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Abstract

In the spirit of theoretical pluralism, this chapter critically illustrates an alternative
game theoretic approach that extends the Nash equilibrium criterion. It is assumed
that players believe in the empathic ability to anticipate other players’ simultaneous
and future reactions to their strategic choice. An individual’s best response strategy
is defined based on this projection, adding additional stability conditions to strate-
gic choice and increasing the set of potential equilibria beyond pure Nash equilibria.
Among other interesting properties the approach can thus explain the occurrence of
stable outcomes that are not Nash equilibria, such as the cooperative equilibrium in
the Prisoner’s Dilemma, without the necessity to change the game structure. Conflict
Analysis further enlarges flexibility as the approach requires only an ordinal prefer-
ence order. As a basis for future academic debates, the assumptions of the Conflict
Analysis approach are critically analysed and applied to a set of games, demonstrating
the approaches advantages and drawbacks.
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1. Introduction

Conflicts are an essential part of interactions between and within any species. They play
an important role in interpersonal relations (Lorenz, 1974).1 and constitute a vital part
in the description and modelisation of interactions between various agents. This chapter
presents an interesting and efficient alternative game theoretical approach, not only to model
conflicts between players, but also to analyse games in general.

During almost half a century behavioural economics has accumulated evidence that
individuals do not make choices according to the assumptions of standard rationality (for an
∗E-mail address: sebastian.ille@sssup.it
1Konrad Lorenz is one of the founding fathers of ethology and Nobel prize laureate for physiology or

medicine in 1973. In “Das sogenannte Böse” (English title: “On Aggression”) he described the root of aggres-
sion both for animals and humans and its impact as a primary instinct on social life.
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overview, see Kahnemann, 2011) and has also browbeat classical game theory by showing
that agents frequently choose strictly dominated strategies leading to stable outcomes that
are not Nash equilibria. Though various approaches have been developed in recent years
(see e.g. Kahneman and Tversky, 1979; Feinberg, 2005; DellaVigna, 2009; Binmore, 2009),
a unified response to incorporate these discrepancies into game theory is still lacking.

This chapter provides one alternative by focusing on the rationality of players and fol-
lows Frank Hahn’s call for theoretical pluralism.2 The approach, demonstrated in this chap-
ter, breaks with some of the concepts of rational choice in a way that might not be accepted
by all scholars. Yet, the general purpose is to illustrate an alternative perception of rational-
ity. It is intended to give rise to academic debate and to call economists’ attention to this
approach as a potential step towards an augmented game theoretical framework that is able
to explain the additional occurrence of non-Nash equilibria.

The approach, henceforth called “Conflict Analysis”, was originally developed by
Fraser and Hipel (1984) and builds on the initial work of Howard (1971). It enjoys some
interesting properties that render it especially interesting: It is able to model a higher order
reasoning that allows players to anticipate other players’ reaction to their strategic choice.
It thus expands the original stability concept and obtains equilibria that are plausible but
not identified as such by the Nash criterion. Yet, this approach does not require that these
“empathic” anticipations of strategy choice and of preferences to be correct. The possibility
to model a game as a “hypergame” (of higher order) allows for conditions, in which players
display a misperception of the rules underlying the game. Furthermore, the approach is
capable of tackling larger (non-quantitative) strategy and player sets than most game the-
oretical approaches solvable in a closed form. Another advantage, though not unique to
this approach, lies in the sole requirement of only an ordinal preference order. A cardinal
order should demand detailed data on the relative weights that the conflicting parties place
on the various outcomes associated to the strategy profiles. In contrast, this approach stays
completely within the concept of preference relations, without the necessity of a function
that attaches real numbers to each element in the outcome set, thus completely avoiding
the standard notion of utility representation. A quantification of the players’ preferences,
which is because of the lack of precise data mostly arbitrary, can thus be avoided. In addi-
tion, the pairwise comparison of preferences over outcomes does not require transitivity of
preferences.

After reviewing the theoretical basis of Fraser’s and Hipel’s approach, it is applied
to standard one-shot games, to paradoxes and to sequential games. This chapter further
analyses the requirements for the “rational” validity of Conflict Analysis and illustrates
both the differences and the potentials with respect to standard game theory, discussing the
advantages, as well as the drawbacks of this approach.

The first section illustrates the general theoretical basis and methodology necessary to
analyse games. It constitutes a more concise and analytical representation of the solution
algorithm explained in “Conflict Analysis - Models and Resolutions” (Fraser and Hipel,
1984). Section 3 exemplifies the approach via the Prisoner’s Dilemma. It demonstrates
how misperception of preferences can be modelled, and introduces a simple dynamic rep-

2Hahn states: “...[A]ll these ’certainties’ and all these ’schools’ which they spawn are a sure sign of ig-
norance ... we do not possess much certain knowledge about the economic world and ... our best chance of
gaining more is to try in all sorts of directions and by all sorts of means.” (Hahn, 1985, p. 8)
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resentation. Section 4 shows how the approach manages certain popular dilemmas and
paradoxes. Section 5 applies this approach to various sequential games and shows a way to
discriminate between the equilibria obtained. Section 6 provides a critical examination of
the theoretical background of Conflict Analysis, discussing eventual deficiencies that arise.
Section 7 constitutes the conclusion. The appendix (section A) contains a short introduction
to Metagame Theory, for the interested reader.

2. Solution Algorithm

In the following the solution algorithm is represented in its easiest form. The general idea is
that not all equilibria of a game are captured by the Nash equilibrium concept, but additional
stable equilibria exist that fall outside the definition of a Nash equilibrium. It is assumed
that an individual does not only consider those strategies currently chosen by other players,
but also takes account of the subsequent and simultaneous potential reactions of other play-
ers by applying a certain form of backward induction. Though an individual does not assign
specific probabilities to how likely another player chooses a certain subsequent (or simul-
taneous) response strategy, it is assumed that an individual refrains from playing a strategy
that will trigger a response with positive probability, which will change his outcome for the
worse. In addition, since the utility ranking is purely ordinal and no pay-offs are assigned
to any strategy profile, equilibria are only defined by pure strategies.3

2.1. Stability Conditions

An n-person non-cooperative game is defined by G = (S1,S2, ...,Sn;U1,U2, ...,Un), with
player set N = (1,2,3, ...,n). Si being individual i’s strategy set and Ui being defined as
i’s preference function for each i ∈ N. For the given set of players and the individual
strategy sets, a strategy profile is defined by s = (s1,s2,s3, ...,sn), with si ∈ Si being the
strategy chosen by individual i. The set of all strategy profiles is then defined by S =
S1×S2×S3× ...×Sn. There exists a preference function Ui that ranks the strategy profiles
according to individual i’s preferences over the associated outcomes. Ui is not necessarily
a utility or pay-off function, it suffices that it assigns all strategy profiles in the strategy
profile set to two subsets with respect to any underlying strategy profile.4 Hence, Ui is not
required to attach a real number to all outcomes in order to present i’s preferences. Assume
q and p to be two strategy profiles and denote the associated outcome by O(q) and O(p),
then

p ∈U+
i (q), iff O(p)�i O(q)

p ∈U−i (q), iff O(p)�i O(q)
(1)

with U+
i (q)∩U−i (q) = /0 and U+

i (q)∪U−i (q) = S. Hence, for each strategy profile q, set S is
divided into a set of strategy profiles, whose outcomes are strictly preferred to the outcome

3On the issue of pure strategies, see Harsanyi, 1973; Morris, 2006. The assumption, by which a minimal
loss probability, deriving from a strategy switch, is sufficient to deter a player from choosing this strategy, is
similar to the maxmin criterion used in Decision Theory, see Gilboa and Schmeidler, 1989; Hey et al., 2008.

4In other words, Ui is a function from set S to its Boolean B(S).
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associated with q and a set of strategy profiles, associated with those outcomes that are
not preferred to O(q). Consequently, completeness is the only axiom that must hold for
the underlying preferences. Owing to the pairwise comparison of outcomes, transitivity is
unnecessary. This chapter will, however, concentrate on games, which exhibit transitive
preferences.5 For convenience I will henceforth use the formulation that strategy profile
q is preferred to p, meaning that the outcome associated to q is preferred to the outcome
associated to p.6 The preference order thus obtained will be the basis of the analysis. In
order to determine equilibrium strategies, first define the set of strategies to which a player
has a possible incentive to switch, given the strategies of the other players. These strategies
are defined by the set of “dominant profiles”. Second, these strategies need to be analysed
for their validity, i.e. if the player has still an incentive to switch after taking into account
the potential simultaneous and subsequent responses of other players:

I. A given strategy profile q = (si,s−i) is defined by the strategy si of player i and the
strategy profile s−i, determined by the strategic choice of all players other than i.
Denote a strategy profile, which can be obtained by a unilateral strategy switch, by
zi(q) = (si,s−i), with any si ∈ Si. Given the set Zi(q) of all strategy profiles that can be
obtained by a unilateral switch of i, the set of “dominant profiles” for q is then defined
as

DP:u+i (q) = Zi(q)∩U+
i (q),∀si ∈ Si (2)

In other words, for each underlying strategy profile, the possible better response strate-
gies of player i are defined by a set of strategy profiles (first) that can be obtained by a
unilateral strategy switch, given the strategy profile of all players other than the player
being analysed, and (second) that are strictly preferred to the current strategy profile
by this player.7 Hence, we do not only assign a single strategy profile defined by the
best response strategy to a given strategy profile, but all strategy profiles p = (s∗i ,s−i)
for any s∗i ∈ Si, such that O(p)�i O(q). In other words, all those strategy profiles de-
fined by all possible “better” response strategies of player i define a dominant profile.
- Throughout this chapter a dominant profile is denoted in short as DP.

II. It needs to be checked whether such a possible better response is still valid, if a player
reasons about sequential or simultaneous better response strategies of other players.

5It must clearly hold that for any strategy profile o either o ∈U+
i (q) or o ∈U−i (q), but never both since

both sets are disjoint, nor neither, as U+
i (q)∪U−i (q) cover the entire outcome space. The presentation in 1

allows for intransitivity. Given O(o) �i O(p), O(p) �i O(q), but O(q) �i O(o), the intransitive preference is
represented by o ∈U+

i (p), p ∈U−i (o), p ∈U+
i (q), q ∈U−i (p), q ∈U+

i (o), and o ∈U−i (q). Transitivity should
be only required, if it strictly holds that O(p)�i O(q) implies U−i (q)⊂U−i (p).

6Strictly speaking, an individual does not retain a preference over strategy profiles, but over the associated
outcomes/consequences. It is assumed that in a given state ω a unique strategy profile is associated to each
outcome and, hence, for state ω we can simply speak of an individual preference order over strategy profiles.
In another state ω

′
, a player might associate other outcomes to a strategy profiles. Thus the preference order is

not unique, but depends on the state.
7Notice that for complete and transitive preferences and a strict preference order, such a set can only consist

of strategy profiles that lie in the direction of preference (here: to the left in the preference order in the later
representation). Also notice that in this definition, a DP necessitates strict preference. In later games I will
relax this assumption and illustrate the effect of weak preference on the equilibrium set.
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As a result, in addition to the standard Nash equilibria, Conflict Analysis defines two
additional criteria for stability: sequential and simultaneous stability. In general, if a
strategy is the unique valid best response, the strategy is considered to be stable for
this player since he has no incentive to switch. Though a slight abuse of the standard
definition, a strategy profile defined by such a stable strategy for player i is also defined
as being stable for player i. An equilibrium is thus given by a strategy profile, in which
each component is a stable strategy given the other strategies; or using the slightly
abusive definition, by a strategy profile that is stable for all players. For any strategy
profile q = (si,s−i) the following forms of individual stability exit for any player i:

(a) Rational Stability: Like in the standard Nash approach, an individual has no in-
centive to change his strategy, if he is already playing the rational best response
to the strategies chosen by all other players, implying that no other possible better
response strategy exists. If strategy profile q characterises the best response strat-
egy for player i to all other players’ strategies in the strategy profile, this strategy
profile is defined as rationally stable for player i. Hence, a strategy profile q is
rationally stable for player i, if the set of dominant profiles is empty. Thus for
q = (si,s−i) to be rationally stable for player i, it must hold:

Rational Stability: u+i (si,s−i) = /0,∀si ∈ Si (3)

