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Abstract
We study the long-run dynamics of a repeated non-symmetric hawk–dove type inter-
action between agents of two different populations. Agents choose a strategy based
on their previous experience with the other population by sampling from a collective
memory of past interactions. We assume that the sample size differs between popula-
tions and define a measure of harshness of conflict in the hawk–dove interaction. We
then show how the properties of the long-run equilibrium depend on the harshness of
conflict and the relative length of the sample. In symmetric interactions, if conflict is
harsh, the population which samples relatively more past interactions is able to appro-
priate a higher payoff in the long-run, while the population with a relatively smaller
sample does so if conflict is mild. These results hold subject to constraints on the sam-
ple size which we discuss in detail. We further extend our results to non-symmetric
hawk–dove games.

Keywords Conflict · Memory · Hawk · Dove · Evolution · Stochastic stability

Jel Classifications C73 · C79 · D74

1 Introduction

Both the triggers and the dynamics of conflict have been widely investigated in the-
oretical biology (Hamilton 1964; Smith 1974), economics (Garfinkel and Skaperdas
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2012; Kimbrough et al. 2020), evolutionary anthropology (Glowacki et al. 2020), and
psychology (Böhm et al. 2020). Outcomes of conflicts vary from active aggression and
fighting (Archer 1988; Huntingford and Turner 1987) to resource sharing (Wilkinson
1984). Among other types of interactions, the hawk–dove game is a simplified rep-
resentation of conflict within the context of resources sharing (Rusch and Gavrilets
2020; Smith and Price 1973). If agents of a single population are randomly matched,
any payoff-monotone dynamics (i.e., a dynamics where a higher average payoff leads
to a higher growth rate) brings the system to the mixed state of the hawk–dove game
in which a fraction of the population plays aggressively (i.e., hawk) and fights over
resources while the rest acts peacefully (i.e., dove) and avoids conflict (Weibull 1997).
In a two-population setting, instead, under payoff-monotone dynamics the system
converges from any initial state to an asymmetric pure state in which all agents in
one population play hawk and all agents in the other population play dove (Oprea
et al. 2011). These states may not occur in the long run if the dynamics is not payoff-
monotone (Arigapudi et al. 2021; Bilancini et al. 2021).

With two populations, two possible pure asymmetric states can occur: either pop-
ulation 1 plays dove and population 2 plays hawk, or the inverse can hold true. For
simplicity, we refer to these two states as equilibria. The existence of two possible
equilibria imposes a selection problem. The dynamics leading to one of the two equi-
libria depend, at least in themedium-to-long run, on the initial state and the equilibria’s
respective basins of attraction. In the very long run, however, literature on stochastic
stability has shown that the initial state becomes irrelevant (Foster and Young 1990):
small noise renders the dynamic system ergodic and, thus, a population keeps moving
across the entire state space. Once the noise abates, the system dynamic spends most
of its time at the equilibrium state to which access requires the lowest number of errors
and which is hence the easiest to reach.

By using the latter approach to study the dynamics of the hawk–dove game, our
research is situated at the intersection of the literature analyzing conflict based on the
hawk–dove game (Smith 1979, 1982), the theoretical research on the evolution of
traits and behaviors in animal and human populations (Hofbauer et al. 1998; Gintis
et al. 2000; Newton 2018) and the theories on the long-run evolution of conventions
and institutions (Kandori et al. 1993; Young 1993a). In this paper we extend an idea
that was sketched in Young (2001, Ch. 5), providing detailed conditions for the long-
run equilibria in a two-player hawk–dove type of interaction, in particular revealing
the crucial role played by the harshness of conflict.

More specifically, we consider a two-population setting, where agents of one pop-
ulation are matched with agents of the other population to compete repeatedly over
time for resources in a hawk–dove type of interaction. Agents sample from a col-
lective memory of the last actions and determine an optimal strategy based on the
relative frequency of each strategy—a process known as adaptive play. In addition,
we assume that agents within the same population base their actions on samples of the
same size, but the sample sizes differ between the two populations. We find that the
stochastically stable equilibrium—that is the equilibrium at which the system spends
most of the time in the presence of small random errors—depends on the harshness
of conflict which is defined by the cost of losing a fight relative to the benefit derived
from winning the resource. If conflict is harsh, the population with the larger sample
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size chooses strategy hawk and the population with the smaller sample size opts for
dove. The reverse occurs if conflict is mild. Consequently, our results confirm recent
findings in the literature that the cost of fighting can play a crucial role in hawk–dove
type interactions (Hall et al. 2020).

The intuition behind our result is that if the harshness of conflict is high, relatively
few errors among a dove player population are needed for the other population to
accommodate and switch to dove in return. Consequently, if the former population uses
the larger sample, the latter population relies on a smaller sample and, thus, requires to
observe a smaller number of hawk plays to switch the best response strategy to dove.
Consequently, fewer perturbations are required to push a population into the basin of
attraction of the equilibrium inwhich the populationwith the smaller sample size plays
dove and the population with the larger sample size chooses hawk. If the harshness
of conflict is mild, instead, relatively few errors of initial hawk player population are
required to induce a transition between the equilibrium states. The easiest transition
then occurs if the population with the larger sample size erroneously chooses dove,
eventually leading to a stochastically stable state in which the population with the
smaller sample size chooses hawk.

