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Abstract Hamiltonian simulations of quantum systems
require a finite-dimensional representation of the operators
acting on the Hilbert space H. Here we give a prescription
for gauge links and canonical momenta of an SU(2) gauge
theory, such that the matrix representation of the former is
diagonal in H. This is achieved by discretising the sphere
S3 isomorphic to SU(2) and the corresponding directional
derivatives. We show that the fundamental commutation rela-
tions are fulfilled up to discretisation artefacts. Moreover, we
directly construct the Casimir operator corresponding to the
Laplace–Beltrami operator on S3 and show that the spectrum
of the free theory is reproduced again up to discretisation
effects. Qualitatively, these results do not depend on the spe-
cific discretisation of SU(2), but the actual convergence rates
do.

1 Introduction

While the Hamiltonian of lattice gauge theories is known
since 1975 [1], it only recently received a fresh interest. This
is due to the development of tensor network state (TNS) and
quantum computing (QC) methods over the last few years.
These methods promise to provide the possibility to inves-
tigate lattice gauge theories (and other quantum systems)
in regions of parameter space inaccessible to Monte Carlo
methods, most prominently in situations when a sign prob-
lem is hindering the application of stochastic methods. In
addition, with the Hamiltonian formulation of lattice field
theories also real time simulations become possible, open-
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ing up new insights in the dynamical properties of physical
systems.

Tensor network based methods have been introduced for
lattice field theory methods in many works, see, e.g. Refs.
[2–6]. The success of TNS lies on the fact that only a small
subspace of the complete Hilbert space describes the phys-
ically often only relevant low energy physics. Therefore,
various phenomena such as string breaking and real-time
dynamics [7–12] or the phase structure of gauge theories
at finite fermionic densities [13–16] have been investigated
using TNS on moderately large lattice volumes.

More recently, quantum computer simulations have been
performed for lattice gauge theories. In this approach, the
number of required qubits grows only linearly with the num-
ber of lattice sites. There are also proposals to implement real-
time dynamics for scalar quantum field theories and quantum
electrodynamics [17–19]. Since quantum computations use
the Hamiltonian formulation, they can completely avoid the
sign problem. Quantum computers therefore allow to realise
Feynman’s vision to simulate nature on a quantum mechan-
ical, physical system [20].

The literature of quantum computations for lattice gauge
theories has increased tremendously in the last years, see
Refs. [4,5,21–24]. There are various approaches for imple-
menting lattice gauge theories using optical lattices [25–27],
atomic and ultra-cold quantum matter [28–39], and further
proof-of-principle implementations on a real superconduct-
ing architecture [21–23,40,41] and real-time and variational
simulations on a trapped ion system [42,43]. For recent
overviews see Refs. [3–5,44].
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A very important aspect of quantum computations is the
quest for the most efficient discretisation scheme of the cor-
responding gauge group needed to apply both, TNS and QC
methods, see e.g. Ref. [45]. Work in this direction, both for
Abelian gauge theories with and without fermions has been
performed by a number of groups already, see for instance
Refs. [24,46–50]. Also for non-Abelian SU(2) and SU(3)

lattice gauge theories there are a number of works avail-
able [51–61]. For more algorithmic developments we refer
to Refs. [62–64]. Another possible formulation is provided
by the so-called quantum link model [65–67].

In particular for non-Abelian SU(Nc) lattice gauge the-
ories it is important to understand how to most efficiently
digitise the gauge field operators Û and the corresponding
canonical momentum operators L̂ and R̂ constituting the
Hamiltonian

Ĥ = g2
0

4

∑

x,c,k

(
L̂2
c,k(x) + R̂2

c,k(x)
)
− 1

2g2
0

∑

x,k<l

Tr Re P̂kl(x) .

(1)

In the above sums, x represent the coordinates of a d-
dimensional lattice and k, l label the corresponding direc-
tions with l̂, k̂ unit vectors in these directions. c = 1, . . . , N 2

c −
1 indexes the generators of the algebra, g0 is the (bare) gauge
coupling constant and the plaquette operator is defined as

P̂kl(x) = Ûk(x) Ûl(x + k̂) Û †
k (x + l̂) Û †

l (x). (2)

The Û are the gauge field operators as explained further
below and the trace is taken in colour space.

In the literature the first and second sum in Eq. (1) are
called respectively (chromo-)electric and (chromo-)magnetic
part. Most of the investigations of non-Abelian lattice gauge
theories in the Hamiltonian formalism chose a basis of the
Hilbert space H such that the electric part is diagonal. This
leads for instance to the so-called character expansion or
loop-string formulations, the status of which is elaborately
discussed in Ref. [68].

In this paper we are going to explore a different pathway:
following the ideas discussed for U(1) in Refs. [24,49] we
will develop a formulation with a basis ofH in which the non-
Abelian gauge field operators are diagonal. For this purpose
we use the digitisations we recently proposed in Refs. [69,
70], which provide a natural discretised parametrization of
SU(2) and which can be extended to larger Nc-values. For
more works related to digitised SU(Nc) gauge fields see Refs.
[71–74].

The remaining task is to find the corresponding digitised
versions of the operators L̂, R̂ or directly the Casimir opera-
tor L̂2 + R̂2, which we are going to discuss in the following.
We will show that it is possible to find discrete versions of

L̂, R̂ fulfilling the fundamental commutation relations up to
discretisation effects. Moreover, we show that in order to
reproduce the spectrum of the free Hamiltonian, the afore-
mentioned Casimir operator needs to be discretised directly.
If this is done, spectrum and eigenstates of the free Hamil-
tonian are reproduced up to discretisation effects, the size of
which depends on the specific choice of the partitioning of
SU(2).

2 Commutators and state space

To be concrete, we define the set of coordinates of the d-
dimensional spatial lattice as

� = {x ∈ R
d : xk = 0, a, 2a, . . . , (Lk − 1)a},

with k labelling the directions as above.a is the lattice spacing
which we set to a = 1 in the following and Lk ∈ N the
lattice extent in direction k. The quantization conditions are
imposed at each point of the space time lattice. This gives
freedom for any choice of the boundary conditions, which
are inessential for the rest of our discussion.

States on the full lattice are constructed by tensor products
of basis states for each lattice site and direction. This is why
it is sufficient to discuss the discretisation for one lattice site
and direction and, thus, we will drop the spatial coordinates
x and the directions k.

Classically, for each lattice site and direction the gauge
link U is an SU(Nc) matrix in the fundamental representa-
tion, with N 2

c elements ui j . On the quantum level, the ele-
ments of the gauge fields ûi j ∈ L become operators, with L

the linear operators H → H. Now, Û is a Nc × Nc operator
valued matrix, which is constrained as follows: given a gauge
field state |U 〉 ∈ H of the system with Û |U 〉 = U |U 〉 we
require that U ∈ SU(Nc) in the fundamental representation.
L̂c, R̂c ∈ L on the other hand represent the corresponding
canonical momenta (in the adjoint representation), which are
generating the left and right gauge transformations.

Given the Û , the momenta are defined via the fundamental
commutation relations

[L̂c, Ûmn] = (tc)mj Û jn, [R̂c, Ûmn] = Ûmj (tc) jn . (3)

Here, tc are the generators of the corresponding Lie algebra.
Moreover, the L̂c resemble the group structure

[L̂a, L̂b] = fabc L̂c, (4)

with the the structure constants fabc of the algebra, and like-
wise the R̂c.