(b) Sequential stability: A switch of player i to a better response strategy can entail a
subsequent switch in strategies of another player j, since j’s strategy is no longer
best response. This may result in a strategy profile that is not strictly preferred
to the original strategy profile by player i. Consequently, player i will refrain
from choosing this possible better response strategy, since a switch will not make
him better off. If all possible better response strategies will eventually lead to not
strictly preferred outcomes, the current strategy defined by the underlying strategy
profile is best response; thus this strategy profile is defined as sequentially stable
for player i.
Assume that player i switches from the strategy defined by strategy profile q to a
possible better response strategy, thus changing the outcome to a strategy profile
defined in the set of DP’s for q. Let this DP be defined as p. Remember that
all possible better response strategies for any player are defined by the individual
dominant profiles for this player. The set of better response strategies of another
player j to the new strategy profile p is then defined by j’s DPs for profile p. It is
thus sufficient to look at the DPs of player i for strategy profile q and at the DPs of
all other players different from i for p. Consequently a DP, or more correctly the
strategy of player i defined by the DP, is sanctioned, if there exists some player j,
who can choose a viable response strategy to the possible better response strategy
(defined by p) of player i in such a way that the resulting strategy profile is not
strictly preferred by player i to the one from which he originally deviated (q).
Viable is thereby defined as a strategy switch that immediately results in a strategy
profile strictly preferred by player j (i.e. defined by a DP of player j to strategy
profile p).8

8The viability assumption avoids that a player strategically chooses a strategy that deteriorates his utility
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As a result, in order for a DP to be sequentially sanctioned, it is already sufficient
that at least one possible better response strategy (i.e. DP) of one other player to
player i’s strategy choice exists that induces a less preferred strategy profile for
i. If all “better response” strategies of player i are sanctioned in such a way, the
current strategy is best response.9

For any player j define û+j (p) = Z j(p)∩U+
j (p) as the set of DPs for player j to

player i’s dominant profile p for q, i.e. the set of strategy profiles obtained by
player j’s better response strategies to strategy profile p = (s∗i ,s−i), with O(p)�i

O(q). In order for q = (si,s−i) to be sequentially stable for player i, it must hold:

Sequential stability: û+j (p = (s∗i ,s−i))∩U−i (q = (si,s−i)) 6= /0,

∀s∗i ∈ Si : p = (s∗i ,s−i) ∈ u+i (q) and for any j 6= i
(4)

(c) Instability: If i’s strategy defined by q is not best response to the other players’
strategies defined in q (i.e. if the set of dominant profiles for q is not empty and
at least one dominant profile is not sequentially sanctioned by a viable response
strategy of at least one of the other players) strategy profile q is termed unstable
for player i. In other words strategy profile q is unstable, if neither condition 3
nor 4 hold. Hence, player i will switch to the strategy defined by the unsanctioned
DP, as this will lead with certainty to a strictly preferred strategy profile. As a
direct result from the previous definitions, for profiles q and p defined as before,
q is unstable, if:10

Instability: ∃p ∈ u+i (q) : û+j (p)∩U−i (q) = /0,∀ j 6= i

and some s∗i ∈ Si : p = (s∗i ,s−i)
(5)

(d) Simultaneous stability: In addition to the previous types of stability, simultaneous
stability can occur in games that are not sequential or if the other players’ strategy
choices are mutually unknown. It is generally a weaker and rarer form of stabil-
ity and should be checked for plausibility.11 The main idea is that if more than
one player simultaneously switch strategies from a current strategy profile, where
possible better responses exist for those players, the resulting strategy profile may
be not strictly preferred by the player currently analysed. Hence, probable occur-
rence of such a simultaneous strategy change deters the player from switching his
strategy. If for all strategies of player i, which destabilise q through equation 5,
such a simultaneous switch of other players occurs with positive probability and,

hoping that the others response strategies will eventually make him better off. The assumption also evades
cycles. This is, however, not the case if we assume that equally preferred strategy profiles can be DPs, i.e.
if only a weak preference is necessary. Therefore I am in favour of refusing this last assumption of equally
preferred strategy profiles serving as DPs. Examples in section 4 will elaborate this issue.

9One might think of sequential stability as the best response strategy derived from backward induction with
high ambiguity aversion. We will, however, observe in section 4 that backward induction is not equivalent to
sequential stability.

10Note that the following definition also includes ∃p ∈ u+i (q) : û+j (p) = /0,∀ j 6= i and some s∗i : p = (s∗i ,s−i).
11Section 3.3 will discuss a game, where simultaneous stability is of major importance, as it captures an

effect similar to risk dominance.
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in addition, can lead to a strategy profile not strictly preferred to q by player i, then
strategy profile q is termed “simultaneously stable for player i”. Other players are
only likely to switch, if they also have a valid better response for q. The set of
other players is thus defined by all those players for whom q is unstable. Conse-
quently, simultaneous stability needs only to be checked for strategy profiles that
were previously defined as unstable and only for those corresponding DPs that are
not sequentially sanctioned.
Since a player has no information about the strategy choice of other players, a
simultaneous strategy switch can be effected by the entire set of players, who pos-
sess a viable, not sequentially sanctioned, better response strategy, but also only
by a subset.12 Let o be a possible strategy profile resulting from a simultaneous
switch in strategies of other players for whom there exists a non-sanctioned DP
for some strategy profile q. Hence, o is defined both by components that are iden-
tical to those in q (the players, who did not switch) and by components consisting
of strategies defined by a not sequentially sanctioned DP of q for each player that
switch. This includes also player i’s switch to some strategy so

i fulfilling condition
5. If o is not strictly preferred to q by player i, strategy so

i is “simultaneously”
sanctioned and will not be chosen by i. If this is the case for all DPs that rendered
the strategy profile unstable for i, strategy profile q is simultaneously stable for i.
The current strategy is best response with respect to the possible simultaneously
chosen strategies of the other players, who have an incentive to switch.
For any player j, define Sς

j(q) as the set of strategies of player j that
render a strategy profile q unstable plus the strategy originally played, i.e.
all those strategies that are defined by the unsanctioned DPs of q accord-
ing to equation 5, as well as the strategy s j corresponding to profile q.
Thus, for q = (si,s−i) the set of simultaneously attainable strategy pro-
files is given by Sς(q) = Sς

1(q)× Sς

2(q)× ...× Sς
m(q)× s−M for a player set

M = (1,2, . . . ,m) ⊆ N : h ∈ M, iff (Sς

h(q)\{s̄h}) 6= /0. In other word, set M is
defined by those players, who posses a non-sanctioned DP for q, including player
i.13

Simultaneous stability: ∀sς

i ∈ Sς

i (q),∃ŝ
ς

−i ∈ Sς

−i(q) : (sς

i , ŝ
ς

−i) ∈U−i (q) (6)

III. The definition of an equilibrium is identical to the standard approach. The set of
equilibria of the game is specified by all strategy profiles, in which each component
is defined by the best response strategy of each player given the strategies chosen by
all other players, i.e. all those strategy profiles that are stable for all players (either
rational, sequential or simultaneously). Notice, however, that only if a strategy profile
is rationally stable for all players, it is a Nash equilibrium. All those equilibria that are
not rationally stable for one or more players but either sequentially or simultaneously
stable would not be defined as an equilibrium in the standard approach.

12e.g. This implies, that seven possible player combinations for each player i have to be analysed (∑i
(m−1

i
)
)

for a case, in which a strategy profile is unstable for four players of the entire player set.
13Hence, simultaneous stability adds the idea of eventual simultaneous switches to the underlying assumption

of backward induction.
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An example will be given in the following section. The next subsection will elaborate
the form of representation used in this chapter.

2.2. Representation

Since this approach goes beyond the Nash definition of an equilibrium by adding sequential
and simultaneous stability, a representation of a game in normal or extensive form is insuf-
ficient. It is therefore necessary to spend a few words on the structure of analysis. Each
strategy can define a set of actions, such that an individual strategy consisting of r indepen-
dent actions is defined as si = (a1i,a2i, . . . ,ari). A player has the choice of whether or not to
take a certain action. Define the set Aki = (aki,¬aki), so set Aki consists of two elements, the
first meaning that action k is chosen by player i, the second that it is not. Whence we ob-
tain that Si ⊆×kAki, where the equality holds if none of the actions are mutually exclusive.
Hence, each strategy of a player i can be uniquely defined by a binary vector of length equal
to the number of actions that player i possesses. Similarly, also each strategy profile can be
uniquely identified by a binary vector equal in length to the sum of all available individual
actions. Each element in this vector defines an individual action and its value whether the
action is chosen or not.

Assume a game with three players, where the strategy set Si is defined by the num-
ber of actions x = |

⋃
k Aki|, strategy set S j by the number of actions y = |

⋃
k Ak j|, and

strategy Sh by the number of actions z = |
⋃

k Akh|, implying that the actions are mutu-
ally non-exclusive for player i, j and h, respectively.14 In such a three player game, each
strategy profile q = (si,s j,sh) can be defined by a binary vector of length x+ y+ z, given

by q̂ = (

x︷ ︸︸ ︷
I, I, . . . , I,

y︷ ︸︸ ︷
I, I, . . . , I,

z︷ ︸︸ ︷
I, I, . . . , I)T . I denotes a binary value of either 0 or 1, where 1

implies that the action is chosen, 0 that it is not. Hence, each player individually defines
the sequence of this binary vector for a length equal to the number of available actions. As
an example, for a three player game, in which each player has two mutually non-exclusive
actions, one strategy profile p is defined by p̂ = (0,1,1,0,1,0)T . The length of this binary
vector can be reduced in the case of mutually exclusive actions. If an action A can only
be chosen, if an action B is not and the inverse, but one action has to be chosen, then both
action can be described by a single digit in the binary vector. I = 1 could be defined as A is
chosen by a player i, and thus I = 0 would mean that B is chosen.

Each such binary vector can be again uniquely defined by a decimal code, calculated
as follows: In general the binary vector has |

⋃
i∈N(

⋃
k aki)| digits (less the number of those

actions reduced by the aforementioned simplification in the case of mutually exclusive ac-
tions) that have either the value 1 or 0. Like the binary code of a computer this can be
rewritten by taking the sum over the products of the digit times two to the power of the
position in the vector. Consequently, the example p̂ = (0,1,1,0,1,0)T can be written as
0∗20+1∗21+1∗22+0∗23+1∗24+0∗25 = 22 = ṗ. The value of 22 does not represent
a preference, but is the short representation of a strategy profile.

A preference order can thus be defined as a vector of length equal to the sum of actions
(|
⋃

i
⋃

k Aki|), reduced by the actions that are mutually exclusive, that can be transformed
into a natural number defining a strategy profile.

14|.| denotes the cardinality of a set, i.e. absolute number of elements in the set.
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Given the assumptions, the preference function Ui orders the strategy profiles into the
preference vector according to the preferences of player i over the associated outcomes.
Since preferences are strictly ordinal, it suffices to note down the natural numbers, identi-
fying each a strategy profile, in a vector, where the position of the component indicates the
preference. Starting with the most preferred, strategy profiles can be ordered from the left
most position to the right. This implies that for strict and transitive preferences each strategy
profile can have only one position in the preference vector and it is strictly preferred to all
strategy profiles noted further to the right, i.e. for O(q)�i O(p)→Ui = (. . . , q̇, . . . , ṗ, . . .).

3. Example - A Prisoner’s Dilemma

This section will illustrate the approach presented above. First notice that for simplicity,
whenever the game representation has been changed to the game form used in the Conflict
Analysis approach, I will speak of strategy profile ẋ, where ẋ is in fact the natural number
defined by the decimal code that refers to strategy profile x.

For two reasons, the Prisoner’s Dilemma (PD) is chosen as an example: First, it is a
simple game known to most social scientists and second, it also shows some theoretical
intricacies, unapparent in other games (for a detailed discussion of theoretical issues con-
cerning the PD, see section 6 beginning on page 31). Suppose a game G with two players
i = A,B, where each player possesses an action, which he is free to take or not, and thus
two strategies Si = {not confess,confess}. The pay-offs represent the players’ preferences
over the outcomes, each defined by a strategy profile. Hence, the pay-off of player i is given
by πi(si,s j), with i 6= j under strategy profile (si,s j). Furthermore, assume that pay-offs
are symmetric, i.e. independent of a player’s position. The general symmetric 2x2 game is
represented by the following normal form game:

(not confess confess

not confess a,a b,c

confess c,b d,d

)
(7)

Assuming c> a> d > b and 2a> b+c turns the game into a Prisoner’s Dilemma. Joint
non-confession is welfare maximising, but joint confession is the single Nash equilibrium,
since confess strictly dominates not confess.

In this game, each player has the choice over the single action (ai = con f ess). Each of a
player’s two strategies can thus be defined by a single binary value, and a strategy profile can
be uniquely defined by a vector with two binary components, one for each player. A vector
(1,1)T means that both players confess, whereas (1,0)T implies that player A confesses,
but player B does not. Each of these strategy profiles can be converted to a decimal value
based on the strategy composition. Table 1 illustrates the decimal representation.