Our results differ from those obtained inYoung (1993b) for aNash bargaining game.
In the latter setting, a population always benefits from a larger sample size. This result
therefore corresponds to the case of harsh conflict in our setting. The harshness of
conflict determines the sensitivity to changes in the strategy of others. Therefore, if
conflict is harsh, a transition out of the basin of an equilibrium is more likely to be
caused by erroneous choices among the dove playing population. If conflict is mild,
on the other hand, a transition is initiated by erroneous actions in the hawk playing
population. In the Nash bargaining game, on the other hand, the easiest way to exit an
equilibrium is always given by mistakes coming from agents in the population with
a smaller share in the division of the surplus: such agents, by mistake, can demand
something more and this quite easily convinces agents in the other population to
demand something less, because by doing so they accept a small loss to prevent the
possibility of a big loss that would happen in case the sum of their demands exceeds
the surplus at stake.

The remainder of this paper is organized as follows: in Sect. 2, we describe themain
characteristics of the model and the dynamics of the unperturbed game. In Sect. 3 we
present our main results that determine the long-run dynamics of the perturbed game.
Finally, we provide a discussion in Sect. 4. All proofs are relegated to Appendix A, as
well as some further results and an example of a transition.

2 Themodel

We define two populations of finite size: blue agents denoted by B and yellow agents
denoted by Y . Time is discrete t = 1, 2, . . . and in each period, one agent is drawn at
random from each population to interact in the hawk–dove game depicted in Fig. 1.
Each agent i chooses a pure strategy si from a strategy set Si = {H , D} with i =
{B, Y }. Play at time t is defined as s(t) = (sB(t), sY (t)) and the payoff of each player
i is πi (s(t)) according to the payoff matrix. We assume that Ci > Vi .
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Fig. 1 The hawk–dove game. VB and VY are the values of the resource possession for the blue and the
yellow population, respectively. CB and CY are the costs of losing fight for the blue agents and the yellow
agents, respectively
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play of yellow sampled by the blue play of blue sampled by the yellow

Fig. 2 Memory length: m = 5; sampling size of blue: kB = 4; sampling size of yellow: kY = 3

Agents recall the last m periods of play between both populations, hence m can be
interpreted as the (collective) long-term memory length. A history of play encompass-
ing the last m periods is described by h(t) = (s(t), s(t − 1), . . . , s(t − m + 1)), with
t denoting the current period.

Furthermore, agents adjust their choices over time according to the adaptive learning
assumptions inYoung (1993a). In general, agents select the best response to a randomly
drawn sample of k opponents’ plays in their memory. See Fig. 2 for an example of
a history with drawn samples. In case of multiple best responses, all of them have
positive probability to be selected. As is standard in the literature, we refer to k as
sample size, and we interpret it as working memory. Differently from most of the
literature on the hawk–dove game, we assume that the sample size is population
dependent, with kB denoting the sample size of blue agents, and kY denoting the
sample size of yellow agents. In particular, we consider the case in which the yellow
agents have a shorter sample size than the blue agents. In the following, we generally
assume that kY < kB ≤ m. We denote by nt

B the number of D instances recorded in
the blue agents’ memory, and by nt

Y the number of D instances recorded in the yellow
agents’ memory. At the end of each interaction period, the current play is registered
in the memory and the oldest play is forgotten.
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The dynamic systemunder consideration is aMarkov chain (S, T ) (seeYoung 2001,
for an overview of Markov chain theory), where S is the state space composed of all
possible histories, i.e., sequences of m plays of the game (sm, . . . , s�, . . . , s1), with
s� ∈ {(H , H), (H , D), (D, H), (D, D)} for all � = 1, . . . , m. Transition between
states is defined by transition matrix T , with Thh′ being the probability of moving
from history h to history h′ in one period of time according to the above adjustment
dynamics. It must hold that Thh′ > 0 only if h′ can be obtained from h by deleting
the rightmost play of the game and adding a new play of the game to the left of the
sequence.

Any state h consisting of m repetitions of a strict Nash equilibrium constitutes
a convention, that is inescapable given the defined dynamics. The hawk–dove game
described in Fig. 1 has two strict Nash equilibria: (H , D) and (D, H). The two corre-
sponding conventions are defined by hH D = (sm, . . . , s�, . . . , s1) such that s�

B = H
and s�

Y = D for all � = 1, . . . , m, and hDH = (sm, . . . , s�, . . . , s1) such that s�
B = D

and s�
Y = H for all � = 1, . . . , m.

