for Lattice Gauge Theories (QC4LGT)”, contract no.
EXCELLENCE/0421/0019. Thiswork is supportedwith funds from the
Ministry of Science, Research and Culture of the State of Brandenburg
within the Centre for QuantumTechnologies andApplications (CQTA).
This work is funded by the European Union’s Horizon Europe Frame-
work Programme (HORIZON) under the ERAChair scheme with grant
agreement No. 101087126.

Data Availability The ad-hoc dataset used in Sect. 3.2 is produced using
make_classification function of scikit-learn [31] with a class separation
value of 1.0, 2% class assignment error and no redundant or repeated
features. The dataset used in Sect. 3.3 is the NTangled dataset [42]. The
data that support the findings of this study are provided in more detail in
the supplementary material and also available from the corresponding
author, C.T., upon request.

Declarations

Conflicts of interest Authors have no competing interests as defined
by Springer, or other interests that might be perceived to influence the
results and/or discussion reported in this paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Anschuetz ER, Kiani BT (2022) Quantum variational algorithms
are swamped with traps. Nature Communications 13(1):7760.
https://doi.org/10.1038/s41467-022-35364-5. Number: 1 Pub-
lisher: Nature Publishing Group. Accessed 2022-12-15

2. Arrasmith, A., Cerezo, M., Czarnik, P., Cincio, L., Coles, P.J.:
Effect of barren plateaus on gradient-free optimization. Quantum
5, 558 (2021). 10.22331/q-2021-10-05-558

3. ArrasmithA, Holmes Z, CerezoM, Coles PJ (2022) Equivalence of
quantum barren plateaus to cost concentration and narrow gorges.

Quantum Science and Technology 7(4):045015. https://doi.org/10.
1088/2058-9565/ac7d06

4. Basu, S., Saha, A., Chakrabarti, A., Sur-Kolay, S.: i-QER:
An Intelligent Approach towards Quantum Error Reduction.
arXiv:2110.06347 (2022). 10.48550/arXiv.2110.0634

5. Beckey JL, Gigena N, Coles PJ, Cerezo M (2021) Computable
and Operationally Meaningful Multipartite Entanglement Mea-
sures. Phys. Rev. Letters 127(14):140501. https://doi.org/10.1103/
PhysRevLett.127.140501

6. Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Alam, M.S.,
Ahmed, S., Arrazola, J.M., Blank, C., Delgado, A., Jahangiri,
S., McKiernan, K., Meyer, J.J., Niu, Z., Száva, A., Killoran, N.:
PennyLane: Automatic differentiation of hybrid quantum-classical
computations. http://arxiv.org/abs/1811.04968arXiv:1811.04968
(2020). 10.48550/arXiv.1811.04968

7. Botea A, Kishimoto A, Marinescu R (2018) On the Complexity
of Quantum Circuit Compilation. Proceedings of the International
Symposium on Combinatorial Search 9(1):138–142. https://doi.
org/10.1609/socs.v9i1.18463

8. Bravyi S, Smith G, Smolin JA (2016) Trading Classical and Quan-
tum Computational Resources. Phys. Rev. X 6(2):021043. https://
doi.org/10.1103/PhysRevX.6.021043

9. Broers, L., Mathey, L.: Reducing Barren Plateaus in
Quantum Algorithm Protocols. http://arxiv.org/abs/2111.
08085arXiv:2111.08085 (2021). 10.48550/arXiv.2111.08085

10. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S.,
Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., Coles,
P.J.: Variational quantum algorithms. Nature Reviews Physics,
625–644 (2021). 10.1038/s42254-021-00348-9

11. Cerezo M, Sone A, Volkoff T, Cincio L, Coles PJ (2021) Cost
function dependent barren plateaus in shallow parametrized quan-
tum circuits. Nature Communications 12(1):1791. https://doi.org/
10.1038/s41467-021-21728-w

12. Cong I, Choi S, Lukin MD (2019) Quantum convolutional neu-
ral networks. Nature Physics 15(12):1273–1278. https://doi.org/
10.1038/s41567-019-0648-8

13. Eddins A, Motta M, Gujarati TP, Bravyi S, Mezzacapo A, Hadfield
C, Sheldon S (2022) Doubling the size of quantum simulators by
entanglement forging. PRXQuantum3:010309. https://doi.org/10.
1103/PRXQuantum.3.010309