Following the previous assumption that c > a > d > b, the preference order for player
A is represented by a vector (1,0,3,2) and for player B the preference order is defined by
vector (2,0,3,1). By condition 2 and since confess strictly dominates not confess, it holds
that u+A (1) = {0}, u+A (3) = {2}, u+B (2) = {0}, and u+B (3) = {1}, and all other sets are empty.
Player A can unilaterally improve from strategy profile 0 (not confess, not confess) to the
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Table 1. coding the binary strategy profiles into decimal digits - strategy coding:
confession=1, no confession=0

Set of Strategy profiles
Player A 0 1 0 1
Player B 0 0 1 1
Decimal Code 0 1 2 3

dominant profile 1 by choosing strategy confess. This enables him to increase his pay-off
from a to c. Furthermore player A can unilaterally switch from strategy profile 2 to the
dominant profile 3. For player B the DP from strategy profile 0 is strategy profile 2, from
strategy profile 1 it is strategy profile 3.

By condition 3 strategy profiles 1 and 3 are rationally stable for player A, and strategy
profile 2 and 3 are rationally stable for player B. Since a switch to strategy profile 3 is
unsanctioned, strategy profile 2 is unstable for player A according to condition 5. The same
holds for player B with respect to strategy profile 1. A strategy switch from strategy profile
0 to his DP is sanctioned for both players through the subsequent switch of the other player
to strategy confess. Since O(0)�i O(3) condition 4 holds for both players. By definition of
stability, strategy profiles 0, 1, and 3 are stable for player A, strategy profiles 0, 2, and 3 are
stable for B. Consequently, 0 and 1 define the equilibria of the game.

The game can be much easier analysed, especially in the case of more strategies and
players, when put into a form similar to the classical normal form. The sequential analysis
renders, however, the normal form insufficient. The following presentation is thus a mix
between the normal and extensive form. It will be used throughout the remaining parts of
the chapter, since it succinctly represents both the game’s dynamics and equilibria.

Table 2. Solution to the Prisoner’s Dilemma

Stability Analysis
equilibrium x E E x

Stability r s r u
Player A Preference Order 1 0 3 2

DP 1 3
Stability r s r u

Player B Preference Order 2 0 3 1
DP 2 3

In order to derive table 2, first, note down the preference order for both players. Those
have already been derived above from condition c > a > d > b. Second, note down the
dominant profiles given by condition 2 under each strategy profile in order of preference.
Notice again that, as in the Prisoner’s Dilemma preferences are strict, a DP can only be



The Theory of Conflict Analysis 11

a strategy profile that appears to the left of the strategy profile, under which the DP is
written. Consequently, the strategy profile that is farthest to the left is always rational, since
a DP cannot exist. Based hereupon, the stability of each strategy profile can be analysed
according to the conditions described above. The abbreviation for the stability should be
read as follows: u - unstable, r - rationally, s - sequentially, and û - simultaneously stable.

Starting with player A, for strategy profile 1 and 3, the boxes indicating their DPs
are empty. Hence, both strategy profiles are rationally stable. For player A, the DP of 0
is to switch to 1. Yet, the DP of 1 for player B is 3. Since 3 is further right than 1 in
the preference order of player A (i.e. it is strictly less preferred), this strategy switch is
sequentially sanctioned. Since this is the only available DP for 0, this strategy profile is
sequentially stable for player A. A switch of A from 2 to 3, on the contrary, does not affect
player B’s strategy choice, since 3 has no DP for that player. A switch from 2=(not confess,
confess) to 3 =(not confess, not confess), will thus not trigger any response by player B and
thus player A can impose unilaterally the preferred strategy profile. The same analysis for
player B reveals that 1 is unstable, but a switch from 0 to 2 is sanctioned by player A’s shift
to 3.

It remains to test for simultaneous stability of strategy profile 2. Since player B has no
DP from 2 condition 6 does not hold. The same with respect to 1, from which player A
has no DP. Notice that if strategy profile 0 were not already sequentially stable, it would be
simultaneously stable.15 Each strategy profile that is not assigned a u defines an equilibrium,
illustrated by E in the top row.

Thus, for the Prisoner’s Dilemma we obtain two equilibria in pure strategies. One is
defined by joint non-confession, the other by joint confession. None of the two strategies is
strictly dominant.16 This contrasts with the classical analysis. Conflict Analysis keeps the
game’s structure, and has therefore an advantage over explanations using other regarding
preferences, if the original notion of Prisoner’s Dilemma and its validity for social interac-
tions should be maintained. By transforming the pay-off matrix in such a way, the game
ceases to be a Prisoner’s Dilemma. Inference can only be made for this new game as the
rules of the game are changed and not the structure of analysis. In the Conflict Analysis ap-
proach the class of preference ordering, on the contrary, is not enlarged beyond the original
definition of a PD, since preferences stay purely “self-referential”. Yet, the stability of the
cooperative equilibrium requires at least a supplementary assumption. Furthermore, both
equilibria will not occur with equal probability and the cooperative equilibrium will only
arise, if additional conditions hold. A discussion of these issues is postponed to subsection
3.2 on page 14 and section 6, beginning on page 31.

Also notice that the analysis of simultaneous stability can be simplified by using the
decimal value that is attributed to each strategy profile. Assume that a strategy profile with
decimal value q̇ should be tested for simultaneous stability and ȯi is the decimal value of
the corresponding DP for player i. The new possible strategy profile given by value q̂ is
defined by

15Assume that for both players’ the DPs for strategy profile 0 were not already sequentially sanctioned and
simultaneous stability needed to be tested. A simultaneous switch of both player A and B to confess (which is
their preferred strategy according to the DPs) will result in strategy profile 3, which is strictly less preferred.

16Those readers familiar with “Metamagical Themas” (Hofstadter, 1985) will recognise the similarity be-
tween the Conflict Analysis approach and “superrationality”.
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q̂ =
x

∑
i=1

ȯi− (x−1)q̇, x = 2,3, ...,m (8)

where x is equal to the number of players under consideration from the total set of players
M, who possesses a DP from q.17

3.1. Multi-Level Hypergames

A hypergame occurs, whenever some player j is wrong about the true nature of game
G and perceives a game that either or both differs with respect to the actual preference
order or to the available strategies in the sets S− j of the other players. Define player
i’s strategy set and preference order by the vector Vi = {Si,Ui}. A non-cooperative n-
player game can be represented by G = (V1,V2, ..,Vn). If one or more players misper-
ceive the underlying rules, game G for player j is given by G j = (V1 j,V2 j, ..,Vn j) and
hence, a first level hypergame is defined as H = (G1,G2, ...,Gn). If other players are
aware of the faulty perception of player j, the game turns into a second level hyper-
game, where the game for player j is defined by an individual first level hypergame
Hq = (G1q,G2q, ...,Gnq). Consequently the second level hypergame is represented by
H2 = (H1,H2, ...,Hn). The reasoning can be continued for higher level hypergames. A
third level hypergame would occur in the case, where some player erroneously perceive
another players misperception, which is again recognised by other players. The third level
hypergame will be represented by H3 = (H2

1 ,H
2
2 , ...,H

2
n ). In the case of two players with

i = A,B a first level hypergame is characterised by H = (GA,GB). A third level hypergame
will have the form

H3 = (H2
A,H

2
B) =

{
HAA HBA

HAB HBB

}
=

{
(GAAA GBAA) (GABA GBBA)
(GAAB GBAB) (GABB GBBB)

}
.

The equilibria of a first level hypergame depend on the stability of each player’s strate-
gies within their individual games. The set of equilibria is defined by those strategy pro-
files that are stable according the the individual perception given by the individual sta-
bilities in H = (GA,GB), i.e. by the strategy profiles stable both in VAA and VBB. Sup-
pose both players erroneously believe that the other player most prefers none of them
in prison and least prefers both to be imprisoned. The game that A believes to be play-
ing is given by GA = (VAA,VBA) = ({1,0,3,2} ,{0,2,1,3}) and B’s game will be given by
GB = (VAB,VBB) = ({0,1,2,3} ,{2,0,3,1}). The stabilities are derived for each game in-
dividually. They are solutions to the first level hypergame, represented in table 3. The
stabilities for VAB and VBA are not written down specifically, since they are irrelevant for
determining the set of equilibria of the first level hypergame. They are only of importance,
when checking for eventual simultaneous stability. In this game, however, none of the
strategy profiles is simultaneously stable.

If both players believe the other player to be more altruist, the only possible equilibrium
will be strategy profile 3. A switch to the non-cooperative strategy is not sanctioned by a

17Consider the example of strategy profile 0. After a simultaneous switch of both players from 0, the new
equilibrium would be given by 3=(1+2)−(2−1)0= 3 (since x= 2). If there were three players (A,B,C)∈M,
then x can take value 2 and 3. Simultaneous stability has to be checked for the cases, in which all players choose
a DP (hence x = 3) and only two players react (x = 2).
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Table 3. Solution to the Prisoner’s Dilemma Hypergame

Stability Analysis
equilibrium x x E x
Stability r u r u

VAA Preference Order 1 0 3 2
DP 1 3
Preference Order 0 2 1 3

VAB DP 0 1
Preference Order 0 1 2 3

VBA DP 0 2
Stability r u r u

VBB Preference Order 2 0 3 1
DP 2 3

sequential switch of the other player. In the case of higher order hypergames and a two
player game, the analysis of higher level hypergames can be reduced to the examination
of the two games on the top left and bottom right on the main diagonal of the hypergame
matrix (for an example see, Fraser and Hipel, 1984, Ch. 3 & 4). The two games are
sufficient to determine the final set of equilibria in the higher level hypergame, independent
of the order of the underlying hypergame.18 The higher level hypergame then breaks down
into a first level hypergame with H = (GAAA...,GBBB...), as the other matrix elements are
of no importance. Only strategy profiles that are stable both in VAAA... and VBBB... form
elements of the set of equilibria. This is a direct consequence from the simple fact that H =
(GAAA...,GBBB...) represents the game that each player believes to be playing respectively.19

18An analysis of the other games is only necessary, if it is of interest what individuals believe about the
outcome of their hypergame, i.e. their analysis along the various levels of misperception in the higher level
hypergame. If individual perceptions about the equilibria in their game is irrelevant, the analysis can be sub-
stantially simplified.

19Nevertheless, Fraser & Hipel’s analysis can be even further refined, if these individual games are of interest.
Consider another approach: First analyse all zero level games of the original n-th level game. Each zero level
game (there will be nr, with n being the number of players and r being the order of the hypergame; but games
of higher order than three are unlikely to occur) will result in a set of possible equilibria. These equilibria will
define the strategy that a player will choose and hence, will determine the set of equilibria for the next higher
level hypergame. The next-level equilibria are determined in the same way that new equilibria are derived,
if testing for simultaneous stability (equation 8). The equilibria obtained should be checked, if it is stable
according to the underlying stabilities for both players in the corresponding hypergame (i.e. the top left and
bottom right elements). An example will make the idea clear: Assume a second order hypergame of a game as
in matrix 7 given by some arbitrary pay-off configuration, and for simplicity that there is only one equilibrium
for each zero level hypergames. Assume them to be GAA = 2, GBA = 1, GAB = 1, and GBB = 2. Hence, A
assumes that the game without erroneous play would end up in equilibrium 2, but that B will perceive the
game to end up in equilibrium 1. B believes the inverse. Consequently, hypergame HA will lead to equilibrium
0 - player A chooses not confess in accordance with equilibrium 2, he expects the same for B in accordance
with equilibrium 1, the result being equilibrium 0 ((not confess, not confess). The same reasoning will lead
to equilibrium 3 ((confess, confess) for HB, which player B believes to be playing. Accordingly, equilibria 0
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3.2. Dynamic Analysis

The approach presented so far is purely static, yet most conflicts are dynamic processes. It
is necessary to adapt the approach to explain and model the dynamics of repeated games.
Fortunately the static analysis is the first of two steps to derive a transition matrix and
to represent the game as a Markov chain. The dynamic analysis also has a significance
that goes beyond the original purpose intended by Fraser & Hipel: It is, nonetheless, also
instructive to understand the reasoning of players that led to the stability of the equilibria in
one-shot games under the assumptions of Conflict Analysis.

