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Abstract 
We used the Land Colour Mondrian experiments in a Bayesian context to test the 

degree to which subjects vary in categorizing the colour of different patches, when 

each patch is made to reflect light of the identical wavelength-energy composition. 

The brain uses a ratio-taking mechanism to determine the ratio of light of every 

waveband reflected from a surface and from its surrounds. Our (Bayesian) hypothesis 

was that this ratio-taking mechanism is similar in all humans and therefore leads to a 

constant categorization of colours that differs little between them. The similarly 

categorized colours are the initial priors, with initial hues attached to them. Twenty 

subjects of different ethnic and cultural backgrounds, for all but one of whom English 

was not the primary language, viewed 8 patches of different colour in two Mondrian 

displays; each patch, when viewed, was made to reflect identical ratios of long-, 

middle- and short- wave light. Subjects were asked to match the colour of the viewed 

patch with that of the Munsell chip coming closest in colour to that of the viewed 

patch, without using language. In terms of hue, there was less variability in matching 

warm hues than cool ones. In terms of colour categorization, there was little 

variability overall. We take the lack of significant variability between subjects in the 

matches made as a pointer to similar computational mechanisms being employed in 

different subjects to perceive colours, thus permitting them to assume that their 

categorization of colours has universal agreement and assent.  
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Introduction 
 

It is trite neurobiology to say that one of the primordial functions of the brain is to 

acquire knowledge. Yet this raises a fundamental issue of huge importance, namely 

the extent to which the knowledge acquired through brain mechanisms by one 

individual is identical to that acquired by another or others, thus allowing the 

acquiring individual to assume reasonably that there is universal assent to the 

knowledge and experience acquired by him or her. The question resolves, therefore, 

around asking what conditions, if any, enable all individuals, irrespective of their 

ethnic, cultural or educational status, to share the same experience and knowledge 

under the same conditions.  

There has been much philosophical debate about this subject, which we do not delve 

into here in any detail. Rather, accepting Immanuel Kant’s (1781) statement that 

“perceptions without concepts are blind”, we work on the assumption that all sensory 

inputs are interfaced through, or based on, brain concepts, of which, we believe, 

there are two kinds: acquired (synthetic) concepts and inherited one (Zeki, 2009). The 

former, among which we include concepts related to human-made objects such as 

utensils, cars and furniture, lead to experiences and knowledge that can differ 

profoundly between individuals even when experienced under identical conditions, 

and that can be modified throughout postnatal life. This makes it unsafe for the 

experiencing individual to assume that his or her experience will be identical or even 

similar to that of others. The latter, inherited, concepts lead to knowledge which, to a 

greater or lesser extent, is similar in all individuals and which is resistant to change 

through experience, thus making it easy for one individual to assume that others 

would share the same or nearly identical experience under similar conditions. In the 
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work reported here we concentrate on inherited concepts alone and on one of the most 

extreme examples of it, namely colour vision, which we approach in a Bayesian 

context.  

 

We could of course have used terms like algorithm or program, which have found 

wide usage in computational neurobiology, rather than the term ‘concept’ to describe 

the brain’s inherited ratio-taking mechanisms for generating colours. We prefer to use 

the term ‘concept’ here for two reasons; partly because it perpetuates the term used 

initially by Immanuel Kant when he wrote that all experiences, except time and space, 

must be interfaced through concepts, and partly because, in the Bayesian context in 

which we write, there are other inherited ‘concepts’ which have cross-cultural 

validity, such as that of ‘unity-in-love’, with which the term algorithm does not sit so 

easily and for which the term concept seems better suited (Zeki, 2009; Zeki & Chen 

2019 for a discussion of the Bayesian brain).  

 

The Bayesian approach supposes that initial priors, or initial beliefs, generate 

posteriors through experience, experimentation and learning. The posteriors thus 

generated (through experience and learning) have (modified) beliefs attached to them 

and therefore modify inference and behaviour; the (modified) posteriors can then act 

as new priors from which, through experience and experimentation, new posteriors 

are generated, and so on, iteratively (Dayan et al., 1995; Rao & Ballard, 1999; López 

et al., 2014; Friston et al., 2011; Pouget et al., 2013) (inter alia). Our hypothesis in 

this work is that, in colour vision, the initial prior generated from the brain’s inherited 

ratio-taking mechanisms (Land, 1986) leads to (a) constant colour categorization 

(Zeki et al., 2017), to which (b) a given initial hue is attached; the initial prior 

generated from the brain’s ratio-taking mechanism has, therefore, two constituents; 

we refer to these two constituents collectively as the initial biological or. B prior. 