Further, let αB denote the fraction of D instances in the sample of a blue agent.
Similarly, let αY denote the fraction of D instances in the sample of a yellow agent. For
a blue agent, the expected payoff of playing H is (1−αB)(VB −CB)/2+αB VB while
the expected payoff of playing D is αB VB/2. Similarly, for an agent of the yellow
population the expected payoff of playing H is (1− αY )(VY − CY )/2+ αY VY while
the expected payoff of playing D is αY VY /2. Agents in population i are indifferent
between both strategies if αi equals

α∗
i = 1 − Vi

Ci

In other words, if the relative frequency of D in the sample exceeds α∗
i , the optimal

response is to play H in the current period. The ratio α∗
i can also to be understood

as a measure of the severity of a conflict. We call a conflict harsh for population i if
α∗

i > 0.5, and mild if α∗
i < 0.5. We observe that the harshness of conflict determines

which action performs better in case of uncertainty and, hence, it is related to risk
dominance (Harsanyi and Selten 1988). Indeed, when α∗

i > 0.5 action D has a greater
expected payoff for an agent in population i against the belief that the opponent plays
the two actions with 50% each, which means that dove is less risky. For α∗

i < 0.5 the
reverse result is obtained and action H is less risky.

A set of states C is a recurrent class if: (i) for every pair of histories h, h′ ∈ C,
there is a positive probability to move from h to h′ in a finite number of steps, i.e.,
there exists some n such that T n

hh′ > 0; (ii) for every h ∈ C and h′ /∈ C, h′ is not
accessible from h, i.e., T n

hh′ = 0 for every n. By definition, a convention is a recurrent
class comprised of a single state. However, there is no guarantee in general that the
system will converge to a convention, since it might cycle within a set of states. The
following Lemma gives a necessary and sufficient condition to ensure convergence to
a convention:

Lemma 1 {hH D} and {hDH } are the only two recurrent classes if and only if at least
one of the following conditions holds: (i) min{kB, kY } < m, (ii) there exists an integer
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number q such that q = α∗
i m for some i ∈ {B, Y }, (iii) there exists an integer number

q such that α∗
i m < q < α∗

j m, with i, j ∈ {B, Y }, i �= j .

3 Perturbed dynamics

Now suppose that in general, a player does not choose a strategy that is a best response
to the sample, but chooses one of the two strategies at randomwith a small probability ε

close to zero. Any history of play h in t can thenmove to any other state h′ in t +m with
positive probability. The Markov chain is irreducible and aperiodic, and the process
thus ergodic. In the following, we determine the conditions for the convention in the
long-run, first for the case in which payoffs are symmetric and thereafter for the case
in which payoffs are asymmetric.

3.1 Symmetric harshness of conflict

The stochastic potential of a convention is the minimum number of errors involved
in the transition from the opposite convention to the former convention (see Online
Resource for an example of a complete transition). A convention is stochastically
stable if it has minimum stochastic potential (Young 1993a). The following Lemma
characterizes the stochastic potentials of the two conventions if payoffs are symmetric,
i.e., VB = VY andCB = CY . In this case, α∗

B = α∗
Y . We denote the common harshness

of conflict with α∗.

Lemma 2 The stochastic potentials of conventions h DH and hH D are given by, respec-
tively, rDH = min{�(1−α∗)kB� , �α∗kY �} and rH D = min{�α∗kB� , �(1−α∗)kY �}.

We have the following:

Proposition 1 If conflict is harsh:

(a) hH D is a stochastically stable convention;
(b) if kB − 1

1−α∗ ≥ kY ≥ 1
2α∗−1 then hH D is the only stochastically stable convention.

In other words, if conflict is harsh then the convention in which blue agents only
choose H and yellow agents only choose D is always stochastically stable, and there
exists a region in the parameter space in which it is the unique stochastically stable
convention.

In contrast:

Proposition 2 If conflict is mild:

(a) hDH is a stochastically stable convention;
(b) if kB − 1

α∗ ≥ kY ≥ 1
1−2α∗ then h DH is the only stochastically stable convention.

Thismeans that if conflict ismild then the convention inwhich blue agents choose D
and yellow agents H is a stochastically stable convention and the unique stochastically
stable convention if the sample size fulfills condition (b). We note that, if kB = kY ,
then hH D and hDH are both long-run conventions.
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Fig. 3 An example with α∗ = 0.7. One mistake is enough to exit the basin of attraction of h DH , while two
mistakes are required to exit the basin of attraction of h H D . This makes h H D stochastically stable

The intuition of these results requires us to identify the easiest transition path
between conventions. We therefore need to determine which population and which
strategy are least resilient against erroneous choices of the other player population.
First, we note that the least resilient population is always the one with the smaller
sample size, because a smaller number of erroneous choices need to be sampled to
reach a critical threshold that induces a strategy change. Second, we further note that
if conflict is harsh, the lower threshold is defined by the hawk strategy since loosing
a fight is very costly. In return, the lower threshold is defined by the dove strategy, if
conflict is mild. As a result of these two observations, the convention least resilient to
erroneous play is the one in which the population with shorter sample size is playing
hawk and the other population is playing dove if conflict is harsh. If conflict is mild,
the least resilient convention is the one in which the population with shorter sample
size is playing dove. Fig. 3 provides an illustrative example with α∗ = 0.7, kB = 4,
and kY = 3. Convention hDH can be exited through one mistake by blue agents or
three mistakes by yellow agents. Conversely, convention hH D can be exited through
three mistakes by blue agents or two mistakes by yellow agents. Indeed, the least
resilient population is the yellow one (kB > kY ) and the least resilient strategy is hawk
(α∗ > 0.5) and thus hH D defines the stochastically stable convention. In general, it
can happen that both conventions are stochastically stable: this situation occurs when
the overall resistance to move from hH D to hDH and the overall resistance to move
from hDH to hH D fall between two consecutive integers, so that the actual number
of mistakes required to complete the transitions are the same for both conventions.
Condition (b) in Propositions 1 and 2 state a sufficient condition for having a unique
stochastically stable convention. Further note that if kY tends to infinity, and therefore
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also kB and m tend to infinity, conditions (a) is sufficient as condition (b) is generally
met.