Specifically, for SU(2), the generators are given by the
Pauli matrices tc with indices c = 1, 2, 3. We parametrise
the basis for the gauge field states as follows: U ∈SU(2) can
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be parametrised with three real valued parameters y0, y1, y2

as follows

U =
(

y0 + iy1 y2 + iy3

−y2 + iy3 y0 − iy1

)
, y2

3 = 1 −
2∑

i=0

y2
i . (5)

Since SU(2) is isomorphic to the sphere S3, we can also write
y = (y0, y1, y2, y3)

t ∈ S3. Accordingly, we define operators
ŷ j : H → H by the following action

ŷ j |U (y)〉 = y j |U (y)〉, j = 0, 1, 2, 3,

and

û00 = ŷ0 + i ŷ1, û01 = ŷ2 + i ŷ3,

û10 = −ŷ2 + i ŷ3, û11 = ŷ0 − i ŷ1.

This defines the action of Û : H → H on a given state via

Û =
(
û00 û01

û10 û11

)
.

Therefore, the y0,1,2 can be regarded as quantum numbers
labelling the states |y0, y1, y2〉 ≡ |U (y)〉 which are simulta-
neous eigenstates of operators ŷ0,1,2.

Alternatively, one could also work with three angles �α
which can be used to parametrise U = exp(i �α · �t). Given �α,
the yi can be readily computed. For quantisation, each angle
αi is then promoted to a linear operator H → H.

Formally, the canonical momenta are defined as Lie
derivatives:

L̂c f (U ) = −i
d

dβ
f
(
ei βtc U

)
|β=0,

R̂c f (U ) = −i
d

dβ
f
(
U ei βtc

)
|β=0 (6)

for a function f (U ), f : SU(2) → R.
The states parametrised by y0, y1 and y2 can be discretised

using one of the partitionings we proposed in Ref. [69], or
any other partitioning of SU(2). In fact, the precise form
of the partitioning becomes only relevant for our numerical
experiments presented in later sections.

Next we will discuss how to discretise the momenta Eq.
(6) for such a partitioning. A first approach to this problem
can be found in Ref. [75]. However, while there we could
define the momenta such that the fundamental commutation
relations are fulfilled up to discretisation effects, the naïve
approach of squaring the so constructed operators does not
lead to a free Hamiltonian for which the spectrum converges.

3 Construction of triangulated derivatives

We consider an arbitrary finite subset D = {Di } ⊂ SU(2).
We will now discuss how to construct L̂, R̂ based on finite
element methods, developed for triangulated manifolds. For

a more in depth introduction to this type of methods we rec-
ommend Refs. [76–78]. To make use of these methods, we
again employ the isomorphism between SU(2) and S3: Lc

and Rc can be also understood as covariant derivatives on S3

in directions

vLc = tc U and vRc = U tc (7)

at point U . Furthermore {tc U | c ∈ {1, 2, 3}} forms an
orthonormal basis of the tangent space at point U . The same
holds for {U tc | c ∈ {1, 2, 3}}. This means that for the con-
tinuous version of the operators

∑

c

L̂2
c =

∑

c

R̂2
c = −�, (8)

where � denotes the Laplace–Beltrami operator on S3.
In the following we will construct the covariant deriva-

tive as well as the Laplace–Beltrami operator following the
methods presented in Refs. [77,78], respectively.

3.1 Construction of the gradient

To construct a discrete version of the covariant derivative,
we first need to perform a Delaunay triangulation [79] of the
points on S3 embedded inR4. This triangulation connects the
points of our partitioning to 3-simplices (tetrahedons), such
that the ball spanned by the vertices of each simplex does
not contain any of the other vertices. The result is a set of
simplices

C = {(i0, i1, i2, i3)} , (9)

where i0, . . . , i3 label the vertices Dik of each simplex. In
our case in four dimensions the simplices are tetrahedrons,
i.e. they are built from four vertices.

Next we discretise the functions by introducing the basis
functions on S3 which have to property

φ j (Di ) = φ j (i) = δi j (10)

on the vertices of our partitioning, while within a simplex
connected to vertex j they are linear piece-wise functions
that interpolate the values between the corresponding ver-
tices. Within all other, not connected simplices φ j is identi-
cally zero. With these definitions we can construct a discrete
version f̃ of an arbitrary function f : SU(2) → R

f̃ (i) =
∑

j

f (Dj ) φ j (i). (11)

For the linear interpolation, we introduce local coordinates
�α relative to vertex i0 by noting that every U in a simplex
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Fig. 1 We visualise the construction of the local coordinates �α of a
gauge group element U /∈ D found in 2-simplex (a triangle) C of
the triangulation for the simpler two dimensional case. i0 is arbitrarily
chosen as the origin of the local coordinate system. From there we can
then calculate the rotation angles �α by using Eq. (12)

C ∈ C can be written as

U = exp(i�α · �t)Di0 . (12)

A sketch of this construction for the two dimensional case
can be found in Fig. 1. We can then use �α to approximate
f (U ) within C as

f (U ) = f̃ (i0) + �∇ fC · �α + O(α2), (13)

with �∇ fC corresponding to the covariant derivative in C we
want to compute. In order to reproduce the function values
at the vertices i1,2,3 with local coordinates �α1,2,3, �∇ fC needs
to fulfil the linear equation

⎛

⎝
�αT

1
�αT

2
�αT

3

⎞

⎠ �∇ fC =
⎛

⎝
f̃ (i1) − f̃ (i0)
f̃ (i2) − f̃ (i0)
f̃ (i3) − f̃ (i0)

⎞

⎠ . (14)

For the special case of the basis function f̃ = φi only sim-
plices containing i will have a non trivial covariant derivative.
As seen in Fig. 2 (again for the two dimensional case) it will
be pointing in the direction of the normal vector of the face
opposite to the vertex i .

Similarly, for Rc a right �∇ can be constructed by intro-
ducing coordinates from

U = Di0 exp
(
i�α · �t ) (15)

instead of Eq. (12) followed by the same steps as above.

Fig. 2 The direction �∇φi in the simplices connected to vertex i for a
two dimensional example. As can be seen the covariant derivative is
orthogonal to the side of the triangle opposing i . Its magnitude will be
the inverse of the distance to said side

A good approximation of the covariant derivative at a ver-
tex i can be obtained by taking a weighted average over all
simplices C which have i as one of their vertices:

∇̃ f (i) = 1

Wi

∑

{C∈C|i∈C}
wC �∇ fC (16)

with weights wC and

Wi =
∑

{C∈C|i∈C}
wC . (17)

The weight wC can be calculated in different ways as e.g.
presented in Ref. [77]. We consider here weighting by the
simplex volume

wvol
C = Vol(C) = 1

6
|det (�α1 �α2 �α3)| . (18)

Numerical experiments show that this choice of weights
works well. Therefore, we leave investigations of alterna-
tive choices for future work. It might regain importance in
conjunction with ensuring Gauss’ law.

The matrix elements of the operator L̂c are then calculated
as

�̂Li j =
⎛

⎜⎝
L̂1 i j

L̂2 i j

L̂3 i j

⎞

⎟⎠ = −i∇̃φ j (i). (19)
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The same holds for Rc, the only difference being the different
calculation of the local coordinates in Eq. (15).