However, unlike Bayesian priors in general, one of the two constituents of this initial 

biological prior, the constant colour categorization, is substantially the same in all 

individuals and is not easily modified even with extensive experience and learning. 

Hence, an individual can legitimately assume that the colour categorization that he or 

she makes under given conditions of illumination is very similar, if not identical, to 

the colour categorization (and experienced) by other individuals and hence that his or 

her experience has universal assent. In the sense that we use it here, “inherited” 
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implies   a genetically inherited mechanism that engages the same neural connections 

and the same pattern of brain activity in all individuals, something which is applicable 

to the brain’s ratio-taking system.  The initial colour categorization, with the initial 

hue attached to it, (the two priors) are the consequence of that operation.  

Our present paper is a step in a broader experimental enquiry, which aims to address 

the degree of variability produced in individuals when their experience is the product 

of interfacing the incoming visual signals with inherited and acquired brain concepts. 

The first study addressed the question of the biological basis of mathematical beauty 

(Zeki, Chén, & Romaya, 2018). Here we test the hypothesis that there will be high 

agreement among individuals of different ethnic and cultural backgrounds regarding 

the colour category into which they assign coloured patches when, regardless of their 

colour, the patches are made to reflect light of the same wavelength-energy 

composition. This may seem obvious but was important to demonstrate formally. To 

do so, we used the Land Mondrian experiment, where subjects view patches of 

different colour when each, in turn, is made to reflect the same triplet of energies, 

measured in terms of milliwatts per steradian per m2 (mW.Sr-1.m-2). It is common 

knowledge that the colours of objects and surfaces do not change with fairly wide 

ranging changes in the wavelength-energy composition of the light in which they are 

viewed (Land & McCann, 1971; Land, 1986), a phenomenon generally referred to as 

colour constancy. We prefer to use the term “constant colour categorization” for two 

reasons; it avoids the use of the term “colour category” which in the past has been 

associated with use of language and because the hue (shade) of colour of a given 

surface or object does change with changes in the wavelength-energy composition of 

the light in which it is viewed, even if the colour categorization does not (Zeki et al., 

2017). We avoid the term colour category because, as used in past literature, it 

includes a lexical element; language is the element that we exclude in our studies, 

concentrating on non-linguistic matching instead. The distinction between colour and 

colour categorization is thus important for the experiments described here, in which 

we set out to learn the extent of variability in the experience of colour categorization 

between individuals without the use of language.   
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No one has determined the precise concept, in neural terms, which the brain uses to 

generate colours. But the ratio-taking formulations produced by Edwin Land and his 

colleagues (Land & McCann, 1971; Land, 1983; Land, 1986) are perhaps the easiest 

to use, given their mathematical precision and the predictability of the results 

produced through them. We acknowledge that many different ways of implementing 

this have been proposed (Foster, 2011) but they all share a common feature, namely a 

comparison of the wavelength composition of light reflected from different surfaces. 

This is what we, too, emphasize here although we rely more on the classical approach 

of Land and his colleagues, without implying that it is the final word on the 

implementation. The exact concept is in any case not critical for the work reported 

here but the experiments we have used and the avoidance of language are, and these 

are based on Land’s.  

In summary, we used the Land Mondrian experiments to investigate how subjects of 

different ethnic and cultural backgrounds categorize patches of different colour 

without the use of language, by matching the colours they experience when viewing 

different patches with that of a standard set of Munsell chips, since the use of 

linguistic criteria in studies of colour categorization (Berlin & Kay 1969/1991) has 

been criticized for not being equally applicable across languages (Biggam, 2012). We 

return to this in the Discussion.  