3.2 Asymmetric harshness of conflict

We now consider the asymmetric case in which α∗
B �= α∗

Y , implying that VB �= VY

or CB �= CY in Fig. 1. We make the additional assumption that kB + kY ≤ m to
guarantee that previous erroneous play of one population remain in memory long
enough to trigger a shift in the best-response of the other population. The stochastic
potential of each convention is given in the next Lemma.

Lemma 3 The stochastic potentials of conventions h DH and hH D are given by, respec-
tively, rDH = min{�(1 − α∗

B)kB� , �α∗
Y kY �} and rH D = min{�α∗

BkB� , �(1 −
α∗

Y )kY �}.
The following Proposition provides the sufficient conditions for the conventions to

be stochastically stable.

Proposition 3 We have:

(a) if α∗
Y > T (α∗

B; kB, kY ), convention h H D is stochastically stable;
(b) if α∗

Y < T (α∗
B; kB, kY ), convention h DH is stochastically stable;

where:

T (α∗
B; kB, kY ) =

⎧
⎪⎨

⎪⎩

α∗
B

kB
kY

, if α∗
B ≤ kY

2kB

0.5 if kY
2kB

< α∗
B ≤ 1 − kY

2kB

α∗
B

kB
kY

+ kY −kB
kY

if 1 − kY
2kB

< α∗
B

Notice that the slope of T (α∗
B; kB, kY ) is kB/kY when it is no flat.

We note that the easiest transition cannot always be identified by looking at the least
resilient strategy adopted by the least resilient population. The number of mistakes
required to trigger a transition depends on: (i) strategy that is the least resilient for each
population; (ii) the fraction of mistakes in the sample of play required to abandon the
least resilient strategy; (iii) the sample size, that translates such fraction into a number
of mistakes. Indeed, the easiest transition can be the one where the agents in the most
resilient population change strategy in response to mistakes from the others. This can
happen when the harshness of conflict of the most resilient population is sufficiently
more extreme (i.e., sufficiently close to either 0 or 1) and thus, very few mistakes are
needed to trigger the transition despite their longer sample size. We notice that this
observation plays a role for the selection of the long-run convention only if conflict is
harsh or mild for both populations at the same time, as illustrated in Fig. 4.

If kB (alongwithm) tends to infinity (i.e., the population can keep all past play in the
memory and no play is forgotten), the slope is vertical and only the horizontal interval
of T (α∗

B; kB, kY ) matters. In this case the sufficient conditions for each convention
to be stochastically stable depend only on the harshness of conflict of the population
with the shortest sample size. The second limit case is kB = kY . In this case the
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Fig. 4 In the blue area the convention h H D is stochastically stable, while in the yellow area the convention
h DH is stochastically stable. kB = 8 and kY = 3

two populations draw samples of the same length and the slope of the two oblique
intervals is equal to one. The convention in which the population with the lower level
of harshness plays hawk is always stochastically stable.

The following Proposition defines the conditions for the uniqueness of the stochas-
tically stable convention.

Proposition 4 We have:

(a) if α∗
Y > TH D(α∗

B; kB, kY ) then the convention hH D is the only stochastically stable
convention;

(b) if α∗
Y < TDH (α∗

B; kB, kY ) then the convention hDH is the only stochastically stable
convention;

Where:

TH D(α∗
B; kB, kY ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α∗
B

kB
kY

+ 1
kY

, if α∗
B ≤ kY

2kB

kY +1
2kY

if kY
2kB

< α∗
B ≤ 1 − kY

2kB

α∗
B

kB
kY

+ 1+kY −kB
kY

if 1 − kY
2kB

< α∗
B
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Fig. 5 In the dark-blue area, h H D is the unique stochastically stable convention, while in the dark-yellow
area, h DH is the unique stochastically stable convention. kB = 8 and kY = 3

and

TDH (α∗
B; kB, kY ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α∗
B

kB
kY

− 1
kY

, if α∗
B ≤ kY +1

2kB

kY −1
2kY

if kY +1
2kB

< α∗
B ≤ 1 − kY −1

2kB

α∗
B

kB
kY

+ kY −kB−1
kY

if 1 − kY −1
2kB

< α∗
B

The results are illustrated in Fig. 5. Similar to our discussion of Propositions 1
and 2, we note here that the conditions in Proposition 4 converge to the conditions
in Proposition 3 as kY tends to infinity, i.e., the two thresholds TH D(α∗

B; kB, kY ) and
TDH (α∗

B; kB, kY ) tend to T (α∗
B; kB, kY ).

We stress that the conditions that we provide in our propositions for identifying
a stochastically stable convention are sufficient but not necessary. Hence we assess
the tightness of these conditions through numerical calculation with specific values
of m, kB , and kY , varying α∗

B and α∗
Y . In Fig. 6 we show the results of the computed

stochastic potentials of the conventions.