14. Farhi, E., Goldstone, J., Gutmann, S.: A Quantum Approx-
imate Optimization Algorithm. http://arxiv.org/abs/1411.
4028arXiv:1411.4028 (2014)

15. Farhi, E., Neven, H.: Classification with Quantum Neural
Networks on Near Term Processors. http://arxiv.org/abs/1802.
06002arXiv:1802.06002 (2018)

16. Fujii K, Mizuta K, Ueda H, Mitarai K, Mizukami W, Nakagawa
YO (2022)DeepVariational QuantumEigensolver: ADivide-And-
Conquer Method for Solving a Larger Problem with Smaller Size
Quantum Computers. PRX Quantum 3(1):010346. https://doi.org/
10.1103/PRXQuantum.3.010346

17. Grant, E., Ostaszewski, M., Wossnig, L., Benedetti, M.: An ini-
tialization strategy for addressing barren plateaus in parametrized
quantum circuits. Quantum 3, 214 (2019). 10.22331/q-2019-12-
09-214

18. Grant E, Benedetti M, Cao S, Hallam A, Lockhart J, Stojevic
V, Green AG, Severini S (2018) Hierarchical quantum classi-
fiers. npj Quantum. Information 4(1):17–19. https://doi.org/10.
1038/s41534-018-0116-9

19. Haferkamp, J., Faist, P., Kothakonda, N.B.T., Eisert, J.,
Yunger Halpern, N.: Linear growth of quantum circuit complex-
ity. Nature Physics 18(5), 528–532 (2022). 10.1038/s41567-022-
01539-6

20. Holmes Z, Sharma K, Cerezo M, Coles PJ (2022) Connect-
ing Ansatz Expressibility to Gradient Magnitudes and Barren

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41467-022-35364-5
https://doi.org/10.1088/2058-9565/ac7d06
https://doi.org/10.1088/2058-9565/ac7d06
http://arxiv.org/abs/2110.06347
https://doi.org/10.1103/PhysRevLett.127.140501
https://doi.org/10.1103/PhysRevLett.127.140501
http://arxiv.org/abs/1811.04968
https://doi.org/10.1609/socs.v9i1.18463
https://doi.org/10.1609/socs.v9i1.18463
https://doi.org/10.1103/PhysRevX.6.021043
https://doi.org/10.1103/PhysRevX.6.021043
http://arxiv.org/abs/2111.08085
http://arxiv.org/abs/2111.08085
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1103/PRXQuantum.3.010309
https://doi.org/10.1103/PRXQuantum.3.010309
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1802.06002
http://arxiv.org/abs/1802.06002
https://doi.org/10.1103/PRXQuantum.3.010346
https://doi.org/10.1103/PRXQuantum.3.010346
https://doi.org/10.1038/s41534-018-0116-9
https://doi.org/10.1038/s41534-018-0116-9


Quantum Machine Intelligence             (2023) 5:34 Page 19 of 19    34 

Plateaus. PRX Quantum 3(1):010313. https://doi.org/10.1103/
PRXQuantum.3.010313

21. Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow
JM, Gambetta JM (2017) Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets. Nature
549(7671):242–246. https://doi.org/10.1038/nature23879

22. Kingma,D.P.,Ba, J.:Adam:AMethod forStochasticOptimization.
http://arxiv.org/abs/1412.6980arXiv:1412.6980 (2017)

23. Larocca, M., Ju, N., García-Martín, D., Coles, P.J., Cerezo,
M.: Theory of overparametrization in quantum neural net-
works. arXiv:2109.11676 [quant-ph, stat] (2021). Accessed
2021-09-30

24. Liu H-Y, Sun T-P, Wu Y-C, Han Y-J, Guo G-P (2023) Mitigating
barren plateaus with transfer-learning-inspired parameter initial-
izations. New Journal of Physics 25(1):013039. https://doi.org/10.
1088/1367-2630/acb58e

25. Marshall, S.C., Gyurik, C., Dunjko, V.: High Dimen-
sional Quantum Learning With Small Quantum Computers.
http://arxiv.org/abs/2203.13739arXiv:2203.13739 (2022).
10.48550/arXiv.2203.13739