3.2 Construction of the Laplace–Beltrami operator

As our approximation of the covariant derivative is based
on linear interpolation, simply calculating

∑
c L

2
c is unlikely

to give good results for the Laplace–Beltrami operator.
It requires second order derivatives which are intrinsi-
cally ignored in linear approximations. Instead, a common
approach is to approximate the operator by making use of
Greens identity.

We start from the Laplace equation

�u = f (20)

and we first introduce the inner product

〈 f, g〉 :=
∑

{C∈C}

∫

C
dV f (exp

(
i�α · �t )Ui0)

×g(exp
(
i�α · �t )Ui0) (21)

where the integral is carried out over the local coordinates
defined in Eq. (12) and the integral over the volume is split
into the sum of the integrals over simplices. We can project
Eq. (20) to a basis function φ defined in Eq. (10)

〈�u, φi 〉 = 〈 f, φi 〉. (22)

The left hand side can be computed using Green’s theorem

〈�u, φi 〉 =
∑

{C∈C}

∫

C
dV (�u)φi

= −
∑

{C∈C}

∫

C
dV ( �∇u) · ( �∇φi )

+
∑

{C∈C}

∫

∂C
dS �n · ( �∇u)φi . (23)

Here �n denotes the normal vector of the simplex C . As the
normal vectors of the two simplices connected at a given
face will oppose each other, the boundary term vanishes,
when summing over all simplices. In the next step we are
approximating the function u with its projection on the space
spanned by the basis functions, i.e. ũ = ∑ j u jφ j obtaining
the matrix equation

〈�u, φi 〉 ≈ −
∑

j

u j

∑

{C∈C}

∫

C
dV ( �∇φ j ) · ( �∇φi ) = Si j u j .

(24)

The gradient of the basis function inside a simplex is a con-
stant and the integral over the volume can be computed

explicitly

Si j = −
∑

{C∈C|i, j∈C}
( �∇φ j ) · ( �∇φi )Vol(C). (25)

We approximate the integral on the right-hand side of Eq.
(21) as a Riemann sum

〈 f, φi 〉 ≈
∑

j

f ( j) v( j) φi ( j) = f (i) v(i). (26)

As weights we will use the volumes of the cells of the
barycentric dual of the triangulation. These distribute the vol-
ume of each simplex equally onto each of its vertices and are
thus given by

v(i) =
∑

{C∈C|i∈C}

Vol(C)

4
. (27)

Equating Eqs. (24) and 26 one obtains

Si j u j = vi fi . (28)

Thus, the matrix form of �̂L
2

can then be calculated as

�̂L
2

i j = − 1

vi
Si j . (29)

As the Laplacian is independent of local coordinates, �̂R
2

=
�̂L

2
holds like in the continuum also for the discretised oper-

ators. Note that like for the linear operator �̂Li j , the matrix

form of the discretised operator �̂L
2

i j is still local and sparse,
even though we have used a global integral definition for its
construction. This will no longer be the case if a higher order
integration scheme is adopted in Eq. (26), in which case one
has to take a matrix M on the right had side of the discretised
Eq. (20) into account, i.e. Si j u j = Mi j f j . As a consequence

one obtains �̂L
2

i j = −M−1
ik Sk j with M−1 a dense matrix.

3.3 Partitionings of SU(2)

For convenience we compile here the definitions for the parti-
tionings of SU(2) we are going to use in the following. More
details on the first four partitionings can be found in Ref.
[69]. The rotated simple cubical and the rotated face centred
partitionings are new compared to Ref. [69].
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3.3.1 Genz points

We rely on the isomorphism Eq. (5) between S3 and SU(2)

to define the set of Genz points for given m ≥ 1 as

Gm :=
{(

s0

√
j0
m

, s1

√
j1
m

, s2

√
j2
m

, s3

√
j3
m

)

×
∣∣∣∣∣

3∑

i=0

ji = m, ∀i ∈ {0, 1, 2, 3} : si ∈ {±1}, ji ∈ N

}
.

(30)

This contains all integer partitions { j0, . . . , j3} of m ≥ 1
including all permutations and adding all possible sign com-
binations.

3.3.2 Linear partitioning

Very similarly, the linear partitioning is defined as the set of
points in S3 based on the same isomorphism

Lm :=
{

1

M

(
s0 j0, s1 j1, s2 j2, s3 j3

)

×
∣∣∣∣∣

3∑

i=0

ji = m, ∀i ∈ {0, 1, 2, 3} : si ∈ {±1}, ji ∈ N

}
, (31)

with

M :=
√√√√

3∑

i=0

j2
i . (32)

M takes values m ≥ M ≥ m√
4

.

3.3.3 Volleyball partitioning

A variation of Lm is given by the Volleyball partitioning

Vm :=
{

1

M
( j0, j1, j2, j3)

∣∣∣ ( j0, . . . , j3) ∈
{

all perm. of
(
±m

2
, a1, . . . , a3

)}
,

ai ∈
{
−m

2
,−m

2
+ 1, . . . ,

m

2

}}

(33)

with M defined in Eq. (32), which takes values m ≤ M ≤√
4m. Additionally, the corners of the hypercube, in four

dimensions also called C8, form

V0:=
{

1√
4

(s0, . . . , s3) | si ∈ {±1}
}

, (34)

which is responsible for the name.

3.3.4 Fibonacci partitioning

For a Fibonacci like lattice on S3 we first generate a lattice
the unit cube [0, 1)3 defined by

�Fib
n =

{
tm

∣∣∣∣0 ≤ m < n, m ∈ N

}

tm =
⎛

⎝
t1
m
t2
m
tkm

⎞

⎠ =
⎛

⎝
m
n

a1 m mod 1
a2 m mod 1

⎞

⎠

with

ai
a j

/∈ Q for i �= j , (35)

where Q denotes the field of rational numbers. In Ref. [69]
we have chosen a1 = √

2 and a2 = √
3. The set of points

�n can then be mapped to arbitrary manifolds, such as S3. In
order to maintain a uniform density of points, this map needs
to volume preserving. In spherical coordinates, defined by

z(ψ, θ, φ) =

⎛

⎜⎜⎝

cos ψ

sin ψ cos θ

sin ψ sin θ cos φ

sin ψ sin θ sin φ

⎞

⎟⎟⎠ (36)

it can be implemented by the functions

ψ(tm) = �1(t
1
m),

θ(tm) = cos−1
(

1 − 2 t2
m

)

and φ(tm) = 2π t3
m, (37)

where the function �1(ψ) is defined via its inverse

�−1
1 (ψ) = 1

π

(
ψ − 1

2
sin(2ψ)

)
. (38)

3.3.5 Other uniform partitionings

Finally we can also use the functions defined in Eq. (37) to
map other uniform point sets from the unit cube to the sphere.
An obvious choice would be the simple cubic lattice defined
by [80]

�SC
n =

{
�x ∈ [0, 1)3

∣∣∣∣ �x = dSC(n) R �m, �m ∈ Z
3
}

(39)

with a rotation matrix R ∈ SO(3). Here dSC(n) denotes the
lattice spacing needed to fit n points into the unit cube

dSC(n) = n−1/3.

The number of sites found inside the cube will be close ton. In
general we however still expect a small difference between n

123



Eur. Phys. J. C           (2023) 83:669 Page 7 of 19   669 

and N ≡ |�SC
n |. While this is no issue for our application, an

exact matching can in principle be achieved by additionally
implementing and tuning a translational offset between the
unit cube and the lattice.