There are two different assumptions that can form the basis for the application of the
Conflict Analysis approach to one-shot games, first, an empathic rationality of players, and
second, an evolutionary incapacity of players to rationalise the singularity of such games.
The first supposes that players have the potential to comprehend, experience and predict
the feelings of other players that determine their strategic choice. Empathy is thus clearly
distinct from sympathy and is not identical with the concept of identification. The second
relies on a possible explanation of why individuals are observed to choose non-rational
actions in single shot games. Caused by the rare occurrence of non-repeated interactions,
evolution did not prepare us for one-shot games, thus creating a lack of apt heuristics for
interactions that occur as a single incident. The discussion of both assumptions and the
theoretical implications are postponed to section 6 on page 31.

The interpretation of the transition matrix of the Markov chain is therefore twofold. The
transition matrix enables us to see how a game evolves in each period, if Conflict Analysis
is applied to repeated interactions. It also shows the reasoning of players in a one-shot
game, if players exhibit an empathic rationality or apply a repeated game solution heuristic.

Consider a game with f possible strategy profiles, let state Xt−1 be defined by the proba-
bility distribution of the strategy profiles in time t−1 with dimension f ×1. The state tran-
sition of such a game can be characterised as the discrete time Markov process Xt = T Xt−1,
where T is the transition matrix of dimension f × f that describes the transition probability
of moving from strategy profile x to y. Xt defines the state in t and has the same dimen-
sion as Xt−1.20 Consequently a repeated game Γ = (S1t ,S2t , ...,Snt ;U1t ,U2t , ...,Unt) played
in successive time periods t = 1,2, ...,n can be represented, given initial distribution (status
quo state) X0, as

Xt = T t X0, (9)

if T is time homogeneous. As a first step, one transition matrix for each player must be
derived. In a second step, the final transition matrix T of Γ will result from combining the
individual transition matrices Ti.

In the following I will return to the Prisoner’s Dilemma to illustrate the way, in which
the transition matrix is derived, but also to show how the transition matrix illustrates the
reasoning of empathic rationality in one-shot games. Given the preference order of the

and 3 will lead to H2 = 2 ((not confess, confess). Hence, 2 will define the hypergame’s equilibrium. Both
approaches will probably lead to identical results (as in this example, since GAA = GBB = 2), but should they
not, the intersection of the two sets of possible equilibria obtained can provide a refinement.

20Notice that a Markov process is generally represented in the transposed form. Evidently, this has only an
effect on the way the transition occurs. Instead of row defining the current and column the subsequent state in
the transition matrix, the inverse holds for the representation chosen here.
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strategy profiles like in table 1 and based on the DPs for each strategy profile (see table 2)
the individual transition matrices will look as follows:

TA=


0 1 2 3

0 1 0 0 0
1 0 1 0 0
2 0 0 0 0
3 0 0 1 1

 and TB=


0 1 2 3

0 1 0 0 0
1 0 0 0 0
2 0 0 1 0
3 0 1 0 1

.

For illustrative simplicity, the decimal code of each strategy profile has been written
on top and on the side to represent their corresponding position in the transition matrix.
Generally strategy profiles are ordered according to the relative value of their decimal code.
Each column in both matrices corresponds to the strategy profile in the last period t−1. A
row defines the strategy profile in t and its value the transition probability. Consequently,
the sum of all values in one column equals to 1. It should be clear that all stable strategy
profiles can be found with value 1 on the main diagonal and the off-diagonal position is
determined by the most preferred non-sanctioned DP (if a profile possesses more than 1
DP). The final transition matrix T is defined by the strategy profiles that occur if both
players have chosen their best response strategy. T can be derived from TA and TB via an
equation similar to equation 8,

q̄ =
x

∑
i=1

ȯi− (x−1)q̇, (10)

where q̄ is the new equilibrium value, and q̇, ȯi, and x are defined as above. Applying the
individual transition matrices to equation 10 determines the final transition matrix for game
Γ as:21

T =


1 0 0 0
0 0 0 0
0 0 0 0
0 1 1 1

 (11)

The absorbing states (i.e. the set of equilibria) are defined by a 1 on the main diagonal.
Given any initial condition, in which both players disbelieve in mutual non-confession, i.e.
assign probability 0 to strategy profile 0, the single equilibrium of the dynamic game is
strategy profile 3 with certainty for all Xt and t > 1.

The transition matrix shows the empathic reasoning of players participating in the one-
shot Prisoner’s Dilemma. We know that if a player believes the other to choose defect, he
will also defect. This is defined by a transition of 1 and 2 to 3. In addition, if a player expects
that the other player believes that he defects, both will defect. Since he knows that the other
player’s best response to the belief that he defects is to defect, his own best response is
also to defect, represented by T 2. The same logic applies to reasoning of higher order in a
similar way. The stabilities are thus defined by the limit distribution of the transition matrix.
Since T = lim

n→+∞
T t in the Prisoner’s Dilemma, the cooperative equilibrium will only occur

21Applying equation 10 gives for 0: 0+0−0= 0, for 1: 1+3−1= 3, for 2: 3+2−2= 3, for 3: 3+3−3= 3.
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if both players initially expect the other to cooperate. If one player is expected to defect,
the game will result in the defective equilibrium.

Consider that there are two types of players. One player type has the self-regarding
preferences as in table 2 on page 10 for As and Bs. The other player type are altruist cooper-
ators with preference order P(Aa) = {0,1,3,2} and P(Ba) = {0,2,3,1}. Consequently the
possible types of interactions lead to four different games (between two altruists, two self-
regarding players, one altruist and one self-regarding and the inverse, though mixed type
games are identical, since preference order is “symmetric”). In the case, where simultane-
ous stability is considered, all games can be represented by a transition matrix identical to
T defined in matrix 11.22 Hence, we obtain, independent of the player type configuration,
that if player i and j meet

T =


1 0 0 0
0 0 0 0
0 0 0 0
0 1 1 1

 for any i and j. Assume that the proportion of altruists

in the population is pa = 0.62 and the proportion of self-regarding individuals is
ps = 1− pa = 0.38. Hence, the probability that two altruists interact is pa

2 = 0.3844,
for two self-regarding individuals pb

2 = 0.1444, and for two different types to meet
2pa pb = 2×0.2356. Consequently, without sure knowledge on the other player type, only
38% of the individuals will cooperate (X0 = (pa

2, pb pa, pa pb, pb
2)

T ). This is identical to
what Kiyonari, Tanida and Yamagishi (2000) found. If the second player is told that the
first will always cooperate, a positive probability can be assigned only to equilibria 0 and 2.
In this case 62% will cooperate (X0 = (pa,0, pb,0)

T ), which again corresponds to the result
found by Kiyonari et al.

3.3. A Short Excursion to the Stag Hunt Game

The dynamic analysis also shows an interesting property of the Conflict Analysis approach:
Given the original pay-off matrix 7 on page 9 define a > c > d > b and a+b < d + c. The
original Prisoner’s Dilemma turns into a Stag-Hunt game, i.e the special type of coordina-
tion game, in which one equilibrium defined by (not confess, not confess) pay-off domi-
nates the risk dominant equilibrium determined by (confess, confess). The game based on
Rousseau’s parable in the “Discourse on the Origin and Foundations of Inequality among
Men” is another illustrative example for the underlying rationality of the Conflict Analysis
approach. The quantification of a hare or stag seems difficult, yet obviously hunting a stag
is more risky than a hare. Conflict Analysis can incorporate the risk issue without the need
to quantify in relative terms the pay-off value of both animals.

Define the strategies as Hunt Stag =0 and Hunt Hare =1, since the symmetric game
consists of two mutually exclusive actions for each player. The Pareto dominant equilibrium
has thus decimal code 0, the risk dominant equilibrium decimal code 3, and mixed outcomes
are assigned to decimal code 1 for (stag, hare) and to decimal code 2 for (hare, stag).

In the static analysis presented in table 4, two equilibria exist, since Nash equilibria are
always rationally stable for all players. The interior mixed equilibrium is neglected since

22This result gives an interesting basis for discussion: According to the theory described here, it is irrelevant
for the final outcome, whether an individual is self-regarding or altruist in the PD.
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Table 4. Static Solution to the Stag Hunt

Stability Analysis
equilibrium E x E x

Stability r û r u
Player A Preference Order 0 1 3 2

DP 0 3
Stability r û r u

Player B Preference Order 0 2 3 1
DP 0 3

Conflict Analysis only regards pure strategies, owing to the lack of quantification. At the
first impression, the static representation has no more explanatory power than the standard
approach. Yet, in the mixed strategy profile, where a player chooses hare and the opponent
stag, a switch towards the Pareto optimum is simultaneously sanctioned. A look at the
transition matrices will make the effect of simultaneous stability more obvious. From table
4 we obtain:

TA =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 1

 ,TB =


1 0 0 0
0 0 0 0
0 0 1 0
0 1 0 1

⇒ T =


1 0 0 0
0 0 0 0
0 0 0 0
0 1 1 1

 (12)

The final transition matrix in 12 shows that simultaneous stability captures the effect
of risk dominance, though not in the strict sense of a+b < d + c. Since Conflict Analysis
is based on an ordinal ranking of the equilibria and no pay-off values are assigned, an
aggregation of these values per se is impossible. The final transition matrix shows that the
pay-off dominant equilibrium requires each player to place a high probability on the event
that the other player is hunting the stag. If he assigns equal probability to all events, he will
finally hunt the hare, as the risk dominant equilibrium occurs in 75% of the time according
to his priors. This effect is caused by the relation c > b. Any coordination game with two
pure Nash equilibria and c > b will show the same dynamics. Hence, game a > c > d > b
is equivalent to a > d > c > b .23

When comparing to the Prisoner’s Dilemma, it becomes obvious that both games are
dynamically equivalent. The stability of outcome 0 in the PD occurs, however, through
the sequential sanction of the defective strategy. In the stag hunt, a switch towards the
cooperative strategy (from 1 to 0 for player A and from 2 to 0 for player B) is sanctioned by
the fear the other player might switch, i.e. by a simultaneous sanction. This captures exactly
the risk argument in the standard approach. Empirical evidence (Schmidt et al., 2003;
Cooper et al., 1992; Huyck et al., 1990)) shows that individuals play the Prisoner’s Dilemma

23A similar result can be found in Nowak, 2006, Ch. 6. It turns out that, in 2 player games, evolutionary
selection favours the equilibrium that offers the higher pay-off in the case of miscoordination, i.e. which is
defined by the strategy granting pay-off value c, instead of b.



18 Sebastian Ille

similar to the Stag Hunt. Notice, however, that the empirical tests observe interactions after
presenting a pay-off matrix to their subjects. In real world scenarios such quantification
is often infeasible. The Conflict Analysis approach can nevertheless indirectly incorporate
the pay-off effect (e.g. the role of the optimisation premium in Battalio et al., 2001). Both,
the degree of strong altruism and the pay-off associated to each strategy profile, affect the
probabilities of a player’s own choice and his expectation about the other player’s choice,
thereby determining the initial status quo distribution in X0.

4. Dilemmas and Paradoxes

The following section analyses the capacity of the Conflict Analysis approach to solve
games that pose a challenge for classical game theory.24 The games analysed here are the
Traveller’s Dilemma, the surprise test, and the Newcomb’s Paradox. Though the sequential
stability criterion resembles classical backward induction, this section will also show that
the obtained results display no similarities.

The original definition of sequential stability and thus instability implies that a player
refrains from all strategy switches that never lead to a strictly preferred strategy profile
with certainty. Players do not bear the costs of switching, if it does not offer a benefit.
This assumption, however, seems to be too strong. Assume that a player switches to a
new strategy, if he knows that the subsequent switch of other players to their viable better
response strategy will not lead to a less preferred outcome, but that there exists at least one
potential viable better response strategy of another player that leads to a strictly preferred
outcome. This means that a player will not switch if it leads him to a not strictly preferred
outcome with certainty, but he will choose to do so whenever he has a chance to improve
his situation without the risk to worsen it. This requires a stronger condition for sequential
stability and weaker condition for instability with respect to the original definition by Fraser
& Hipel. Define q = (si,s−i), and o ∈U−−i (q), if O(o)≺i O(q):

Assumption 1. A player will never switch to a strategy that leads to an equally preferred
strategy profile with certainty or a less preferred strategy profile with positive probability.
He will, however, change his strategy if a change does not lead to a less preferred strategy
profile with certainty and there exists at least one viable response strategy of another player
that defines a strictly preferred outcome, i.e. for some q = (si,s−i):
Sequential stability: û+j (p)∩U−−i (q) 6= /0, for any j 6= i , or
û+j (p)∩

(
U+

i (q)∪U−−i (q)
)
= /0,∀ j 6= i; both ∀s∗i : p = (s∗i ,s−1) ∈ u+i (q)

24The more common games, such as the battle of sexes and the chicken / hawk-dove game, have not been
analysed in detail, since differences between solutions of standard game theory and those of Conflict Analysis
approach are only minor. Conflict Analysis defines an additional equilibrium (both swerve) in the chicken
game, if we observe that simultaneous switch may occur. This result is reasonable, but unlikely. If the chicken
game is perceived as a sequential game, simultaneous stability does not apply. This exactly illustrates why the
application of simultaneous stability requires an a priori justification based the rules of the game. In “The Battle
of Sexes” all four outcomes are stable. The mixed are again stable owing to a potential simultaneous switch.
This is the case, in which both players wait at different locations. Both players stick to their strategy and keep
on waiting, hoping their counterpart is changing place, as both players fear that changing place might occur at
the same time, bearing only the costs of moving without the benefit from coordination.