26. McClean JR, Boixo S, Smelyanskiy VN, Babbush R, Neven
H (2018) Barren plateaus in quantum neural network training
landscapes. Nature Communications 9(1):4812. https://doi.org/10.
1038/s41467-018-07090-4

27. Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum cir-
cuit learning. Phys. Rev. A 98(3):032309. https://doi.org/10.1103/
PhysRevA.98.032309

28. Ortiz Marrero C, Kieferová M, Wiebe N (2021) Entanglement-
Induced Barren Plateaus. PRX. Quantum 2(4):040316. https://doi.
org/10.1103/PRXQuantum.2.040316

29. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmai-
son, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chin-
tala, S.: PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In: Wallach, H., Larochelle, H., Beygelzimer,
A., Alché-Buc, F.d., Fox, E., Garnett, R. (eds.) Advances in
Neural Information Processing Systems, vol. 32. Curran Asso-
ciates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

30. Patti TL, Najafi K, Gao X, Yelin SF (2021) Entanglement devised
barren plateau mitigation. Phys. Rev. Research 3(3):033090.
https://doi.org/10.1103/PhysRevResearch.3.033090

31. PedregosaF,VaroquauxG,GramfortA,MichelV,ThirionB,Grisel
O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas
J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E (2011) Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12(85):2825–2830

32. Peng T, Harrow AW, Ozols M, Wu X (2020) Simulating Large
Quantum Circuits on a Small Quantum Computer. Phys. Rev. Let-
ters 125(15):150504. https://doi.org/10.1103/PhysRevLett.125.
150504

33. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.:
Data re-uploading for a universal quantum classifier. Quantum 4,
226 (2020). 10.22331/q-2020-02-06-226

34. Perlin, M.A., Saleem, Z.H., Suchara, M., Osborn, J.C.: Quantum
circuit cutting with maximum-likelihood tomography. npj Quan-
tum Information 7(1), 1–8 (2021). 10.1038/s41534-021-00390-6

35. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-
Q., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational
eigenvalue solver on a photonic quantum processor. Nature Com-
munications 5(1), 4213 (2014). 10.1038/ncomms5213

36. Pesah A, Cerezo M, Wang S, Volkoff T, Sornborger AT, Coles
PJ (2021) Absence of Barren Plateaus in Quantum Convolutional
Neural Networks. Phys. Rev. X 11(4):041011. https://doi.org/10.
1103/PhysRevX.11.041011

37. Preskill, J.: Quantum computing in the NISQ era and beyond.
Quantum 2(July), 1–20 (2018). 10.22331/q-2018-08-06-79

38. Puchala, Z., Miszczak, J.A.: Symbolic integration with respect to
the haar measure on the unitary groups. Bulletin of the Polish
Academy of Sciences: Technical Sciences 65(No 1), 21–27 (2017).
10.1515/bpasts-2017-0003

39. Rad, A., Seif, A., Linke, N.M.: Surviving The Barren Plateau
in Variational Quantum Circuits with Bayesian Learning Initial-
ization. http://arxiv.org/abs/2203.02464arXiv:2203.02464 (2022).
10.48550/arXiv.2203.02464

40. Sack SH,Medina RA,Michailidis AA, Kueng R, SerbynM (2022)
Avoiding barren plateaus using classical shadows. PRX Quantum
3:020365. https://doi.org/10.1103/PRXQuantum.3.020365

41. Saleem, Z.H., Tomesh, T., Perlin, M.A., Gokhale, P., Suchara,
M.: Quantum Divide and Conquer for Combinatorial Opti-
mization and Distributed Computing. http://arxiv.org/abs/2107.
07532arXiv:2107.07532 (2021). 10.48550/arXiv.2107.07532

42. Schatzki, L., Arrasmith, A., Coles, P.J., Cerezo, M.:
Entangled Datasets for Quantum Machine Learning.
http://arxiv.org/abs/2109.03400arXiv:2109.03400 (2021).
10.48550/arXiv.2109.03400

43. Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N (2019)
Evaluating analytic gradients on quantum hardware. Phys. Rev. A
99(3):1–7. https://doi.org/10.1103/PhysRevA.99.032331

44. Tang, W., Tomesh, T., Suchara, M., Larson, J., Martonosi, M.:
CutQC: Using Small Quantum Computers for Large Quantum Cir-
cuit Evaluations. Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 473–486 (2021). 10.1145/3445814.3446758