The rotation matrix R is used to achieve misalignment
of the lattice planes and the faces of the unit cube. This is
required to ensure that lattice sites cross the cube bound-
ary individually with varying lattice spacing. Thus no entire
plane of lattice sites is found just in or outside the cube. For
the cubical lattice successive rotations by an angle of π/8
around ê1, ê2 and ê3 seem to work well.

To maximise the distance between points we also consider
the face centred cubic lattice given by [80]

�FCC
n =

⎧
⎨

⎩�x ∈ [0, 1)3
∣∣∣∣ �x = dFCC(n)√

2
R

⎛

⎝
m1 + m3

m2 + m3

m1 + m2

⎞

⎠ ,

�m ∈ Z
3

⎫
⎬

⎭ .

(40)

The lattice spacing for n points is here given by

dFCC(n) = 6
√

2 n−1/3 (41)

and maximal as proved in Ref. [81]. R is kept from the simple
cubical lattice. In the following we will refer to these parti-
tionings as the rotated simple cubical (RSC) and the rotated
face centred cubical (RFCC) partitioning respectively.

3.4 Operator convergence

The discretised Laplace–Beltrami operator directly enters the
Hamiltonian. Thus, we have to make sure that first of all the
spectrum of the discretised operator converges to the corre-
sponding continuum spectrum. From the original publication
by Kogut and Susskind [1] the spectrum should be deter-
mined by main angular momentum quantum number J and
two independent magnetic quantum numbers mL and mR

with J ≥ mL ,mR ≥ 0. The two magnetic quantum num-
bers emerge because every link connects to two lattice sites
with independent gauge transformations (or left and right
gauge transformations). Therefore, the continuum spectrum
is given by

S = {J (J + 2), J = 0, 1, 2, . . .} (42)

with multiplicity (J + 1)2. We note that the eigenvalues are
usually written as λ = j ( j + 1) with j = 0, 1/2, 1, ... [1].
The form given above is obtained through rescaling by a fac-
tor 4 and identifying J = 2 j . Then, it matches the spectrum

Eq. (42) of the Laplace–Beltrami operator on S3 discussed
above.

In addition to the spectrum we also require that the correct
states, i.e. the wave functions, are obtained in the continuum
limit. In order to show this we resort to the concept of conver-
gence in the resolvent sense. Let R be the set of resolvents
of −�. In our case R = C \ S, because then with any given
ρ ∈ R the inverse of (ρ − �) exists and is bounded from
above. Then, we need to show that

lim
m→∞ ‖(ρ − �)−1 − (ρ − �Dm )−1‖ = 0, (43)

with limm→∞ Dm = S3. Although, the functional ana-
lytic convergence analysis of the approximation is shown in
Appendix A, the analysis in Appendix A only implies conver-
gence of the spectrum without any further detail on the rate
of convergence. At this point, we will therefore check Eq.
(43) numerically because the convergence of the spectrum
can be estimated against the convergence of resolvents using
holomorphic functional calculus for the spectral projectors
[82].

To do so, we first introduce the eigenfunctions YJ,l1,l2 of
−� in the continuum. They are given by the spherical har-
monics in four dimensions [83].

Note that J is the same as above and the eigenvalues of
the continuum � are independently of l1 and l2 given by λ =
J (J+2). The l1,2 are not identical with the magnetic quantum
numbersmL ,R , however. Instead, the obey the condition J ≥
l1 ≥ |l2|. It can readily be checked that this condition leads
to the same multiplicity (J + 1)2 as above.

The spherical harmonics can be expressed in terms of the
spherical coordinates introduced in Eq. (36) as

YJ,l1,l2 = eil2ϕ

√
2

2P
|l2|
l1 (θ) 3P

l1
J (ψ), (44)

where

n P
l
L(ζ ) =

√
2L + n − 1

2

(L + l + n − 2)!
(L − l)!

× 1

(sin ζ )(n−2)/2
P

−
(
l+ n−2

2

)

L+ n−2
2

(cos ζ ). (45)

P−μ
ν (x) here denote the Legendre functions of first kind and

are given in terms of the hyper-geometric function 2F1 as

P−μ
ν (x) = 1

�(1 + μ)

(
1 − x

1 + x

)μ/2

×2F1

(
−ν, ν + 1; 1 + μ; 1 − x

2

)
. (46)

Similarly to their famous counterparts on S2, these form an
orthonormal basis of the square integrable functions on S3.
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Thus we can express the discretised operator �Dm in this
basis by evaluating

〈YJ,l1,l2 ,�DmYJ ′,l ′1,l ′2〉
=
∫

S3

dV YJ,l1,l2 �DmYJ ′,l ′1,l ′2 . (47)

Similarly to Eq. (26), we can approximate this integral
numerically by evaluating the spherical harmonics at the
vertices of Dm and weighting them with the corresponding
barycentric cell volume v( j).

If we then implement an upper limit for J by imposing
J < Jmax we can finally evaluate and check Eq. (43). Such
a truncation is acceptable, as bigger J correspond to bigger
eigenvalues λ = J (J+2) leading to decreasing contributions
to the inverse operator (ρ − �)−1.

As the operator norm ‖ · ‖ of an operator O we choose

‖O‖ = √λmax (48)

where λmax denotes the biggest eigenvalue of O†O .

4 Numerical experiments

In the following, we benchmark the performance of several
representative partitionings as applied to different observ-
ables. A complete list including all the partitionings we con-
sidered for this work can be found in Appendix B.

4.1 Volume convergence

In Sect. 3 we have shown how to construct the Laplace–
Beltrami operator based on a triangulation procedure in S3

based on the partitioning. For this we have used the barycen-
tric cell volumes v( j) according to Eq. (27). The sum of all
v( j) approximates the volume of S3, and by increasing the
number of points in the partitioning we expect convergence
towards Vol(S3).

The speed of convergence will certainly depend on the
actual partitioning, and we expect this in turn to influence
the approximation of the Laplace–Beltrami operator. This
is in particular so because we have used Greens theorem
neglecting the fact that we only approximate S3.

In Fig. 3 we plot

δV = Vol(S3) −
∑

j

v( j)

as a function of 1/N for different partitionings in a double
logarithmic plot, where we recall that N is the number of
elements in the respective partitioning. For the Genz, the
Linear and the Volleyball partitionings we observe that the
missing volume δV is proportional to N−y with y ≈ 2/3

Fig. 3 The volume of S3 minus the sum of the barycentric cell volumes
as a function of 1/N in a double log plot. Here, N is the number of points
in the partitioning. We compare Fibonacci, Genz, Linear and Volleyball
partitionings as indicated in the legend

for Linear and Volleyball partitionings and y ≈ 1/2 for the
Genz points.

Since the mean distance between two points is roughly
N−1/3, we conclude that convergence towards S3 appears to
be quadratic in the mean distance for the Linear and the Vol-
leyball partitioning. For the Genz points on the other hand
convergence is proportional to the mean distance to the power
of 3/2, and thus significantly slower. We recall from [69]
that the distance between neighbouring points is 1/m for the
Linear partitioning Lm mostly independent of the direction,
whereas it is between 1/m and

√
2/m for the Genz parti-

tioning Gm depending on the direction and the point itself.
In particular, the weights of the different points (derived from
the associated volume) differ by up to a factor m3/2 for Gm ,
while the corresponding weight factor for Lm is independent
of m. Thus, Genz points are significantly less isotropically
distributed on S3, which is responsible for the slower con-
vergence.