4 Discussion

In this paper,we studied the long-rundynamics of the two-populationhawk–dovegame
under perturbed adaptive learning. We demonstrated that information heterogeneity
between two populations caused by a different sample size of past interactions affects
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Fig. 6 Each point on the grid represents a different combination of (α∗
B , α∗

Y ). Blue and yellow points
represent values for which h H D and h DH are the unique stochastically stable convention respectively. Grey
points represent values of (α∗

B , α∗
Y ) for which both the conventions are stochastically stable. Starting from

the left, the three polygonal chains represent: TH D(α∗
B ; kB , kY ), T (α∗

B ; kB , kY ), and TDH (α∗
B ; kB , kY )

long-run dynamics and hence, a population’s ability to secure a resource. In particular,
we showed that the harshness of conflict plays a critical role: if the cost of losing a fight
is small (large) relative to the benefit of the resource, the population with the smaller
(larger) sample chooses hawk and the other population chooses dove. Consequently,
the impact of an information advantage matters in a non-trivial way (Alós-Ferrer and
Shi 2012), and our results indicate that it is an essential component that needs to be
carefully considered when modelling the dynamics of conflict (Rusch and Gavrilets
2020). Since we obtain conditions under random matching of the members of two
populations, future research should investigate the robustness of our results if mixing
is assortative, interactions occur on social networks or if agents are spatially segregated
(Aydogmus 2018).

Common wisdom suggests that having more abundant cognitive or physical
resources is, ceteris paribus, beneficial for the evolutionary success of any living
species. The reason why we observe species with rather limited cognitive capaci-
ties is generally attributed to the increasing cost of such an apparatus. Yet, our results
suggest that cognitive limitations can result in a relative fitness advantage even in
the absence of costs of sustenance. In conflict situations, similar to the hawk–dove
game, the population with a smaller working memory tends to be more aggressive and
earn higher payoffs than the population with larger working memory which is more
peaceful, if conflict is mild.

Our theoretical results can be interpreted under an evolutionary and a socio-political
perspective and therefore have implications for the literature in two different disci-
plines. In a biological context, a harsher conflict refers to stronger selection pressure
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and higher payoffs imply higher evolutionary fitness. Better memory and cognitive
abilities are linked to larger brain sizes and a larger hippocampus (Farris 2015 and
Nave et al. 2019). Yet, larger brains entail additional costs related to longer weaning,
gestation and higher calorie requirements. Gonzalez-Voyer et al. (2016) have shown
that extinction vulnerability and larger brain sizes are positively correlated for primates
even in the absence of these additional costs. Based on our analysis, these evolution-
ary results might be explained by mild conflict situations (see also Doi and Nakamaru
2018). On the other hand, Sol et al. (2002) and Sol et al. (1993) show that larger brains
benefit a species’ attempt to invade new habitats, which is in line with our results
in harsh conflict situations. Similarly, Montgomery et al. (2010) show that primates
experienced an increase in relative brain mass in some species while other branches of
the primate family illustrate a decrease in relative brain mass over evolutionary time.
The evolutionary factors leading to different evolutionary trends have not been con-
clusively determined in the literature and our results offer some theoretical indications
as to how selection pressure may have engendered the different evolutionary trends
across various primate species.

The socio-political interpretation of our results applies to ethnic and sectarian con-
flict. Payoffs imply access to political, social, and economic resources and harshness
of conflict refers to the severity of the measures taken by the groups involved relative
to the respective benefits from winning the conflict. Memory is to be interpreted as the
collective memory of an ethnicity or sect, and sampling as referring to past collective
memories. Our results then imply that collective memories are particularly frequently
invoked in times of severe ethnic and sectarian conflict. Salloukh (2019), for example,
shows that the various sectarian leaders used war memories during the Lebanese Civil
War to increase tensions between groups and foster their own political and economic
benefits (see also Ille 2021, for a further discussion and theoretical results). Our results
further imply that harshness of conflict and sampling/use of past collectivememory are
self-reinforcing as one leads to the other. Consequently, future extensions of our model
may endogenize the severity and thus harshness of conflict as part of an evolutionary
process.

We have investigated the role of heterogeneous sample sizes between populations
when the behavioral rule is best response to the sampled frequency of play in the
other population. Different results may hold if at least some of the agents employ
different behavioral rules (Alós-Ferrer and Buckenmaier 2020; Khan 2021), as such
as social imitation (Alós-Ferrer 2008), cognitive hierarchies (Khan and Peeters 2014)
and past performance of own actions (Sarin 2000). Experimental research may be
useful to empirically assess the actual context-specific application of behavioral rules
(Nax et al. 2016;Mäs and Nax 2016; Lim and Neary 2016). Finally, the role of varying
sample sizes within each population could be fruitfully explored in future research.