The Theory of Conflict Analysis 19

Instability: ∃p ∈ u+i (q) : û+j (p)∩U−−i (q) = /0 ∀ j 6= i and there exists at least one
ŝk : (s∗i , ŝk,s−i−k) ∈U+

i (q)∩ û+k (p), for k 6= i and some s∗i ∈ Si : p = (s∗i ,s−1) ∈ u+i (q)

where (s∗i , ŝk,s−i−k) defines the new strategy profile after a switch of a player k other than
i to his better response strategy given p. Furthermore, the original definition of Fraser
& Hipel assumes that an equally preferred strategy profile is not regarded as a valid DP,
meaning that a player will not switch to a strategy not defined by a strictly preferred strategy
profile (see also footnote 8 on page 5).

The following section thus has the aim to illustrate; first, the results that Conflict Anal-
ysis obtains for the given normal form games; second, the eventual issue that arise through
the relaxation in assumption 1, and third, the difference in the predicted equilibria if either
or not equally preferred strategy profiles qualify as DP’s. (In the following analysis of the
games the results that would be obtained, if equally preferred strategy profiles qualify as
such, are indicated in brackets.)

4.1. Traveller’s Dilemma

The Traveller’s Dilemma by (Basu, 1994) tells the story of two antiquarians, who bought
the same object but did not preserve the receipts. On the flight home, the airline smashes
both objects, and the antiquarians ask for a refund. Thus, they are asked independently
by the airline manager to state the amount (in integral numbers) they paid, constrained
by a minimum amount of 2$. In the case, where they report different amounts, they are
compensated by the lower amount stated. In addition, the one, who reported the lower
amount, will receive 2$ less (as a punishment for having lied), which will be given to the
other as a bonus. If both state the same amount, none will be rewarded nor punished.
Backward induction tells us that both players should state 2$, independently of the value of
the duty paid. This can be seen from matrix 13, which represents the game for 2$ to 5$.
(2,2) is the only stable Nash equilibrium.



b2 b3 b4 b5

a2 2,2 4,0 4,0 4,0

a3 0,4 3,3 5,1 5,1

a4 0,4 1,5 4,4 6,2

a5 0,4 1,5 2,6 5,5

 (13)

In the following the game will be analysed by using the Conflict Analysis approach.
Table 5 shows the encoding of the 16 possible strategy profiles into decimal code in the
same way as has been done in the previous section.



Table 5. Strategy profile Matrix

Travelers’ Dilemma: Decimal Coding
a2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

A a3 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
a4 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
a5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
b2 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

B b3 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
b4 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
b5 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

Decimal 17 33 65 129 18 34 66 130 20 36 68 132 24 40 72 136
pay-off 2,2 4,0 4,0 4,0 0,4 3,3 5,1 5,1 0,4 1,5 4,4 6,2 0,4 1,5 2,6 5,5



The Theory of Conflict Analysis 21

Consequently, the preference order Ui for player i is gives as follows, where a bar indi-
cates equal preference, i.e. the player assigns equal preference to all strategy profiles under
the same line:

UA =
(
132,66,130,136,33,65,68,129,34,17,72,36,40,18,20,24

)
UB =

(
72,36,40,136,18,20,26,68,34,17,132,66,130,33,65,129

) (14)

The game has been analysed in table 16 on page 39. DP of equal preference are written
in brackets. In this analysis all strategy profiles that include a pay-off at least equal to the
Nash equilibrium pay-off for both players are stable. The set of equilibria is defined by
E = (17,34,68,136,72,132). The last two are stable, if equally preferred strategy profiles
are not considered to be valid DP’s.25 To see why this is the case assume that the strategy
profile is defined by (π−1;π), for π > 5, i.e. player 1 declares the value π−1, and player 2
the value π. The second player can improve by switching to a value π∗ ∈ (π−2,π−4) (for
values of π≤ 5 the lower bound of π∗ is 2), granting him a pay-off of π∗+2 > π−3. This
would, however, entail a switch of the first player to a value that is even lower. Hence, the
second player cannot win by deviating.26 In a situation given by strategy profile (π−2;π)
and π> 6 the second player has again an incentive to underbid the first player with a strategy
naming the value π∗∗ ∈ (π−3,π−5). Yet, owing to the subsequent switch of the first player,
he cannot augment his pay-off and will therefore not switch. In this situation also the first
player has an incentive to switch his strategy by declaring π− 1, which is deterred by the
second player’s potential switch. The same reasoning applies to larger differences as long as
both players obtain at least a value of 2. Below this value a player has an incentive to switch
to the Nash strategy that cannot be deterred. If the number of strategies is k, i.e. there are
k different amounts that can be stated, the limit distribution of the transition matrix assigns
probability 2(2k−3)+1

k2 to the Nash equilibrium (2,2) (see transition matrix 15 on page 38).
The other equilibria are played with probability 1

k2 .
Then why is it more intuitive to state a value higher than 2? A possible explanation is

that the game possesses two focal points that are assigned higher probability. It is likely that
individuals assume with high probability that their counterpart chooses either the correct
amount paid or the maximum possible value. The pay-offs also neglect loss-aversion, which
a player will experience when stating a low value. Yet, the Traveller’s Dilemma illustrates
a drawback of the Conflict Analysis approach. Its application to specific games may result
in a large number of potential equilibria.

25If equally preferred strategy profiles are considered as DP’s, the strategy profiles inside the brackets desta-
bilise both 72 and 132. To see this consider strategy profile 72. A change to 65 leads to 17, which is equally
preferred. It may also lead to 33 and 129, both are preferred to 72 by player A. Following Assumption 1 implies
that A will choose 65, since this will eventually make him better off without a chance to diminish his expected
pay-off. Similarly player B will switch from 132 to 20. Hence, if equally preferred outcomes are considered as
valid DP’s only strategy profiles that offer a pay-off higher than the Nash equilibrium to both players and the
Nash equilibrium itself will be equilibria of the game.

26The question that the reader might pose at this point is: Why is the player that acts as second (player 1 in
the example) supposed to switch strategy as he himself will also fear a subsequent switch of the other player
(the first mover, i.e. player 2), i.e. how credible is the subsequent strategy switch? The answer is connected to
the discussion of the “Metagame Fallacy” and the “Newcomb’s Paradox”. The correlation and the answer to
this question will be examined in section 6.
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4.2. The Surprise Test

The Surprise Test is a game, in which a teacher announces to his student(s) that he will write
a surprise exam on one day of the following week. Since the exam cannot be written on
Friday, because it should not be a surprise any more, this day can be eliminated. Backward
induction will then cancel each day of the following week as the student always rejects
the last possible day in the remaining list. Finally the student will be sure that no exam
will be written the next week and will be surprised, when it happens on one day of the
week. Backward induction is no sensible reasoning, since the student ignores that whenever
he eliminated one day, the teacher has an incentive to switch to that day.27 The Conflict
Analysis approach takes account of this fact.

If we consider only a week of four days, the coding in table 5 can be used to represent
each possible strategy profile. Consider A the teacher and B the student. The subscripts
illustrate the days ordered calendrically. Version 1 in table 6 shows a possible pay-off
structure. The teacher strictly prefers all strategy profiles, in which the exam is scheduled
for a different date than expected by the student. The inverse holds true for the student.

Table 6. Strategy profile Matrix

Surprise Test: pay-offs for Version 1 and 2
17 33 65 129 18 34 66 130 20 36 68 132 24 40 72 136

1: 0,1 1,0 1,0 1,0 1,0 0,1 1,0 1,0 1,0 1,0 0,1 1,0 1,0 1,0 1,0 0,1
2: 1,5 0,0 0,0 0,0 2,4 1,5 0,0 0,0 3,3 2,4 1,5 0,0 4,2 3,3 2,4 1,5

Conflict Analysis (see table 17 on page 40) defines every strategy profile as an equi-
librium and thus potential outcome of the game. The symmetric strategy profiles will be
unrealistically defined as unstable only if equally preferred strategy profiles serve as DP’s.
Any date can be chosen by the teacher and the student will randomly choose one day to
study for the exam.

Consider a variant of the preference order as given in version 2 in table 6. In this version
the student least prefers all strategy profiles, in which he studied too late. He prefers most
the situations, in which he correctly predicted the exact date of the surprise exam. His
preference is diminishing in the number of days he studied before the actual date of the
exam. Simply assume that he has to revise each evening in order not to forget what he has
studied a day before. The teacher prefers the student to revise as often as possible, and has
no interest in the student’s failure, which occurs if he studied too late. Pay-offs are as in
table 6.2 and the solution is given in the lower part of table 17 on page 40.

The set of equilibria is defined by E = (18,36,68,136). Since both are uncertain, to
which strategy the other player adheres, the student will learn for any day of the week and
the teacher will schedule the exam either on Tuesday, Wednesday or Thursday (remember
that in the example the school week is only 4 days long). Strategy profiles 17 and 34 are

27Assume the student has eliminated Friday from his list of strategy profiles and disregards this day. When
contemplating about deleting Thursday the student should realize that he has to consider Friday once more,
since this day is now again an option for the teacher as a surprise date.
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equilibria in the original definition of Fraser & Hipel, but are destabilised by 40 and 24,
respectively, if assumption 1 applies. In this version of the Surprise Exam assumption 1
thus creates a theoretical problem, absent in the original definition of sequential stability
and instability.28

4.3. Newcomb’s Paradox

This paradox (Nozick, 1969) has been widely discussed in the various social sciences as
well as philosophy. It will turn out in the discussion in section 6 that the Newcomb Paradox
plays a crucial role in understanding the theory behind the Conflict Analysis approach. The
game defines a situation, in which one player B has the choice between taking one or two
boxes. A second, omniscient player A chooses the value of the first box a priori to player
B’s choice. The first box may contain either 1.000.000$ or will be empty. The omniscient
player will only put one million dollar into the first box, if the other player only chooses this
box but neglects the second, which contains 1.000$. The pay-off structure is presented in
matrix 15 and only indicated for the first player, since the pay-offs of the omniscient player
are not required.

( punish not punish

take both 1.000 1.001.000

take one 0 1.000.000

)
(15)

According to Nozick, this paradox illustrates a conflict between domination of strategies
and maximisation of expected pay-off. Conflict Analysis defines both strategies for the first
player and the corresponding strategic choice of the omniscient player as possible equilibria.
Table 7 on page 24 shows the analysis of the game.

Assume that the omniscient player strictly prefers not to punish the other player. Clas-
sical game theory will define the Nash equilibrium as (take both, not punish). So does
Conflict Analysis (see table8 on page 24).

On the contrary, Metagame Theory predicts strategy profile (take one, not punish) as
the unintuitive, but weakly dominant equilibrium; see table 9 on page 25 (for a formal
introduction to Metagame Theory refer to subsection A in the appendix). This shows that
Conflict Analysis and Metagame Theory do not necessarily determine the same strategy
profiles as equilibria, and provides an example that Conflict Analysis eliminates some of
the deficiencies, for which the Metagame framework has been criticized.