The Fibonacci partitioning with a1 = √
2 and a2 = √

3
fixed for all N shows an irregular convergence behaviour: for
small N it seems to be similar to the Linear partitioning, then
it appears to converge like the Genz points for intermediate
N -values, but gets in line again with the Linear partitioning
for large N . Similar behaviour is also observed for other
choices for a1 and a2, only the location of the bump changes.

The reason for this is the following: for a poor choice of the
coefficients a1 and a2 the modulo operation in t2

m and t3
m can

lead to an almost periodic behaviour, such that t2/3
m ≈ t2/3

m+p.
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If the period p is small, this means that the points tm and tm+p

end up close together in the cube and on S3. Having multiple
lattice sites in almost the same spot will do little to improve
the quality of our Riemann sum and thus leads to the slowing
down in convergence. The return to the convergence rate of
the linear and Volleyball partitionings towards larger N is
observed, because Eq. (35) ensures that t2/3

m �= t2/3
m+p. Their

non-zero difference then becomes more and more significant
with finer lattice spacing, and thus eventually removes the
periodicity in the coordinates.

In order to overcome this irregular convergence pattern of
the original Fibonacci partitioning, we choosea1 anda2 sepa-
rately for each N . The distance of a potential close neighbour
with period p can be calculated as

δN (p, a1, a2) =
[
(p/N )2 + (pa1 mod 1)2

+(pa2 mod 1)2
]1/2

. (49)

An upper bound for p is given by

p

N
< dFCC(N )

as the face centred cubical packing maximises the distance
between lattice points. Thus we can predict the distance to the
closest neighbour for two coefficients a1 and a2 by evaluating

dFib(N , a1, a2) = min

({
δN (p, a1, a2)

∣∣∣∣ p ∈ N \ {0}
})

.

(50)

With this we can simply iterate over a suitable set of coeffi-
cients a1/2 until the desired minimum distance is reached. In
our implementation we iterated over the square roots of the
prime numbers until

dFib(n, a1, a2)

dFCC(n)
≥ 0.95 (51)

was fulfilled.
The volume convergence of the original and the such opti-

mised Fibonacci partitionings are compared in Fig. 4. We
observe that the irregularities are mostly gone in the opti-
mised version. However, since a1 and a2 parameters are opti-
mised for each N , one can expect a uniform convergence rate,
but the amplitude might still depend on N , which is what we
see in the form of outliers. In the following we, therefore, use
the Fibonacci partitioning with optimised values for a1 and
a2 only.

This remaining irregularity can be cured by using the
RFCC or the RSC partitionings, as also shown in Fig. 4.
The smallest overall deviations from the volume of S3 are
actually observed for the RFCC partitioning, but the RSC
does not perform significantly worse.

Fig. 4 Like Fig. 3, but comparing the original Fibonacci partitioning
with the optimised one and the RFCC and RSC partitionings

Fig. 5 We show rLU (upper panel) and rLL (lower panel) as a function
of 1/N for three different spherical harmonics in a double log plot. We
compare Linear, Volleyball, Genz and RFCC partitionings
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4.2 Commutation relations

With the above definitions of L̂ and R̂ it is ensured that if
applied to a constant vector one obtains zero. Much like in
the one dimensional case of a finite difference operator, we
expect L̂ and R̂ to work best if applied to slowly varying vec-
tors in the algebra. Thus we choose some of the lower lying
spherical harmonics YJ,l1,l2 defined in Eq. (44) as test func-
tions. For each harmonic we can compute the corresponding
error vector

w = ([La,Ujl ] − (ta) j iUil
) · YJ,l1,l2 (52)

and then the mean deviation weighted by barycentric cell
volume v(i) as

rLU =
∑

i

v(i) |wi |. (53)

Likewise, we define

u = ([La, Lb] + 2i εabc Lc) · YJ,l1,l2 , (54)

with the appropriate structure constant fabc for SU(2), and

rLL =
∑

i

v(i) |ui |. (55)

In Fig. 5 we plot rLU and rLL for exemplary combinations of
indices j and l as a function of 1/N . Results are shown for
the different partitionings of SU(2) and different spherical
harmonics.

We observe that rLU approaches zero with increasing N .
The convergence rate appears to be depending on the parti-
tioning used: while Genz points seem to converge the slowest,
the Linear and RFCC partitionings work best in this respect.
As expected the deviations increase when using faster oscil-
lating harmonics.

For rLL, and thus the deviations from the expected
behaviour in the commutator of L with itself, the picture
is less clear. We again see a decrease in rLL with increas-
ing N , however, the convergence rate appears slower and the
scaling region might set in only at larger N compared to rLU.

Interestingly, the Linear partitioning shows the fastest con-
vergence for rLL compared to all the other partitionings inves-
tigated here.

4.3 Spectrum in the free theory

We compute the spectrum of the discretised Laplace–
Beltrami operator −�Dm for different partitionings D and
values of m numerically. We note that the lowest eigenvalue
λ1 = 0 per construction, and therefore we are going to mostly
exclude λ1 from the following discussion.

Fig. 6 We show the lowest 60 eigenvalues of the discretised Laplace–
Beltrami operator for the Linear partitionings Lm with m = 4, 5, 6, 10
and m = 25. The solid lines corresponds to the expected continuum
values from Eq. (42)

For the linear partitioning we show the 60 lowest eigenval-
ues λi in Fig. 6. While the different point styles distinguish
values of m from 4 to 25, the line indicates the continuum
spectrum from Eq. (42). It is clearly visible that with increas-
ing m the spectrum of −�Lm converges towards the contin-
uum spectrum with the correct multiplicity.

In Fig. 7 we show the convergence for different eigen-
values λP of the discretised Laplace–Beltrami operator sepa-
rately. We plot the relative deviation from the expected con-
tinuum value λ

|λP − λ|
λ

as a function of 1/N for different eigenvalues λk with k =
2, 5, 6, 14, 15, 30, 31, 55. Note that we order the eigenvalues
such that λi ≤ λi+1. Our choices for i , therefore, correspond
to the first and the last eigenvalue in a multiplet. We observe
convergence towards the expected continuum value for all
the eigenvalues we investigated and all the partitionings.

The most regular and smooth convergence pattern is
observed for the linear partitioning. The Volleyball parti-
tioning behaves similarly, but with some dependence on the
actual value of N . The convergence rate of the RFCC parti-
tioning falls in line with the one of the Linear partitioning,
but with somewhat smaller amplitude.

The Genz partitioning seems to be also converging, how-
ever, with a visibly slower convergence rate than the other
partitionings towards large N -values. In particular for the
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Fig. 7 We plot |λP − λ|/λ as a function of 1/N for the Volleyball, the
Linear, the RFCC and the Genz partitionings for the eigenvalues λi with
i = 2, 5, 6, 14, 15, 30, 31, 55

last eigenvalues of a given multiplet we also observe sign
changes in λP − λ.

Empirically, the convergence rates appear to be indepen-
dent of the index i and very similar to the rates of convergence
of the volume.

4.4 Operator convergence

Finally, we discuss the operator convergence by check-
ing Eq. (43) numerically. For this we pick a value from the
resolvent set of ρ = −2. Other ρ-values lead to similar and
qualitatively equivalent results.