45. Treinish, M., Gambetta, J., Nation, P., Kassebaum, P., qiskit-bot,
Rodríguez, D.M., González, S.d.l.P., Hu, S., Krsulich, K., Zdanski,
L., Garrison, J., Yu, J., Gacon, J., McKay, D., Gomez, J., Capel-
luto, L., Travis-S-IBM, Marques, M., Panigrahi, A., Lishman, J.,
lerongil, Rahman, R.I., Wood, S., Bello, L., Itoko, T., Singh, D.,
Drew, Arbel, E., Schwarm, J., Daniel, J.: Qiskit: An Open-source
Framework forQuantumComputing.Zenodo (2022). 10.5281/zen-
odo.6403335. https://zenodo.org/record/6403335

46. Volkoff T, Coles PJ (2021) Large gradients via correlation in ran-
dom parameterized quantum circuits. Quantum Science and Tech-
nology 6(2):025008. https://doi.org/10.1088/2058-9565/abd891

47. Wang S, Fontana E, CerezoM, Sharma K, Sone A, Cincio L, Coles
PJ (2021) Noise-induced barren plateaus in variational quantum
algorithms. Nature Communications 12(1):6961. https://doi.org/
10.1038/s41467-021-27045-6

48. Weidenfeller, J., Valor, L.C., Gacon, J., Tornow, C., Bello, L.,
Woerner, S., Egger, D.J.: Scaling of the quantum approximate
optimization algorithm on superconducting qubit based hardware.
Quantum 6, 870 (2022). 10.22331/q-2022-12-07-870

49. Wu, A., Li, G., Ding, Y., Xie, Y.: Mitigating Noise-Induced
Gradient Vanishing in Variational Quantum Algorithm Training.
arXiv:2111.13209 (2021)

50. Zhang, K., Hsieh, M.-H., Liu, L., Tao, D.: Gaussian initializa-
tions help deep variational quantum circuits escape from the barren
plateau. http://arxiv.org/abs/2203.09376arXiv:2203.09376 (2022).
10.48550/arXiv.2203.09376

51. Zhang, K., Hsieh, M.-H., Liu, L., Tao, D.: Toward Trainabil-
ity of Deep Quantum Neural Networks. http://arxiv.org/abs/2112.
15002http://arxiv.org/abs/2112.15002arXiv:2112.15002 (2021)

52. Zhao, C., Gao, X.-S.: Analyzing the barren plateau phenomenon in
training quantum neural networks with the ZX-calculus. Quantum
5, 466 (2021). 10.22331/q-2021-06-04-466

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1103/PRXQuantum.3.010313
https://doi.org/10.1103/PRXQuantum.3.010313
https://doi.org/10.1038/nature23879
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2109.11676
https://doi.org/10.1088/1367-2630/acb58e
https://doi.org/10.1088/1367-2630/acb58e
http://arxiv.org/abs/2203.13739
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PRXQuantum.2.040316
https://doi.org/10.1103/PRXQuantum.2.040316
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1103/PhysRevResearch.3.033090
https://doi.org/10.1103/PhysRevLett.125.150504
https://doi.org/10.1103/PhysRevLett.125.150504
https://doi.org/10.1103/PhysRevX.11.041011
https://doi.org/10.1103/PhysRevX.11.041011
http://arxiv.org/abs/2203.02464
https://doi.org/10.1103/PRXQuantum.3.020365
http://arxiv.org/abs/2107.07532
http://arxiv.org/abs/2107.07532
http://arxiv.org/abs/2109.03400
https://doi.org/10.1103/PhysRevA.99.032331
https://zenodo.org/record/6403335
https://doi.org/10.1088/2058-9565/abd891
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
http://arxiv.org/abs/2111.13209
http://arxiv.org/abs/2203.09376
http://arxiv.org/abs/2112.15002
http://arxiv.org/abs/2112.15002
http://arxiv.org/abs/2112.15002

	Classical splitting of parametrized quantum circuits
	Abstract
	1 Introduction
	2 Avoiding Barren Plateaus
	3 Numerical experiments
	3.1 Barren Plateaus
	3.2 Binary classification using a classical dataset
	3.3 Binary classification using a quantum dataset
	3.4 Practical remarks on classical splitting
	3.5 Extending classical splitting to VQE

	4 Discussion
	5 Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Acknowledgements
	References