5. Sequential Games

In this section, the Conflict Analysis approach is applied to sequential games respresented
in extensive form. It follows the same structure as the previous section. Though, to my

28If the student knows that the teacher will follow a strategy defined by the equilibrium set, he anticipates
that the teacher will not write on Monday and he will consequently not study for this day. The teacher will
conjecture this and will not schedule for Tuesday and again the student will not study for this day. Finally, only
the equilibrium set Ê = (68,136) should remain.
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Table 7. Solution to the Newcomb’s Paradox

Strategy profiles
Player A take both 0 1 0 1
Player B punish 0 0 1 1

Decimal Code 0 1 2 3

Stability Analysis
equilibrium x E E x

Stability r s r u
Player A Preference Order 1 0 3 2

DP 1 3
Stability r r u u

Player B Preference Order 0 3 1 2
DP 3 0

Table 8. Alternative Version of the Newcomb’s Paradox - B prefers never to punish

Stability Analysis
equilibrium E x x x

Stability r u r u
Player A Preference Order 1 0 3 2

DP 1 3
Stability r r u u

Player B Preference Order 0 1 3 2
DP 1 0

knowledge, Fraser & Hipel have only applied the Conflict Analysis approach to simulta-
neous games, it turns out that the approach can cope quite well in finding a solution, since
it is able to refine the equilibrium set in a similar way as the local best response criterion
(LBR) presented by (Gintis, 2009), which displays advantages over traditional refinement
criteria.29 In this section I have thus chosen games from Gintis (2009, Ch. 9) to illustrate
that Conflict Analysis is also a powerful tool to effectively solve sequential games. For
notational simplicity and to avoid redundancies, the solution will only be given in the spe-
cial game form, with whom the reader should be acquainted after having read the earlier
sections. Assumption 1 still applies.

Owing to the sequentiality of all games, first, simultaneous stability is inapplicable and
second, the first mover can choose an equilibrium as long as it is defined by an unambiguous

29such as subgame perfect, perfect Bayesian, sequential and proper equilibria
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Table 9. Metagame Solution to the alternative version of the Newcomb’s Paradox: B -
one box; b - both boxes; p - punish; np - not punish, supposing

πo(p,B) = 1,πo(p,b) = 2,πo(np,b) = 3,πo(np,B) = 4, where πo(s) defines the pay-off
of the omniscient player under strategy profile s. Though there are many stable

equilibria, (b,B,b,b;p,np) weakly dominates the others, implying equilibrium (np,B).

p,p p,np np,p np,np
b,b,b,b 1.000,2 1.000,2 1.00.1000,3* 1.00.1000,3*
B,b,b,b 0,1 1.000,2 1.00.1000,3* 1.00.1000,3*
b,B,b,b 1.000,2 1.000.000 , 4* 1.00.1000,3 1.00.1000,3
b,b,B,b 1.000,2 1.000,2 0,1 1.00.1000,3*
b,b,b,B 1.000,2 1.000,2 1.00.1000,3 1.000.000,4
B,B,b,b 0,1 1.000.000,4* 1.00.1000,3 1.00.1000,3
B,b,B,b 0,1 1.000,2 0,1 1.00.1000,3*
B,b,b,B 0,1 1.000,2 1.00.1000,3 1.000.000,4
b,B,B,b 1.000,2 1.000.000,4* 0,1 1.00.1000,3
b,B,b,B 1.000,2 1.000.000,4* 1.00.1000,3 1.000.000,4
b,b,B,B 1.000,2 1.000,2 0,1 1.000.000,4
B,B,B,b 0,1 1.000.000,4* 0,1 1.00.1000,3
B,B,b,B 0,1 1.000.000,4* 1.00.1000,3 1.000.000,4
B,b,B,B 0,1 1.000,2 0,1 1.000.000,4
b,B,B,B 1.000,2 1.000.000,4* 0,1 1.000.000,4
B,B,B,B 0,1 1.000.000,4* 0,1 1.000.000,4

path. Preplay conjectures are conducted by players according to the rationalities underlying
the Conflict Analysis approach, and players will only choose strategies according to an
equilibrium profile. This reasoning leads to the following additional assumption that is
applied in this section:

Assumption 2. In a sequential game, if the strategy profile granting highest pay-off to the
first-mover, in the set of equilibria, is defined by a unique path in the reduced game tree,
such that no player is ambiguous about the position of his decision node at the time of his
decision, then it determines the outcome of the game. The reduced game tree is thereby
solely defined by the paths of the strategy profiles in the equilibrium set.

The outcome of each game will be indicated by an E∗. The solution to the first game and
its extensive form is shown in table 10. Notice that /0 means that the player has no choice at
that node. Hence /0 can take both value 1 and 0, but pay-offs are identical (in order to keep
notation as easy as possible, I thus reduced the strategy profile set, where it did not effect
the identification of equilibria). The set of possible equilibria for the first game, represented
in table 10 and figure 1, is given by E = {0,3}. Each equilibrium defines an unambiguous
paths, separated by Alice’s initial strategy choice. Alice will act in accordance with the path
defined by strategy profile 3, which ranks higher than 0 according to her preference order,
and Bob will also choose according to 3. The result is identical to LBR.
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Table 10. Incredible Threats

Strategy profile set:
Choice Alice R 0 1 1
Choice Bob r /0 0 1
Decimal 0 1 3
pay-off 1,5 0,0 2,1

Solution:
equilibrium E* E x

stabilities r r u
A. preference 3 0 1

DP 0
stabilities r r u

B. preference 0 3 1
DP 3

Figure 1. Game.

The second game is shown again to the right in extensive form, and its solution is given
in the next table 11. The bar indicates the set of equally preferred strategy profiles. Strategy
profiles that are equally preferred can be interpreted as mutual DPs or not. Following the
discussion in the previous section (see assumption 1 in section 4), it is assumed that a
strategy profile will only be a viable DP as long as a switch to this strategy profile results in
a preferred outcome with positive probability. Furthermore, like in the previous section, the
stabilities occurring if equally preferred strategy profiles qualify as DP’s, are indicated by
the brackets. Since Bob cannot improve the outcome by switching from 9 to 1 or vice versa,
a strategy switch will not happen through assumption 1. In addition, the consideration of
weak or strict preference for DPs is of no importance for the equilibrium set of this game.

Hence E = {1,10}. Given the set of equilibria, both 1 and 10 define unique paths,
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Figure 2. Game.

Figure 3. Game.

since Bob knows for sure whether or not he is on the path defined by 1 or 10, depending
on whether he can choose a strategy or not. If Alice plays according to her most preferred
equilibrium 10, Bob knows he can choose and takes strategy a, leading to 10, which is
identical to the result predicted by LBR.

The third game is again illustrated in extensive form to the right in figure 3 and in table
12. A switch of Bob from 2 to 10 will not improve his outcome with positive probability,
as no player has a DP to a preferred strategy profile. A switch from 10 to 2 can trigger a
subsequent change of Carole to 18. By switching, Bob can attain a preferred outcome with
positive probability. The set of equilibria is given by E = {1,18}, each defining a unique
path. Whenever Bob and Carole are free to choose, they will take the strategy defined by
18. Hence, Alice will initially choose strategy B, as predicted by LBR.

The following game, named after Reinhard Selten, is shown below and the solution is
given in table 13.

The game is analysed in the same way as the previous games. Again a strategy profile



28 Sebastian Ille

Table 11. Picking the Sequential equilibrium I

Strategy profile set:
Choice Alice A 1 1 0 0 0 0

B 0 0 1 1 0 0
C 0 0 0 0 1 1

Choice Bob a 0 1 0 1 0 1
Decimal 1 9 2 10 4 12
pay-off 0,2 0,2 -1,-1 2,1 -2,0 1,1

Solution:
equilibrium E* x E x x(x) x(x)

stabilities r u r u u u
A. preference 10 12 1 9 2 4

DP 10 10 1 1
12 2

stabilities r(s) r(s) r r u u
B. preference 1 9 10 12 4 2

DP (9) (1) 12 10

Figure 4. Game - Selten’s Horse.

serves as a DP, only if a switch to this strategy profile results in a preferred outcome with
positive probability and never in a less preferred outcome. Notice that a switch of Bob
from strategy a to d, or the inverse, is only theoretical if Alice chooses D, since a node,
where Bob’s choice matters is reached with zero probability. Nevertheless, the notion of
subgame-perfection moves along the same line and shows that also nodes of non-positive
probability matter. The matrix in 13 thus includes 8 strategy profiles. Following the previ-
ous assumption, 0 is rationally or sequentially stable for Bob. In the case, where Bob should
choose the equally preferred strategy profile 2, his change would result in 2 with certainty,
which is not strictly preferred to 0. Yet, a switch from 2 to 0 entails a switch of Alice to 1,
which is strictly preferred by Bob. He will thus have an incentive to change strategies if an
equally preferred strategy profile serves as DP. The same argumentation holds for Carole
with respect to 3 and 7. A switch by Carole from 7 to 3 will eventually lead to 2 or 1, one is
strictly preferred the other is equally preferred. Hence, strategy profile 7 should be unstable
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Table 12. Picking the Sequential equilibrium II

Strategy profile set:
Choice Alice A 1 0 0 0 0 0 0

B 0 1 1 1 1 0 0
C 0 0 0 0 0 1 1

Choice Bob a /0 0 1 0 1 0 1
Choice Carole V /0 0 0 1 1 /0 /0

Decimal 1 2 10 18 26 4 12
pay-off 1,0,0 0,0,0 0,0,1 2,2,2 0,0,0 0,1,0 0,0,0

Solution:
equilibrium E* E* x x x x x

stabilities r r u(u) u(u) u(u) u u
A. preference 18 1 2 10 26 4 12

DP 1 1 1 1 1
(4) (12) (12)

stabilities r r r r/(s) r/(u) u u
B. preference 18 4 1 2 10 26 12

DP (10) (2) 18 4
stabilities r r r u s/(s) r r

C. preference 18 10 1 2 26 4 12
DP 18 10

for Carole. The equilibrium set is defined by E = (0,2,7) or E = (0); the latter is the case
if equally preferred strategy profiles qualify as DP’s. In both cases, whenever Carole can
choose, she will take strategy λ, and whenever Bob has an option to choose, he will select
a. Thus, Alice will opt for D and the final outcome is (4,4,4), which is identical to what is
predicted by LBR, though only strategy profile 2 satisfies the criterion.

The last game, denoted as the Spence Signalling Model, is shown in extensive form in
figure 5 and its solution in table 14. In this game we add Nature as a player, choosing low
ability worker (L) with probability 1/3 and high quality worker (H) with probability with
probability 2/3. Bob can observe Alice’s strategy choice whether (Y) or not (N) she invests
in education. Bob can then choose whether he pays her as a skilled (S) or unskilled (U)
worker.

Yet, choices by Nature entail mixed equilibrium strategies, which the Conflict Analysis
approach is unable to predict. It could be assumed that Bob and Alice play two different
games and assume that they are placed either in game (L) or (H) with probability 1/3 or
2/3, respectively. This assumption is, however, unnecessary for the representation, since
Nature’s choice already defines two separate sets of strategy profiles.

A switch of Alice from 5 to 7 (or the inverse) does not result in a strictly preferred
strategy profile, whereas a shift from 1 to 3 (or the inverse) does. Independently of the strict
or weak preference assumption for DPs, the equilibrium set is defined by E = (2,5,7).
The equilibria do not define a unique path, since Bob cannot observe Nature’s choice. The
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Table 13. Selten’s Horse

Strategy profile set:
Choice Alice A 0 1 0 1 0 1 0 1
Choice Bob a 0 0 1 1 0 0 1 1
Choice Carole ρ 0 0 0 0 1 1 1 1
Decimal 0 1 2 3 4 5 6 7
pay-off 4,4,4 5,5,0 4,4,4 3,3,0 1,1,1 2,2,2 1,1,1 3,3,0

Solution:
equilibrium x E* E*(x) x E(x) x x x

stabilities r s r u(u) r r u u(u)
A. preference 1 0 2 3 7 5 4 6

DP 1 2 5 7
stabilities r r/(s) r/(u) s r u(u) r/(u) r/(u)

B. preference 1 0 2 3 7 5 4 6
DP (2) (0) 1 7 (6) (4)

stabilities r r r s u(u) u r/(s) r/(u)
C. preference 0 2 5 4 6 1 3 7

DP 0 2 5 (7) (3)

Figure 5. Spence Signalling Model.

equilibrium set implies that Alice will never invest in education, if she is a low quality
worker. If she is a high quality worker, she will either invest or not. Similarly, Bob will
always assign a skilled job to Alice, if she invested in education, but Bob might assign
unskilled workers both to skilled and unskilled jobs. We obtain something similar to a semi-
pooling equilibrium, where any combination of S,S (assign all workers to skilled jobs) and
S,U (assign educated workers to skilled jobs and uneducated workers to unskilled jobs) is
best response for Bob. Bob will play S,S/U (assign educated worker to skilled jobs and
uneducated worker both to skilled and unskilled jobs). Alice’s best response is Y/N,N (if
high quality worker, both educate and not educate; if low quality worker, never educate),
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Table 14. Spence Signalling Model

Strategy profile set:
Choice Nature H 0 1 0 1 0 1 0 1
Choice Alice N 0 0 1 1 0 0 1 1
Choice Bob S 0 0 0 0 1 1 1 1
Decimal 0 1 2 3 4 5 6 7
pay-off 2,10 14,5 12,10 14,5 8,5 20,10 18,5 20,10

Solution:
equilibrium E E x x x E x x

stabilities r/(s) r/(s) r r/(u) r/(u) r u u
A. preference 5 7 6 1 3 2 4 0

DP (7) (5) (3) (1) 6 2
stabilities r r r r u u u u

B. preference 0 2 5 7 1 3 4 6
DP 5 7 0 2

similar to LBR, where the best response of Alice to S,U is Y,N (invest in education if high
level worker and not if low level worker) and to S,S it is N,N (never invest). Both (N,N;S,S)
and (Y,N;S,U) fulfill the LBR criterion. Since no player knows for sure, to which best
response the other player adheres, we can also assume that (Y,N;S,S) and (N,N;S,U) occur,
which is captured by the equilibrium set obtained by the Conflict Analysis approach.