In Fig. 8 we plot

‖(ρ − �)−1 − (ρ − �Dm (N ))
−1‖ (56)

as a function of 1/N for ρ = −2. As discussed in Sect. 3.4,
we evaluate Eq. (56) using a finite subset of the spherical
harmonics YJ,l1,l2 by imposing J < Jmax. The three different
Jmax-values are Jmax = 6, Jmax = 8 and Jmax = 11.

Concentrating on the uppermost panel for Jmax = 6 to
start with, we observe gap convergence for all partitionings

Fig. 8 We plot ‖(ρ − �)−1 − (ρ − �Dm )−1‖ as a function of 1/N
evaluated on different sets of eigenfunctions corresponding to Jmax = 6,
Jmax = 8 and Jmax = 11 with ρ = −2

shown. The convergence rate is proportional to N−z with
z ≈ 0.7 for all partitionings apart from Genz. For the Genz
partitioning the convergence is very slow with z ≈ 0.1. This
picture remains the same for large N -values for the two other
Jmax-values.

For Jmax = 8 and Jmax = 11 another feature becomes
visible: for N → 0 the gap plateaus at a value of 1/|ρ|. At
the corresponding values of N there are not sufficiently many
points in the partitioning to resolve all the YJ,l1,l2 .

5 Discussion

There are a few points that deserve discussion. First, the
results from the previous section indicate that the points in a
partitioning should be as uniformly distributed as possible:
the main difference between the Genz Gm and the Linear
Lm partitionings is that in the Genz set points are denser
around the poles. This leads to larger deviations from the
mean distance for Gm compared to Lm at fixed m, which in
turn means slower convergence to the volume of S3. This con-
clusion is strongly supported by the comparison of original
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Fibonacci and optimised Fibonacci partitioning, where the
difference in convergence can be clearly traced back to the
non-uniformity in the original Fibonacci version for certain
values of N . For additional results supporting this conclusion
we refer to Appendix B.

Since we define the Laplace–Beltrami operator via an inte-
gral relation Eq. (29), the aforementioned effects from non-
uniformity are expected to also influence the spectrum of
the discretised operator as well as the gap convergence. This
explains the slower convergence rates observed for the Genz
partitioning for most of the investigated quantities.

In addition, we observe plateaus in the gap in Fig. 8 for
small values of N . The extent of the plateaus depends on Jmax.
They originate from a sufficiently large N being required
to resolve all the states up to a given Jmax. More specifi-
cally, J corresponds to an (angular) momentum. The highest
momentum Jmax that can be resolved on a lattice, is dic-
tated by the inverse lattice spacing. Put differently, the lattice
discretisation acts as an ultraviolet cutoff. Since the lattice
spacing is proportional to N−1/3, the plateaus are expected
for N � J 3

max. This is well compatible with Fig. 8.

6 Conclusion and outlook

In this paper we have shown how to discretise the electric
part in the Hamiltonian Eq. (1) for the gauge group SU(2),
when the basis is chosen such that the gauge field operators
Û are diagonal. It turns out that the canonical momentum
operators L̂ and R̂ can be constructed by discretising the
corresponding Lie derivatives based on a triangulated par-
titioning of SU(2). Mostly independently on the choice of
the partitioning the such constructed operators fulfil the fun-
damental commutation relations up to discretisation effects.
However, when it comes to reproducing the free spectrum of
the theory, it is not sufficient to insert these L̂ and R̂ squared
into the Hamiltonian.

It is rather necessary to construct a discrete version of the
electric part in the Hamiltonian directly by realising that it
corresponds to the Laplace–Beltrami operator on S3. This
operator can be discretised by means known from finite ele-
ment methods.

Then, our results show that with sufficiently uniform parti-
tionings the low lying eigenvalues of the discretised Laplace–
Beltrami operator converge towards their continuum counter-
parts. The larger the number of points N in the partitioning,
the more eigenvalues can be resolved. Likewise, the contin-
uum wave functions are reproduced with N → ∞. Thus, we
conclude that the discretised free Hamiltonian reproduces
the free theory up to discretisation effects. The size of these
artefacts can be reduced arbitrarily by increasing N .

In the future we will investigate the SU(2) discretisation
proposed in this paper beyond the free theory. Moreover, the
implementation of Gauss’ law and the consequences of the
breaking of the fundamental commutation relations (albeit
only by discretisation effects) will be important to under-
stand.
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Appendix A: Functional analytic point of view on conver-
gence

1. Domain of the discretized derivative and Laplacian

We are generally looking for a discretisation of the Laplace–
Beltrami in L2(SU(2)). However the discretised derivative
∇P – as constructed following Sect. 3.1 using a triangulated
partition P of SU(2) – requires point-evaluations on the ver-
tices of the partitioning P . Hence, we can only a priori define
∇P on functions in C(SU(2)), and then need to consider the
L2(SU(2)) extension of the thus defined ∇P |C(SU(2)).
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Using the Sobolev Embedding for compact manifolds
without boundary1 we obtain the (tightest) embeddings

∀k ≥ 2 : Wk
2 (SU(2)) ⊆ Ck−2, 1

2 (SU(2)). (A1)

In particular, this implies that we can define ∇P |W 2
2 (SU(2))

using the point-evaluation formula. A priori this means that
∇P |W 2

2 (SU(2)) maps W 2
2 (SU(2)) into L2(SU(2)) instead of

the expected W 1
2 (SU(2)). It is now important to note that, in

local coordinates, difference quotients Dh
i with step size h in

direction i satisfy
∥∥Dh

i u
∥∥
L p(�′) ≤ ‖Diu‖L p(�) for �′ � �

provided h is sufficiently small. Lifting this to SU(2) means
that ∇P |W 2

2 (SU(2)) is relatively bounded by ∇|W 2
2 (SU(2)), i.e.,

∇P |W 2
2 (SU(2)) in fact maps W 2

2 (SU(2)) into W 1
2 (SU(2)) as

expected and can be uniquely extended to the operator ∇P :
W 1

2 (SU(2)) → L2(SU(2)).
Finally, this implies that the discretised Laplace �P

defined as the operator associated with the symmetric form
τ(x, y) = 〈∇P x,∇P y〉 is a well-defined map �P :
W 2

2 (SU(2)) → L2(SU(2)).

2. Pointwise convergence

Further to the discretised gradient Dh defined via difference
quotients in local coordinates being bounded by the gradient
∇, Dh f → ∇ f holds in Wk−1

p (�) for any f ∈ Wk
p(�).

Hence, again lifting this result to SU(2), we obtain pointwise
convergence ∇P → ∇ using the net of discretisations with
directed set of partitionings P ′ � P if and only if every
vertex of P ′ is also a vertex of P . This also implies that
the discretised Laplace �P = ∇∗

P∇P : W 2
2 (SU(2)) →

L2(SU(2)) converges pointwise to the Laplace � = ∇∗∇ :
W 2

2 (SU(2)) → L2(SU(2)).
Unfortunately, this pointwise convergence is not sufficient

for convergence of the spectrum. To obtain the convergence
of the spectrum, we need a notion called gap convergence
which is equivalent to norm convergence for bounded opera-
tors and convergence in norm resolvent sense for closed oper-
ators with non-empty resolvent set [84]. Using Eq. (43), we
have tested the convergence in norm resolvent sense numer-
ically.