For simplicity, we assumed that population sizes are identical and fixed. In a more
realistic context, increased payoffs translate into higher fitness. At the same time,
different population sizes alter the frequency of pairwise interactions and thus affect
the updating process. A larger group size, on the other hand, reduces the cost of con-
flict and thus the harshness measure. Future research should find that the interplay
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between population dynamics and harshness of conflict may be conducive to interest-
ing insights.
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Appendix A: Proofs

Proof of Lemma 1 We first show the “if” part of the statement.
Consider a generic history h, which represents the state of the system at time t , and

select a pair of agents to play the hawk–dove game. If there is a positive probability
that they play either (H , D) or (D, H), and they actually do so, then the following
pair of agents that is drawn to play the game has a positive probability to play as
the previous pair. Indeed, suppose (without loss of generality) that they play (D, H).
Then, we note that nt+1

B ≥ nt
B and nt+1

Y ≤ nt
Y . By repeating this argument form times,

we conclude that with positive probability a convention is reached.
Suppose now that, starting from h, with probability 1 the pair of selected agents

plays either (H , H) or (D, D). At the following period, if the pair of selected agents
can play (H , D) or (D, H)with positive probability, thenwe can apply the argument of
the previous paragraph. Otherwise, we move to the following period. At period t + m,
either at some period agents have played (H , D) or (D, H) (so that with positive
probability a convention is reached), or all plays of the game in memory are either
(H , H) or (D, D). In the latter case, we note that nt+m

Y = nt+m
B . At period t +m, if the

pair of selected agents has a positive probability to play (H , D) or (D, H), then we
are done. Otherwise, with probability 1 they play either (H , H) or (D, D). Without
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loss of generality, we assume that they play (D, D). This means that nt
B/kB < α∗

B and
nt

Y /kY < α∗
Y . After such agents play (D, D), we have nt+1

B ≥ nt
B and nt+1

Y ≥ nt
Y . The

following pair of agents either plays (D, D) with probability 1, or not. If (D, D) is
played with probability 1, then we move to the following period. We proceed this way
until we find a period, call it t̂ , in which (D, D) is not played with probability 1. We
observe such a t̂ must occur in at most m periods, if the memory contains D actions
only. We now show that at period t̂ the selected pair agents cannot play (H , H) with
probability 1, which means that they play (H , D) or (D, H) with positive probability,
and hence a convention is then reached with positive probability.

We first consider the case (i) in which min{kB, kY } < m holds, which means that at
least for one population, say Y , we have kY < m. Suppose at time (t̂ − 1) the yellow
agent plays D with probability 1, and instead plays H with positive probability at
time t̂ . It must be true that nt̂−1

Y /kY < α∗
Y ≤ nt̂

Y /kY , with nt̂
Y = nt̂−1

Y + 1. At time t̂

there is a positive probability to select a sample with nt̂−1
Y = nt̂

Y − 1 to whom action
D is the best response for yellow agent, thus showing that (H , H) is not played with
probability 1.

We nowconsider the case (ii) inwhich q = mα∗
Y for some integer q (we have chosen

G, without loss of generality), and we suppose again that the yellow agent takes action
H with positive probability. Since nt̂

Y /m < α∗
Y , this means that nt̂+1

Y = nt̂
Y + 1 = q

(otherwise there would not exist an integer q such that q = mα∗
Y ). Therefore, both D

and H are best responses for the yellow agent, which implies that action D is chosen
with positive probability, thus showing that (H , H) is not played with probability 1.

We finally consider the case (iii) in which there exists an integer number q such
that α∗

Y m < q < α∗
Bm (we have chosen α∗

Y < α∗
B , without loss of generality). Since

nt̂
Y /m < α∗

Y , nt̂
B/m < α∗

B , and nt̂
Y = nt̂

B , if (D, D) is not played with probability

1, then the only possibility is that nt̂+1
Y = nt̂+1

B = nt̂
Y + 1 = nt̂

B + 1 = q, which
implies that H is the unique best response for the yellow agent, and D is the unique
best response for the yellow agent, thus showing that (H , H) is not played with
probability 1.

We now show the “only if” part of the statement, by contraposition. The negation
of conditions (i), (ii) and (iii) amounts to assuming that kB = kY = m, and there exists
an integer number q < m such that q < α∗

B < q + 1, q < α∗
Y < q + 1. Assume that

the state at time t is given by a history where (D, D) has been played for q times,
and (H , H) has been played the remaining m − q times. The pair of selected agents
at time t plays (D, D) with probability 1, since nt

Y = q < α∗
Y and nt

B = q < α∗
B .

This implies that nt+1
Y = q + 1 > α∗

Y and nt+1
B = q + 1 > α∗

B , and hence the pair of
selected agents at time t + 1 plays (H , H) with probability 1, thus determining that
nt+2

Y = q = nt+2
B . Therefore, the cycle between a state with q occurrences of (D, D)

in memory and a state with q + 1 occurrences continues forever, so that we will never
have convergence to a convention. 
�
Proof of Lemma 2 Since we assume kY < kB condition (i) of Lemma 1 is respected.
Let G be a 2 × 2 coordination game with the corresponding conventions (strict Nash
equilibria) (H , D) and (D, H), and corresponding absorbing states with history hH D

and hDH . Assume that row players have sample size kB and the column players have
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sample size kY . For payoffs as in matrix (Fig. 1) we define α∗ = 1− V
C . Parameter α∗

then refers to the necessary share of yellow (blue) players choosing strategy D in the
sample of a blue (yellow) player to induce a shift in the best response play of a player
to H.