Material & Methods 
 

Subjects: Twenty subjects, of whom 10 were females, took part in the experiment; 

their mean age was 24.1 years, with a standard deviation (s.d.) of 6.7. They were 

recruited through advertisements at University College London (UCL), were over 18 

years of age and had normal or corrected to normal vision. They were all tested with 

Ishihara plates (Ishihara, 1988) for colour vision abnormalities and none was found to 

be deficient. No subject reported any neurological or psychological disorder, all gave 

informed consent and the experiment was approved by the UCL Ethics Committee 

(12327/001). Subjects came from the following countries: Cyprus, Thailand, Turkey, 

Lebanon, France, Ghana, China, Brazil, India, Greece, Egypt, Japan, Venezuela, 

Netherlands, United Kingdom and Spain; for all but one English was a second 

language.  
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Task: Subjects had to match the colour of patches in a Land Colour Mondrian display 

under specific conditions of illumination (see below) with coloured Munsell chips 

which were also viewed under specific illumination conditions. The patch to be 

matched was indicated to the subjects by a laser beam.  In making the matches, 

subjects did not use words or language as their response. The Mondrian displays: As 

in Land’s original experiments, we used Land Colour Mondrian displays, which were 

placed at a distance of 2 metres from the observers; they consisted of an assembly of 

squares and rectangles so arranged as to form an abstract scene with no recognizable 

shapes or objects, besides rectangles and squares. This controls for any effects due to 

memory and learning of what colours objects should have. To avoid specular 

reflectance, we used matt Color-Aid papers which reflect a constant amount of light 

in all directions. No patch was surrounded by another patch or patches of a single 

colour, thus avoiding induction effects.  

We constructed and used two Mondrian displays, and subjects had to match the 

colours of each to Munsell chips (see Figure 1). Eight test patches were selected in 

each display, seven examples representing each of the basic colour categories Blue, 

Brown, Green, Yellow, Orange, Red, the “extra-spectral” Purple and one boundary 

colour – Turquoise - lying between Blue and Green. In the following description, each 

of the test patches will be referred to by the colour names given above although in the 

experiments subjects did not use language but merely matched the patch to the 

Munsell chips. Both Mondrian displays included the same eight test colour patches 

but in different configurations; in both, each patch subtended 8.25º x 6º and the 

surrounding patches extended more than 10º in all directions.   

The Mondrian displays were illuminated by three carousel projectors (Kodak 

Ektagraphic B-2AR), equipped with ELH 120V 300W bulbs, rheostats and three 

gelatine filters passing long-, middle-, and short-wave light, respectively; the filters 

had been specially manufactured for Zeki’s experiments by Edwin Land (Zeki, 1980). 

The long-wave filter transmitted light in the range of 592nm to the long end of the 

visible spectrum with a peak transmittance greater than 660nm. The transmittance of 

the middle-wave filter was in the range 492-580nm (peak 528nm) while the short-

wave filter transmitted light in the range 386-493nm (peak 432 nm) with a secondary 
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peak at 700nm. Each projector was equipped with a separate rheostat and shutter, thus 

enabling the intensity of light coming from each to be adjusted separately.  

 

Figure 1.  Appearance of Mondrian displays 1 (left) and 2 (right) under daylight viewing 

conditions. Color-Aid notations of test patches and corresponding names: 1.BW T2=Blue, 2. 

O S3=Brown, 3. YG T3=Green, 4. YO Hue=Orange, 5. V T1=Purple, 6. R Hue=Red, 7. GBG 

T4=Turquoise, 8. Primrose Yellow=Yellow.  

 

For each test stimulus, we adjusted the amount of long, middle and short-wave light 

of the three carousel projectors so that each patch, when judged for its colour, 

reflected a nearly constant ratio of 60% long-, 20% middle- and 20% short- wave 

light. Apart from the slightly different ratios used compared to the ones used in 

Land’s experiments (Land, 1974; Land & McCann, 1971; Land, 1986), this 

constitutes a replication of Land’s classical experiment in colour vision, the only 

difference here being that we were interested in the colour category, rather than the 

hue, to which matches were made. We note that our subjects never experienced the 

Color Aid patches in daylight conditions; hence their only acquaintance with our test 

stimuli was under the conditions described above.  The reason for selecting Color 

Aid matte patches for the construction of the Mondrian displays was because our 

three projectors – equipped with a long, medium and short wave filters – were 

illuminating the Mondrian displays from slightly different angles and we wanted 

each test surface to reflect, as much as possible, constant amount of light in all 

directions from all three projectors. The energies reflected from each patch were 
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measured in milliwatts per steradian per square meter (mW.Sr-1.m-2) separately for 

each projector using a PR-670 tele-spectroradiometer (Table 1). We also report the 

stimulus specifications for each test patch in 10o relative cone excitation units 

(Stockman & Sharpe, 2000) in Supplementary Table S1. The consistency of the ratios 

was checked before each experimental session. 