3. Finite order gap convergence

Let us consider an orthonormal basis (ψ j ) j∈N of L2(SU(2))

with ∀ j ∈ N : ψ j ∈ W 2
2 (SU(2)). Restricting the space

L2(SU(2)) and W 2
2 (SU(2)) to the linear span L2(SU(2))|n

(and W 2
2 (SU(2))|n with the respective topology) of the first

1 Let M be a compact manifold without boundary, k, r ∈ N0, α ∈
[0, 1), p ≥ 1, and k−r−α

dim M ≥ 1
p . Then, Wk

p(M) ⊆ Cr,α(M).

n basis vectors induces restricted operators2 �P |n and �|n .
For these, we obtain

‖�P |n − �|n‖L(W 2
2 (SU(2))|n ,L2(SU(2))|n)

= sup
‖ϕ‖

W2
2 (SU(2))|n=1

‖�P |nϕ − �|nϕ‖L2(SU(2))|n

= sup∥∥∥
∑n

j=1 α jψ j

∥∥∥
W2

2 |n
=1

∥∥∥∥∥∥
(�P |n − �|n)

n∑

j=1

α jψ j

∥∥∥∥∥∥
L2|n

≤ sup∥∥∥
∑n

j=1 α jψ j

∥∥∥
W2

2 |n

n∑

j=1

|α j |
∥∥(�P |n − �|n)ψ j

∥∥
L2|n .

(A2)

Since ‖·‖W 2
2 (SU(2)) ≥ ‖·‖L2(SU(2)) we observe for ϕ =

∑n
j=1 α jψ j ∈ ∂BW 2

2 (SU(2))|n

n∑

j=1

|α j | = ‖α‖�1(n) ≤ √
n ‖α‖�2(n) = √

n ‖ϕ‖L2

≤ √
n ‖ϕ‖W 2

2
= √

n (A3)

and thus

‖�P |n − �|n‖ ≤√
n max

j≤n

∥∥(�P |n − �|n)ψ j
∥∥
L2|n

︸ ︷︷ ︸
→0 (P↗)

.

(A4)

Since norm convergence and gap convergence are equivalent
for bounded operators, we can conclude that the restricted
discretised Laplace converges in gap to the restricted contin-
uum Laplace.

4. L2 with decay

Unfortunately, this gap convergence seems not to extend to
all of L2(SU(2)). Instead, we consider a conic submanifold
of “L2-functions with decay”. A function ϕ ∈ L2(SU(2))

is an element of L2,0(β,δ)(SU(2)) if and only if for a given
orthonormal basis β = (ψ j ) j∈N of L2(SU(2)) and a decay
function δ : N → R>0 with δ(n) → 0 (n → ∞)

∀n ∈ N :
∥∥∥∥∥∥
ϕ −

n∑

j=1

〈ψ j , ϕ〉ψ j

∥∥∥∥∥∥
L2(SU(2))

≤ δ(n) ‖ϕ‖ (A5)

2 We will suppress the projections prL2(SU(2))|n for brevity, i.e., we
will simply write �P |n and �|n instead of prL2(SU(2))|n �P |n and
prL2(SU(2))|n �|n . This has no impact on the following estimates since∥∥prL2(SU(2))|n x

∥∥ ≤ ‖x‖.
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holds. In other words, we restrict the space of functions to
those whose Fourier modes of order n and higher contribute
no more than δ(n−1) in norm. In this sense, this is similar to a
UV cutoff although not quite as strong as still arbitrarily large
Fourier modes are allowed, they just cannot have arbitrarily
large Fourier coefficients.

For given n, we will use the notation

ϕ↓ =
n∑

j=1

〈ψ j , ϕ〉ψ j and ϕ↑ =
∞∑

j=n+1

〈ψ j , ϕ〉ψ j . (A6)

We note that this L2,0(β,δ)(SU(2)) is a closed conic sub-
manifold of L2(SU(2)) since for ϕ ∈ L2,0(β,δ)(SU(2)) and
r > 0 we obtain rϕ ∈ L2,0(β,δ)(SU(2)) (conic), and for
ϕk ∈ L2,0(β,δ)(SU(2)) and ϕk → ϕ in L2(SU(2)) we have

∥∥∥∥∥∥
ϕ −

n∑

j=1

〈ψ j , ϕ〉ψ j

∥∥∥∥∥∥

≤ ‖ϕ − ϕk‖ +
∥∥∥∥∥∥
ϕk −

n∑

j=1

〈ψ j , ϕk〉ψ j

∥∥∥∥∥∥

+
∥∥∥∥∥∥

n∑

j=1

〈ψ j , ϕk − ϕ〉ψ j

∥∥∥∥∥∥

≤ 2 ‖ϕ − ϕk‖︸ ︷︷ ︸
→0

+
∥∥∥∥∥∥
ϕk −

n∑

j=1

〈ψ j , ϕk〉ψ j

∥∥∥∥∥∥
︸ ︷︷ ︸

≤δ(n)‖ϕk‖
≤ δ(n) ‖ϕk‖ + o(1)

→ δ(n) ‖ϕ‖ , (A7)

i.e., L2,0(β,δ)(SU(2)) is closed.

5. Gap convergence with decay

Unfortunately, L2,0(β,δ)(SU(2)) is not a linear subspace
since sums of its elements is in general not elements
of L2,0(β,δ)(SU(2)). However, it has the induced topol-
ogy from L2(SU(2)) and thus the L(L2(SU(2))) and
L(W 2

2 (SU(2)), L2(SU(2))) norms computed by restricting
the unit sphere of L2(SU(2)) and W 2

2 (SU(2)) respectively
are consistent with the operator norms in L(L2,0(β,δ)(SU(2)))

and L(W 2
2,0(β,δ)(SU(2)), L2,0(β,δ)(SU(2))). Here, we denote

the restriction to W 2
2,0(β,δ)(SU(2)) as the set of L2(SU(2))

functions ϕ whose derivatives up to second order are in
L2,0(β,δ)(SU(2)) including the condition that derivatives up
to second order of ϕ↑ are bounded by δ. This is still a closed
conic submanifold of L2(SU(2)) and of W 2

2 (SU(2)) using
the same argument as in Eq. (A7) changing only the norm.
It should be noted that this requires β to be an orthonormal

basis that is contained in W 2
2 (SU(2)). In our case, this basis

given by the spherical harmonics which are in W∞
2 (SU(2)),

i.e., this restriction on β is irrelevant for the application we
are considering.