Assume that the blue and yellow player populations are currently in hH D . Hence, a
blue player B currently playing strategy sB = H will only change strategy to sB = D
if there is a sufficient number of yellow players playing sY = H in his sample. Thus,
there must be at least �(1−α∗)kB� players committing an error in subsequent periods,
occurring with probability ε(1−α∗)kB . For a yellow player Y with sY = D to switch to
strategy sY = H there must be a sufficient number of blue players playing sB = D
in his sample. Hence, there must be again at least �α∗kY � of these players in m,
happening with probability of at least εα∗kY . Therefore, the minimum of �(1−α∗)kB�
and �α∗kY � is the stochastic potential of hDH . The proof for a shift from hDH to hH D

is analogous.
We obtain rDH = min{�(1 − α∗)kB�, �α∗kY �} and rH D = min{�α∗kB�, �(1 −

α∗)kY �}. 
�
Proof of Proposition 1 (a) We have to prove that rH D ≤ rDH .

Firstly, we show that rH D = min{�α∗kB�, �(1 − α∗)kY �} = �(1 − α∗)kY �. If
α∗ > 0.5 and kB ≥ kY , then (1 − α∗)kY < α∗kB and, thus, �(1 − α∗)kY � ≤
min{�(1 − α∗)kB�, �α∗kY �}.

(b) We find sufficient conditions for the convention hH D to be the only stochastically
stable convention. Given Theorem 1 in Young (1993a), it suffices to show that
rH D < rDH .
By point (a), rH D = �(1 − α∗)kY �. We thus require that �(1 − α∗)kY � < �(1 −
α∗)kB� and �(1 − α∗)kY � < �α∗kY �, which is implied by:

(1 − α∗)kY ≤ (1 − α∗)kB − 1
(1 − α∗)kY ≤ α∗kY − 1.

By rearranging terms, we obtain:

kY ≤ kB − 1
(1−α∗)

kY ≥ 1
2α∗−1


�
Proof of Proposition 2 The proof is analogous to the proof of Proposition 1, once α∗
is replaced by 1 − α∗. 
�
Proof of Lemma 3 The proof is analogous to the proof of Lemma 2 with the exception
that α∗

B �= α∗
Y . Assuming that kB + kY ≤ m and kY < kB we respect condition (i) of

Lemma 1.
Assume that the blue and yellow player populations are currently in hH D . Hence, a

blue player B currently playing strategy sB = H will only change strategy to sB = D
if there is a sufficient number of yellow players playing sY = H in his sample. Thus,
there must be at least �(1−α∗

B)kB� players committing an error in subsequent periods,
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which occurs with probability ε(1−α∗
B )kB . For a yellow player Y with sY = D to switch

to strategy sY = H there must be a sufficient number of blue players playing sB = D
in his sample. Hence, there must be again at least �α∗

Y kY � of these players in m, which
occurs with a probability of at least εα∗

Y kY . Therefore, the minimum of �(1 − α∗
B)kB�

and �α∗
Y kY � is the stochastic potential of hDH . The proof for a shift from hDH to hH D

is analogous.
We obtain rDH = min{�(1 − α∗

B)kB�, �α∗
Y kY �} and rH D = min{�α∗

BkB�, �(1 −
α∗

Y )kY �}. 
�
Proof of Proposition 3 We proceed by dividing the (α∗

B, α∗
Y ) plane into four differ-

ent areas characterized by different values of min{α∗
Y , (1 − α∗

Y ), α∗
B , (1 − α∗

B)}.
From Lemma 3 recall that rDH = min{�(1 − α∗

B)kB� , �α∗
Y kY �} and rH D =

min{�α∗
BkB� , �(1 − α∗

Y )kY �}, furthermore recall that we assume kB > kY .

• The first area is characterized by min{α∗
Y , (1 − α∗

Y ), α∗
B, (1 − α∗

B)} = α∗
Y .

In this area αY k∗
Y = min{α∗

Y kY , (1 − α∗
Y )kY , α∗

BkB, (1 − α∗
B)kB}, from Lemma 3

rDH ≤ rH D and then from Theorem 1 in (Young 1993a) we find that hDH is
stochastically stable;

• The second area is characterized by min{α∗
Y , (1−α∗

Y ), α∗
B , (1−α∗

B)} = (1−α∗
Y ).

In this area (1 − α∗
Y )kY = min{α∗

Y kY , (1 − α∗
Y )kY , α∗

BkB, (1 − α∗
B)kB}, from

Lemma 3, rH D ≤ rDH and then from Theorem 1 in (Young 1993a) we find that
hH D is stochastically stable;

• The third area is characterized by min{α∗
Y , (1 − α∗

Y ), α∗
B , (1 − α∗

B)} = α∗
B .