6. Critique and the Metagame Fallacy

We have seen that this approach has several advantages with respect to classical game the-
ory. It has the capacity to find equilibria not predicted as such by other approaches, but
which, however, appear intuitive. Though it increases the set of potential equilibria, I have
described a means to discriminate between equilibria in sequential games. The approach
can handle larger strategy and player sets. Conflict Analysis has also strong advantages
over other similar approaches, such as the “Theory of Moves” by Brams (Brams, 1993;
Brams and Mattli, 1992).30 It allows to model situations of misperception via Hypergames.
Overall it appears more adapted to real-world scenarios.

The ability to predict additional equilibria required the introduction of two additional
stability criteria. This comes at a price. In sequential games the stability of a strategy
choice, based on the sequential stability criterion, is rational for consistent preferences as
defined in the preference ordering, if it is applied backwards towards the root node of the
game tree. A player conjectures, which strategy a subsequent player will choose according

30Theory of Moves requires a strict ordinality of preferences and the solution in normal form games depends
on the initial strategy profile, at which the solution algorithm starts. The greatest drawback with respect the
Conflict Analysis is that the algorithm is only applicable to 2×2 games.
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to his own strategy choices. Players are aware that each player considers the sequence of
strategy choices of earlier players and chooses the strategy that is best response to the strate-
gies chosen before. Upon this anticipative conjecture each player chooses his best response.
Apparently, no problem is caused by the additional stability criterion. An issue eventually
arises, however, in sequential games with incomplete information and if sequential stability
is applied forwards in the direction of the terminal node. A player is bound by the vari-
ous strategic options of his predecessors, since he knows that a previous player has already
made his decision and cannot re-evaluate at a later stage. Hence, a switch ex post cannot
occur. A similar issue applies to one-shot games. Conflict Analysis seems to suffer from
what has been termed “Metagame Fallacy”. The section discusses this issue and illustrates
why the reasoning behind the Metagame Fallacy is illegitimate.

The Prisoner’s Dilemma has been chosen deliberately as an introductory example in
section 3, since it is also the game which best illustrates the Metagame Fallacy. The analysis
of the PD has shown that there exists a stable cooperative equilibrium. The argument of
the Metagame Fallacy goes as follows: If each player is convinced that his counterpart
cooperates, he can still improve by defection. Thus a game of second order reasoning is
created by each player that is isomorphic to the original game. The fallacy, it seems, lies in
the assumption that mutual rationality implies symmetric behaviour. Yet, this is obviously
not the case and cooperation cannot be a rational strategic choice.

The argument misses an important point. Apparently, a pre-commitment of a player to a
strategy will never be credible as long as other players are not entirely convinced that he will
stick to his commitment and, further, that the player is also sure that the other players will
do the same (see Binmore, 1994, p. 179).31 Yet, it is not a pre-commitment that stabilises
the cooperative equilibrium, but the empathic knowledge of the other player’s strategy. This
creates a correlation between the strategic choice of each player that the Metagame Fallacy
argument neglects. Each player believes that his choice of the defective strategy will impact
the probability, with which the other player chooses this strategy. Hence, a player’s choice
to cooperate is consistent with this belief and rational. If p is the probability that a player 1
and 2’s strategy choice are correlated, and using the pay-offs as in pay-off matrix 7 on page
9, the following condition must hold to induce a player to choose the cooperative strategy:

pa+(1− p)b > pd +(1− p)c

p >
c−b

a−d + c−b

(16)

Since by definition of a PD, a > d and c > b, the probability stays within the unit interval.
If, in fact, all players have a high level of empathy, such that p = 1, the PD turns into a
Twins game (see Binmore, 1994, 1998 for more details).

( C D

C a,a

D d,d

)
(17)

31i.e. one has to assume that both players make a kind of a priori commitment, similar to a categorical
imperative that dictates each player to choose the cooperative strategy. This leads to the question of free choice
of players. Any player abiding by the axioms of rationality cannot, however, be assumed to have a free will a
posteriori; since his choice is predetermined by the rules of the game.
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which is indeed a symmetric Newcomb’s Paradox. Dominance tells both players that they
should defect, but this would only entail a pay-off of d, since both perfectly predict the
other player’s choice. Maximisation of pay-offs tells them to cooperate.

Empathy is surely a strong assumption. Yet, even Binmore frequently emphasises the
importance of empathy: “Homo economicus must be empathic to some degree. By this I
mean that his experience of other people must be sufficiently rich that he can put himself in
their shoes to see things from their point of view. Otherwise, he would not be able to predict
their behavior, and hence would be unable to compute an optimal response.” (Binmore,
1994, p. 28). If a player believes he is empathic, then it is rational to assume that other
players are also empathic. Furthermore, notice that this approach has found the defective
equilibrium also to be stable, and that the cooperative equilibrium requires both players
to predict that their counterpart cooperates. A look at the joint transition matrix T shows
that if individuals initially assign equal probability to all strategies, the defective strategy
profile will occur with a probability of 3

4 . The cooperative strategy profile will only arise
with probability 1

4 , since it requires that a player believes the other player to be choosing
the cooperative strategy. Furthermore “empathic errors” can occur in this approach. A
hypergame, where individuals do not trust their counterpart, will result in the defective
equilibrium with certainty. The assumption of empathy alone thus does not pose an issue.
Yet, this assumption is only partly sufficient to maintain the cooperative equilibrium.

Before I explain the crux it is necessary to stress again an important point. At first glance
Conflict Analysis seems similar to the approaches using other regarding preferences. One
might think that the Conflict Analysis approach merely substitutes sympathy by empathy
to explain the stability of the cooperative strategy profile. Notice, however, that this form
of empathy is immanent in the structure of the Conflict Analysis approach, whereas as-
suming other-regarding preferences is a change of the game itself. Conflict Analysis takes
an entirely different approach by changing the way games are analysed, but keeping the
way the problem was originally formulated. In the Conflict Analysis approach preferences
are identical to the original specification of the PD. Players are entirely self-referential and
only maximise their own pay-offs. It has to be stressed that the stability of the cooperative
equilibrium occurs only through the expectations about the consequences a change of strat-
egy will have on the own pay-off. Other pay-offs are only considered in order to anticipate
other players’ strategy choices. Other regarding preferences, on the contrary, expand the
assumptions on preferences beyond the original specification of the model. Strictly speak-
ing, the necessity to introduce other regarding preferences into the PD is a sign that the
game has been misspecified and the underlying game is in fact no PD. An ex post change of
preferences creates degrees of freedom that might render the solution of games completely
arbitrary.32 Other-regarding preferences are therefore clearly distinct from the preference

32The issue, it seems, results from an understanding of pay-offs as a sole welfare measure, such as money,
years etc. This is caused by the sometimes improper definition of the underlying game. The pay-off type is often
not specified, since “[g]ame theorists [. . . ] understand the notion of a pay-off in a sophisticated way that makes
it tautologous that players act as though maximizing their pay-offs. Such a sophisticated view makes it hard to
measure pay-offs in real-life games, but its advantage in keeping the logic straight is overwhelming.”(Binmore,
1994, p.98) The inadmissibility to apply a utility function ex post becomes especially obvious for games that
are defined as Γ = (S1,S2, ...,Sn;U1,U2, ...,Un), where Ui defines player i’s utility function, and the elements
of the pay-off matrix define utility pay-offs. For games defined as such, the ex post transformation of pay-
offs by applying utility functions, implies that the original utilities are put into utility functions to define new
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orderings in Conflict Analysis.
In order to induce individuals to cooperate, it is insufficient that they anticipates cor-

rectly the choice of the other player with a probability of at least p. Mutual cooperation
requires not only that a player believes that the counterpart correctly anticipates his choice
to cooperate, but also that he believes the other to believe the same, and so on (common
knowledge). The cooperative equilibrium in the PD thus demands a “common knowledge
of empathic rationality”.33 The commonality of knowledge is clearly a very restrictive as-
sumption, the issue is, however, not unique to Conflict Analysis.34 In addition, the assump-
tion that individuals anticipate other action’s with high probability is a second disputable
assumption.

As a last argument, in order to vindicate the approach and to weaken the magnitude of
the problem raised in the last paragraph, I emphasize that this line of argument does not
hold for repeated or pseudo one-shot games35 (as has been illustrated at the beginning of
this section), but for one-shot games. According to Larry Samuelson and Andrew Postle-
waite such games are an unrealistic representation of life (see Mailath, 1998). In fact, the
argument that individuals play Nash equilibria seems to hinge on the assumption of the
repetitiveness of games.36 Thus, there is doubt as to whether individuals really apply the

utilities (-the same line of argument applies to pay-offs as incremental fitness). Even for a general game of
the form Γ = (S1,S2, ...,Sn;π1,π2, ...,πn), however, such a transformation by utility functions is inapplicable.
A sophisticated interpretation of pay-offs implies that they already include the contextual essence, i.e. all the
information necessary to solve a game. In addition, the equivalence of games that are derived from positive
affine transformations of the pay-off matrices is no longer maintained if pay-offs are transformable ex post. A
sufficiently large positive affine transformation of the pay-offs will thus not necessarily maintain the preference
relations and strategic choice will be incongruent with the original game. General claims about the Prisoner’s
Dilemma, stag hunt, battles of sexes, or chicken game etc. are infeasible. In contrast, Conflict Analysis has
only limited degrees of freedom as equilibria are strictly defined by the preference relation of the original
specification and the three stability criteria. In conclusion, whenever it is observed that players do not choose
the strict dominant strategy, the only valid deduction in the context of standard Game Theory is that the PD is
an incorrect representation of the real interaction.

33In fact, the condition is slightly weaker. Mutual cooperation does not require that individuals possess the
necessary level of empathy to predict other’s strategy choices, but that they believe that others do and further
that others believe they do.

34Neither common knowledge, nor mutual knowledge of conjectures cannot be supposed per se. This is,
however, a prerequisite for a rational Nash equilibrium (see Aumann and Brandenburger, 1995).

35This is the case in a version of the PD by Wagner, 1983, where both prisoners have friends in the District
Attorney’s office, who inform them about whether or not the other has confessed. The game is sequential, but
there exists no definite first and second mover. The game only ends with certainty, when both confessed (i.e.
when one player confessed, since the best reply strategy for the other player is also to confess).

36According to Mailath, 1998, a Nash equilibrium requires mutual knowledge of what other players do, i.e.
knowledge, which can only be derived either by preplay communication, self-fulfilling prophecy (what Mailath
describes here as self-fulfilling prophecy might be more familiar by the term “Common Knowledge of Logic”,
see Gintis, 2009 for a critical discussion), focal points, or learning. Laboratory experiments have shown that
preplay does not necessarily prevent coordination failures (Cooper et al., 1992), even more so in those cases,
where a player benefits from a specific strategy choice of the other player irrespective of his own choice. Such
a case is the Stag Hunt game with preference order a > c > d > b for pay-off matrix 7 on page 9. The argument
of self-fulfilling prophecy assumes that if a theory to uniquely predict outcomes is universally known, it will
determine the Nash equilibria, i.e. the theory is consistent with the theory used by other individuals. First, the
underlying logic is circular: The theory is correct if it is self-fulfilling, and thus if adapted by all agents, who
believe it to be correct. Second, it requires a link between what an agent is expected to do and what he does, and
further what he assumes others to do. Experiments indicate that individuals do not believe that others respond to
pay-offs in symmetric games in the same way as they do (Huyck et al., 1990). This does not contradict mutual
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rationality of one-shot games to the PD. If rational behaviour is explained as a result of an
evolutionary selection process37, it is dubious whether one-shot games regularly occurred
in the historical context that shaped our behaviour. The empirical data shows that both
equilibria predicted by Conflict Analysis are entirely plausible. Individuals apply heuristics
(Page, 2007), such as the belief that others will able to predict one’s choice, or the belief in
a poetic justice of fate, which may ultimately lead to a strategy choice predicted by Conflict
Analysis.38

7. Conclusion

This chapter has developed and illustrated a game theoretic approach that provides an inter-
esting alternative to model interactions. This approach offers undeniable advantages over
other standard approaches: It can handle larger (non-quantitative) strategy and/or player sets
more easily. It incorporates the higher order reasoning of Metagame Theory and allows for
modeling higher level hypergames. It can therefore explain the existence of equilibria not
captured by the Nash concept, but which are frequently observed in real-world interactions.
It can be efficiently applied to sequential games to discriminate between equilibria. It does
not require a transition from a perceivable preference order to a cardinal description of
preferences, nor the strict transitivity of preferences.