Let us considerϕ ∈ L2,0(β,δ)(SU(2)) such that�ϕ,�Pϕ ∈
L2,0(β,δ)(SU(2)) and ‖ϕ‖W 2

2 (SU(2)) = 1. Then, we observe

‖�ϕ − �Pϕ‖L2
≤
∥∥∥(�ϕ↓)↓ − (�Pϕ↓)↓

∥∥∥
L2

+
∥∥∥(�ϕ↑)↓ − (�Pϕ↑)↓

∥∥∥
L2

+
∥∥∥(�ϕ)↑ − (�Pϕ)↑

∥∥∥
L2︸ ︷︷ ︸

≤dim(SU(2))δ(n)

≤
∥∥∥�|nϕ↓ − �P |nϕ↓

∥∥∥
L2

+
∥∥∥�ϕ↑ − �Pϕ↑

∥∥∥
L2︸ ︷︷ ︸

≤dim(SU(2))δ(n)

+3δ(n)

≤
∥∥∥�|nϕ↓ − �P |nϕ↓

∥∥∥
L2

+ 6δ(n). (A8)

Using δ(n) → 0 and the finite order gap convergence result,
we conclude that for every ε > 0 there exists an n ∈ N and
a partitioning P0 such that every partitioning P � P0 such
that

δ(n) <
ε

12
. (A9)

Subsequently, we can find a partitioning P0 such that every
partitioning P � P0 satisfies

‖�|n − �P |n‖L(W 2
2 (SU(2))|n ,L2(SU(2))|n) <

ε

2
. (A10)

With these choices of n and P0, we obtain for P � P0 (note∥∥ϕ↓∥∥
W 2

2 (SU(2))
≤ ‖ϕ‖W 2

2 (SU(2)) = 1)

‖�ϕ − �Pϕ‖L2
≤
∥∥∥�|nϕ↓ − �P |nϕ↓

∥∥∥
L2

+ 6δ(n)

≤ ε

2

∥∥∥ϕ↓
∥∥∥
W 2

2

+ 6
ε

12

≤ ε. (A11)

Hence,

‖� − �P‖L(W 2
2,0(β,δ)

(SU(2)),L2,0(β,δ)(SU(2))) < ε (A12)

shows norm convergence and therefore gap convergence
of �P → � as operators from W 2

2,0(β,δ)(SU(2)) to
L2,0(β,δ)(SU(2)).

Since gap convergence is equivalent convergence in norm-
resolvent sense, we obtain that for every ρ in the resolvent
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set R(�) of �, there exists P0 such that for every P � P0

we also have ρ ∈ R(�P ) and

∥∥∥(ρ − �P )−1 − (ρ − �)−1
∥∥∥
L(L2,0(β,δ),W 2

2,0(β,δ)
)
→ 0.

(A13)

Finally, since the embedding

ι : W 2
2 (SU(2)) ↪→ L2(SU(2)) (A14)

is bounded with ‖ι‖L(W 2
2 (SU(2)),L2(SU(2))) ≤ 1, we know that

the resolvents (ρ −�P )−1 and (ρ −�)−1 map into L2,0(β,δ)

as well and, as maps from L2,0(β,δ) to L2,0(β,δ), can they can
be expressed as

ι ◦ (ρ − �P )−1 and ι ◦ (ρ − �)−1. (A15)

In other words,

∥∥∥(ρ − �P )−1 − (ρ − �)−1
∥∥∥
L(L2,0(β,δ),L2,0(β,δ))

(A16)

is bounded by

∥∥∥(ρ − �P )−1 − (ρ − �)−1
∥∥∥
L(L2,0(β,δ),W 2

2,0(β,δ)
)

(A17)

which directly implies convergence in norm-resolvent sense
for the discretised Laplace in L2,0(β,δ)(SU(2)).

As a final note, while L2(SU(2)) can be written in terms
of an inductive limit of L2,0(β,δ)(SU(2)) with an increasing
sequence of decay functions δ, the convergence does not seem
to lift to the inductive limit because ϕn → ϕ in L2(SU(2))

does not seem to imply that ϕn has to eventually be in the
same L2,0(β,δ)(SU(2)) as the limit ϕ. In fact, it is highly
improbable that the discretised Laplace can converge in all
of L2(SU(2)) in norm resolvent sense because the finite step
size in the definition of ∇P should allow for highly oscillating
functions with ∇Pϕ = 0 but ‖∇ϕ‖ = 1. Thus, �P cannot
be norm convergent to � as a map from all of W 2

2 (SU(2)) to
L2(SU(2)), hence it cannot be convergent in norm-resolvent
sense, and thus the embedding argument with ι fails.

Appendix B: Supplementary results

While it was previously shown that the proposed canoni-
cal momentum operators, as well as the Laplace–Beltrami
operator, converge to the correct continuum theory, the exact
convergence behaviour seems to depend on the chosen parti-
tioning. However, gaining a full and detailed understanding
of how this choice affects e.g. the convergence rates of our
observables, and which features of a given partitioning are

desirable, proved to be rather difficult and ultimately beyond
the scope of this paper.

Nevertheless we would like to share our results on the
topic. Thus in this appendix, we will present the results
obtained for some of the partitionings discarded earlier, such
as the original and optimised Fibonacci and the RSC parti-
tionings. Additionally, we will look at two more randomly
generated partitionings.

The first additional partitioning is comprised of points
which are distributed random uniformly (RU) on S3. We gen-
erate these points by generating N vectors �x ∈ R

4. First every
element of x is drawn from a standard normal distribution.
Thereafter, the vector is normalised to unit length. While
these RU points are distributed uniformly on average, they
are known to cluster locally.

The next partitioning is, therefore, generated from a given
RU partitioning by maximising the distance between all next
neighbours. We denote this partitioning as distance optimised
random uniform (DoRU) partitionings. Given a RU parti-
tioning, we numerically maximise the sum of the squared
next-neighbour distances

y =
∑

〈i, j〉
‖ �xi − �x j‖2 (B1)

with 〈i, j〉 denoting next neighbour pairs.

1. Results

To evaluate the additional partitionings we repeat the same
tests as done previously. The remaining data on the volume
convergence is plotted in Fig. 9, the test of the commutation
relations can be found Fig. 10 and the spectrum and operator
convergence of the Laplace–Beltrami operator in Figs. 11
and 12, respectively.

The first thing worth noting is that the deficiencies of the
unoptimised Fibonacci lattices carry over to all the discussed
observables. Bumps similar to the ones observed in Fig. 3
can also be found in the commutators, spectrum and opera-
tor convergence. Optimising the coefficients a1 and a2 again
fixes this mostly and leads to a more consistent convergence
behaviour. The more noisy convergence behaviour, however,
remains, with occasional outliers visible.

As one might expect from the initial volume convergence
results found in Fig. 4, the RSC partitionings perform fairly
similar to the RFCC partitionings in the other observables,
too.

For the RU and DoRU partitionings the situation is a bit
more intricate: in the volume, Fig. 9, RU shows larger devi-
ations at fixed N , which is a result of the local clustering.
But the convergence rate appears to be identical to the other
shown partitionings. This is also true for all the other observ-
ables with the notable exception of rLL, where RU seem to
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Fig. 9 Like Fig. 3, but comparing Linear, Distance optimised (DoRU)
and Random Uniform (RU) partitionings

Fig. 10 Showing the commutator convergence like in Fig. 5, compar-
ing RSC, Distance optimised (DoRU), Random Uniform (RU) as well
as optimised and unoptimised Fibonacci partitionings

Fig. 11 Convergence of the eigenvalues like in Fig. 7, comparing RSC,
Distance optimised (DoRU), Random Uniform (RU) as well as opti-
mised and unoptimised Fibonacci partitionings

Fig. 12 Operator convergence like in Fig. 8, comparing RSC, Distance
optimised (DoRU), Random Uniform (RU) as well as optimised and
unoptimised Fibonacci partitionings
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show a slower convergence, similar to the ones observed for
the Genz points. The DoRU partitioning, although initially
in line with the RSC points, also seems to tend towards this
slower convergence rate for larger N . At this point it is, how-
ever, unclear whether this is inherent to the partitioning or
related to the fact that the optimisation with large N becomes
more and more difficult. One more interesting result is that
the DoRU appears to have the smallest amplitude in the gap
convergence, see Fig. 12.
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