The condition that characterize this area can be rewritten as max{α∗
Y , (1 −

α∗
Y ), α∗

B, (1 − α∗
B)} = (1 − α∗

B). Since kB > kY , we have α∗
Y kY < (1 − α∗

B)kB ,
and from Lemma 3 we obtain rDH = �α∗

Y kY �.
If α∗

Y < 0.5 and α∗
Y kY < α∗

BkB , then rDH ≤ rH D and for Theorem 1 in (Young
1993a) the conventionhDH is stochastically stable; ifα∗

Y < 0.5 andα∗
Y kY > α∗

BkB ,
then rH D ≤ rDH and for Theorem 1 in (Young 1993a) the convention hH D is
stochastically stable;
If instead α∗

Y > 0.5 we have that α∗
Y kY > min

{
(1 − α∗

Y )kY , α∗
BkB

}
resulting in

rH D ≤ rDH . From Lemma 3 and Theorem 1 in (Young 1993a), we find that hH D

is stochastically stable;
• The fourth area is characterized by min{α∗

Y , (1−α∗
Y ), α∗

B, (1−α∗
B)} = (1−α∗

B).
The condition that characterize this area can be rewritten as max{α∗

Y , (1 −
α∗

Y ), α∗
B, (1−α∗

B)} = α∗
B . Since kB > kY , we have (1−α∗

Y )kY < α∗
BkB , and from

Lemma 3 we obtain rH D = �(1 − α∗
Y )kY �.

If α∗
Y > 0.5 and (1 − α∗

Y )kY > (1 − α∗
B)kB , then rDH ≤ rH D and by Theorem

1 in (Young 1993a) the convention hDH is stochastically stable; if α∗
Y > 0.5 and

(1−α∗
Y )kY < (1−α∗

B)kB , then rH D ≤ rDH and by Theorem 1 in (Young 1993a)
the convention hH D is stochastically stable;
If instead α∗

Y < 0.5we have that (1−α∗
Y )kY > min

{
(1 − α∗

B)kB, α∗
Y kY

}
resulting

in rDH ≤ rH D , Lemma 3, and then from Theorem 1 in (Young 1993a) we find
that hDH is stochastically stable;

The result follows by putting together the regions in which the two conventions are
stochastically stable (see Fig. 4). 
�
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Proof of Proposition 4 We proceed by dividing the (α∗
B, α∗

Y ) plane into four differ-
ent areas characterized by different values of min{α∗

Y , (1 − α∗
Y ), α∗

B , (1 − α∗
B)}.

From Lemma 3 recall that rDH = min{�(1 − α∗
B)kB� , �α∗

Y kY �} and rH D =
min{�α∗

BkB� , �(1 − α∗
Y )kY �}, furthermore recall that we assume kB > kY .

We start from the proof of part (a). To find sufficient conditions under which the
unique stochastically stable convention is hDH , we have to identify a region of the
plane (α∗

B, α∗
Y ) in which rH D < rDH .

• Firstly notice that from Proposition 3 if min{α∗
Y , (1−α∗

Y ), α∗
B, (1−α∗

B)} = α∗
Y , or

min{α∗
Y , (1−α∗

Y ), α∗
B , (1−α∗

B)} = (1−α∗
B) with α∗

Y < 0.5, the convention hDH

is stochastically stable then, trivially, the convention hH D cannot be the unique
stochastically stable convention.

• In the area characterized by min{α∗
Y , (1−α∗

Y ), α∗
B, (1−α∗

B)} = (1−α∗
Y ), we have

rH D = �(1−α∗
Y )kY �. If �(1−α∗

Y )kY � < �(1−α∗
B)kB� and �(1−α∗

Y )kY � < �α∗
Y kY �

we obtain rH D < rDH . This condition is assured by the system:

{
(1 − α∗

Y )kY < (1 − α∗
B)kB − 1

(1 − α∗
Y )kY < α∗

Y kY − 1.

By rearranging we obtain:

⎧
⎨

⎩

α∗
Y > α∗

B
kB
kY

+ 1+kY −kB
kY

α∗
Y > kY +1

2kY
.

• In the area characterized bymin{α∗
Y , (1−α∗

Y ), α∗
B, (1−α∗

B)} = (1−α∗
B)withα∗

Y >

0.5, we have rH D = �(1 − α∗
Y )kY �. As above, if �(1 − α∗

Y )kY � < �(1 − α∗
B)kB�

and �(1− α∗
Y )kY � < �α∗

Y kY � we obtain rH D < rDH . This condition is assured by
the system:

{
(1 − α∗

Y )kY < (1 − α∗
B)kB − 1

(1 − α∗
Y )kY < α∗

Y kY − 1.

By rearranging we obtain:

⎧
⎨

⎩

α∗
Y > α∗

B
kB
kY

+ 1+kY −kB
kY

α∗
Y > kY +1

2kY
.

• In the area characterized by min{α∗
Y , (1 − α∗

Y ), α∗
B, (1 − α∗

B)} = α∗
B , we have

rDH = �α∗
Y kY �. To have rH D < rDH we need �α∗

BkB� < �α∗
Y kY � or �(1 −

α∗
Y )kY � < �α∗

Y kY �:

α∗
Y kY − 1 > α∗

BkB

α∗
Y kY − 1 > (1 − α∗

Y )kY .
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Then hH D is the unique stochastically stable convention if at least one of the
following condition holds:

α∗
Y >

α∗
B kB+1

kY

α∗
Y > kY +1

2kY

The result of part (a) follows by putting together the regions in which hH D is the
unique stochastically stable convention (see Fig. 5).

It is possible to prove part (b) of the Proposition analogously by finding sufficient
conditions to have rDH < rH D . 
�
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