Conflict Analysis is, however, not as elegant as standard game theoretic approaches,
when it comes to two player interactions with limited strategy sets. The addition of two
supplementary stability criteria exhibits drawbacks in the axiomatic foundation of this ap-
proach and its theoretic basis is by far not as rigorously developed as the “pure” Nash
approach. Furthermore, it is also restrictive in some assumptions. Players are required to
exhibit a certain level of empathy that enables them to predict others choices, as well as
the common knowledge of this capacity. Alternatively they are assumed to misinterpret
one-shot games as repeated games. Though players are supposed to enjoy a higher order
reasoning that allows them to anticipate the reaction of others to their strategy choice, they
are not supposed to deliberately choose a non-best response that makes them immediately
worse off if others do not change their strategy, but could improve the outcome to their
favour after eventual strategy switches of other players. This is obviously an assumption
to keep the approach tractable, but one might wish for the possibility of such “tactical”
choice. Furthermore, though the approach handles most games quite well, the determina-
tion of mixed equilibria represents an issue, owing to the structure of the Conflict Analysis
approach and the absence of specific pay-offs. Yet, this last issue only presents a drawback
for the small minority of games that possess quantifiable pay-offs.

rationality, but shows that people do not assume that a unique way to predict behaviours exist. Further, seldom
a unique “obvious” strategy exists in a game, which defines a focal point. Efficiency, egality, justice, risk are
all different approaches of such “obvious” play. Finally, learning requires that (almost) identical games are
played repetitively. Thus, the theoretical argument against the Conflict Analysis approach under the classical
rationality paradigm is not substantive as it, in fact, applies to a game type, which cast already scepticism on
the feasibility of Nash equilibria.

37see Choi and Bowles, 2007; Gintis, 2009; Gintis et al., 2005; Robson, a,b
38Consider the English and German idiom: “You always meet twice.” Under the condition that a game is

played repetitively the rationality of Conflict Analysis does not seem far-fetched.
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Overall Conflict Analysis is an attractive approach, especially, when applied to repeated
games. It should not be regarded as an alternative to standard game theory or even as its
substitute. It should be more considered as an alternative in perspective. Conflict Analysis
is meant as a positive approach that illustrates an argument of why certain equilibria are
frequently observable that are indeed not Nash equilibria. This approach is embedded in
the spirit of theoretical pluralism, and an eventual step forward in redefining the theoretical
development in game theory. It should complement with other alternative attempts and its
methodology should thus provide sources for new conceptions that can enrich game theory
and offer new starting points for future research.

Appendix

A. The Fundamentals of Metagame Analysis

This section will illustrate the basic principles of the Metagame Theory. Most of the basic
argument is equivalent to standard game theory. Yet, the higher order reasoning necessitates
to depart from standard definitions at various points.

In a game G let there be a set of players N with player i = 1,2, ...,n and let there
be also an individual set of strategies Si for each player, so that each individual strategy
is denoted by si ∈ Si. The entire set of strategy profiles is represented by S = S1× S2×
..× Sn. A strategy profile of a game G in period t is then defined by st ∈ St , where st =
(s1t ,s2t , ...,snt) ∈ S. For each player i there exists a preference function Ui, which orders
(not necessarily completely) the set of strategy profiles S. Consequently game G can be
defined as G = (S1,S2, ...,Sn;U1,U2, ...,Un).

A metagame kG is derived from the underlying game G in the following way: Replace
the strategy set of player k by a new set of strategies F . Each element f ∈F is a function that
defines a response strategy to each possible strategy profile s−k.39 The preference functions
for the new game are denoted as U

′
i of player i in kG. Consequently, the metagame is

defined as kG = (S1,S2, ...,Sk−1,F,Sk+1, ...,Sn;U
′
1,U

′
2, ...,U

′
n). Since the set of strategy

profiles of kG is defined by the the Cartesian product F×S−k, we obtain a strategy profile
q = ( f ,s−k ∈ F×S−k). An rth level metagame L is then represented by L = k1k2...krG. Let
there be an operator β that transforms any strategy profile of an rth level metagame L to a
strategy profile of the lower (r-1) level metagame, such that β( f ,sN−k) = ( f (sN−k),sN−k)
and βr( f ,sN−k) = (sk,sN−k) = q.40

39Assume a game with two players and 4 strategies each. F is then a set of 44 = 256 functions, where each
f is defined by four response strategies, one for each strategy of the other player.

40Suppose that both players have strategies (u)p, (d)own, (l)eft and (r)ight. For 1G let there by an f =
(u/u/d/d), meaning that player 1 plays strategy up as a response to both up and down, and down as a response
to both left and right. A strategy profile p = (u/u/d/d, l) in 1G can than be transformed to a strategy profile in
G, since β(u/u/d/d, l) = ( f (l), l) = (d, l).



The Theory of Conflict Analysis 37

For each strategy profile q, let S be divided into two subsets, where U+
i (q) denotes

the set of strategy profiles that are strictly preferred by player i to strategy profile q and
where U−i (q) includes all the strategy profiles that are not strictly preferred by player i to
q. Hence, for any given strategy profile s̄−i by all players other than i, the set of strategy
profiles that can be obtained by a unilateral strategy switch of player i is given by zi(q) =
(si, s̄−i). An individually attainable dominant profile p with respect to q is then defined
as p ∈ u+i (q) = zi(q)∩U+

i (q).41 That means that a player i can improve on the current
strategy profile q = (s̄i, s̄−i) given strategy profile s̄−i by choosing a strategy s∗i to strategy
profile p = (s∗i , s̄−i). Notice that it follows from the paragraph above that the preferences
in G determine the preferences in L, i.e. in the case, where q is strictly preferred to another
strategy profile p: p ∈U−

′

i (q)⇔ βp ∈U−i (β(q)).42

A strategy profile q = (s̄i, s̄−i) is rational for any player i, if s̄i is the best response
strategy to s̄−1. Hence, the set of rational strategy profiles for player i is given by
Ri =

{
q|∀si,(si,s−i) ∈U−i (q)

}
. The metarational strategy profile for G can then be de-

rived from the underlying metagame L by applying β r-times to the set of rational strat-
egy profiles R. Let R̂i(L) denote the set of metarational strategy profiles for G, then
βrRi(L) = R̂i(L). Similarly the set of equilibria E(L) for a metagame L, which is the
set of strategy profiles rational for all players in L, connects to the set of equilibria
for game G via β and βrEi(L) = Êi(L).43 The general set of rational strategy pro-
files R∗i for player i is then given by the union of all rth level metagames and thus
R∗i =

⋃
j R̂(L j)∪Ri(G).

On the basis of the “Characterization Theorem” by Howard (1971), the determination
of the general set of rational strategy profiles does not necessitate the analysis of the infinite
metagame tree, but only a three step analysis. The first step is to check for the absence of
unilaterally attainable dominant profiles p = (si, s̄−i), such that @si : (si, s̄−i) ∈U+

i (q). In
this case q is metarational. A symmetric metarational outcome is defined if for all such
better response strategies s∗i other players possess a strategy that garantees a new strategy
profile not preferred by the particluar player under analysis. Hence, it must hold ∃s−i∀s∗i :
(s∗i ,s−i) ∈U−i (q). A general metarational outcome occurs if the player under analysis has
again a response strategy to improve to a preferred strategy profile. A cycle may evolve
and the play can continue indefinitely, which is assumed to be strictly less preferred to q
(similar to a deadlock point, see Binmore, 1998). A strategy profile g therefore has to be
finally checked for the absence of such an infinite cycle; @si∀s−i : (si,s−i) ∈U+

i (q). If this
is the case, q is metarational. Thus, if a strategy profile q is metarational for player i, it is
also stable for player i and the set of stable strategy profiles for all players defines the set of
equilibria of the general (n-th level) metagame.

41An alternative formulation is ∃si : (si, s̄−i) ∈U+
i (q) such that p ∈

{
(si, s̄−i) : (si, s̄−i) ∈U+

i (q)
}

.
42(u/u/d/d, l) generates the same outcome as (d, l) and thus preference orders with respect to each must be

identical.
43Suppose that(u/u/d/d, l) is rational for both players, then (d, l) is meta-rational for both players and the

equilibrium of the underlying game G.
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B. Tables

Table 15. Dynamics of the Traveller’s Dilemma - Individual Transition Matrices

Transition Matrix for A
17 18 20 24 33 34 36 40 65 66 68 72 129 130 132 136

17 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
34 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Transition Matrix for B
17 18 20 24 33 34 36 40 65 66 68 72 129 130 132 136

17 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
18 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
20 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Final Transition Matrix
17 18 20 24 33 34 36 40 65 66 68 72 129 130 132 136

17 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
18 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
34 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



Table 16. Traveller’s Dilemma - static analysis: double lines indicate the frontiers of each set of equally preferred strategy profiles,
DOs by equally preferred strategy profiles are written in brackets

Solution of the Travelers’ Dilemma
overall stability E(x) x x E x x E x E E E(x) x x x x x
stability for A r r s s r s s s s r s(u) u u u u u
As preference order 132 66 130 136 33 65 68 129 34 17 72 36 40 18 20 24
DPs 132 132 66 66 132 33 66 33 33 17 17 17

(136) (130) (68) (65) 130 65 34 34 (20) (18) (18)
136 68 (40) (36) (24) (24) (20)

stability for B r r s s r s s s s r s(u) u u u u u
Bs preference order 72 36 40 136 18 20 24 68 34 17 132 66 130 33 65 129
DPs 72 72 36 72 36 18 36 18 18 17 17 17

(136) (40) (68) 40 (20) 20 34 34 (65) (33) (33)
136 68 (130) (66) (129) (129) (65)



Table 17. Static Analysis Surprise Test - double lines indicate the frontiers of each set of equally preferred strategy profiles, DPs by
equally preferred strategy profiles are written in brackets

Solution of Version 1
overall sta-
bility

E(E) E(E) E(E) E(E) E(E) E(E) E(E) E(E) E(E) E(E) E(E) E(E) E(x) E(x) E(x) E(x)

stability for
A

r(s) r(s) r(s) r(s) r(s) r(s) r(s) r(s) r(s) r(s) r(s) r(s) s(u) s(u) s(u) s(u)

As prefer-
ences

33 65 129 18 66 130 20 36 132 24 40 72 17 34 68 136

DPs (36) (66) (130) (20) (65) (129) (18) (33) (129) (18) (33) (65) 18 33 65 129
(40) (72) (132) (24) (72) (132) (24) (40) (130) (20) (36) (66) 20 36 66 130

24 40 72 132
stability for
B

r r r r s(s) s(s) s(s) s(s) s(s) s(s) s(s) s(s) s(s) s(s) s(s) s(s)

Bs prefer-
ences

17 34 68 136 33 65 129 18 66 130 20 36 132 24 40 72

DPs 17 17 17 34 34 34 68 68 68 136 136 136
(65) (33) (33) (66) (18) (18) (36) (20) (20) (40) (24) (24)
(129) (129) (65) (130) (130) (66) (132) (132) (36) (72) (72) (40)

Solution of Version 2
overall sta-
bility

x x x x E E x x E E x(x) x(x) x(x) x(x) x(x) x(x)

stability for
A

r s r r s s u u r s u u u u u u

As prefer-
ences

24 20 40 72 18 36 17 34 136 68 33 65 129 66 130 132

DPs 24 24 40 24 40 72 40 72 136 72 136 136
20 20 36 36 68 (130) 68 (129) (129)

18 34 (66) (132) (65) (132) (130)
stability for
B

r r r r s s u u u u u u u u u u

Bs prefer-
ences

17 34 136 68 18 36 72 20 40 24 33 65 129 66 130 132

DPs 34 68 136 68 136 136 17 17 17 34 34 68
36 72 72 (65) (33) (33) 18 18 36

40 (129) (129) (65) (130) (66) (28)
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