 

Table 1. Ratio of radiances (mW/Sr-1/m-2) for long-, middle- and short wave light reflected 

from each test patch in the Mondrian displays. 

  Long wave light Middle wave light Short wave light 

Blue 58.88 20.22 20.89 

Brown 59.50 20.32 20.18 

Green 61.05 18.81 20.14 

Orange 59.85 20.12 20.03 

Purple 60.41 19.43 20.16 

Red 60.74 19.85 19.41 

Turquoise 60.11 19.83 20.06 

Yellow 60.11 20.06 19.83 

 

The Munsell Chips 
The Munsell colour system was designed with the objective of representing 

perceptually uniform visual spacing of hue, Chroma (saturation) and Value (lightness) 

dimensions. In the viewing conditions specified above, subjects were asked to match 

the colour of the eight nominated patches with one of the 44 colour chips from the 

Munsell Book of Color (Glossy Collection, M40115).  40 hues of the Munsell set 

were selected to have the maximum available Chroma and variable Value levels to 

which we also added 4 darker stimuli for the yellow to red hues (Munsell 2.5YR to 

10YR) because there were no brown or yellow chips at the same Value level (see 

Figure 2 and Supplementary Table S2 for the full specifications of the chips). The 

order of the chips was randomised and displayed on an annulus at a constant 

eccentricity of 10º from the point of fixation. They were presented against a mid-

neutral grey surround inside a viewing booth illuminated by two GrafiLite daylight 

simulators (CIE 1931 x = 0.327, y = 0.339). In this study we were more interested 

in the constancy of colour categorization and we have chosen the glossy version 

of the Munsell system because it is the one from which chips used in most colour 

categorization studies (Berlin & Kay, 1969/1991; Sturges & Whitfield, 1995; 
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Roberson et al., 2005; Kay et al., 2010) but in fact the use of the two would make 

little difference (Mylonas & MacDonald, 2010; Olkkonen et al., 2010). 

Colour Matching Procedure 

Participants had to match the colour of the eight test patches in each Mondrian display 

with the Munsell chip that, to them, was closest in colour to the patch under 

examination. The viewing booth with the Munsell chips was placed on a desk at a 

distance of 60cm from the observers. After adjusting the rheostats of the projectors to 

make each patch reflect the (same) amounts of long-, middle-, and short-wave light 

(given above), all three projectors were switched on to illuminate the entire Mondrian 

display, while the two daylight sources were switched on to illuminate the 44 Munsell 

chips. Any remaining light sources in the experimental room were eliminated. 

Participants performed the successive colour matching tasks without time limit but, in 

practice, each trial took less than 1 minute. The procedure was repeated twice for each 

test patch using the two different Mondrian displays of Figure 1 to measure the 

reliability of the responses, thus giving a total of 16 trials per subject.  

Classification of hues into colour categories 

The exact hue or shade of a coloured surface varies under different conditions of 

illumination while its colour category remains constant (Zeki et al., 2017). To classify 

the hues of the Munsell chips into categories without the use of language, based on 

the distance between them in colour space, we employed a k-means algorithm (which 

is reproducible using Matlab’s k-means routine with default random settings) with 

Euclidean distances in CIELAB (D65), where the number of clusters was set equal to 

the number of the test samples (k=8). In Figure 2, we show the Munsell chips of our 

comparison stimuli clustered into eight categories. This perceptual-based clustering 

corresponds well to the observed distribution of the colour terms on the surface of the 

Munsell system with the exception of pink (see supplementary Figure S1). For the 

sake of convenience during the analysis only, we supplemented this by assigning a 

colour name to the numerical outputs of the k-means algorithm (1-8), based on a 

colour naming estimator trained on the responses obtained from hundreds of English 

speaking participants in an online experiment (Mylonas & MacDonald, 2016) (Figure 

S1). We note that our subjects were naïve to this classification scheme. 
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Figure 2. Munsell chips shown as though viewed from above (a* b* plane of CIELAB space) 

segregated into colour categories based on their in-between Euclidean distances. 

 

The means and standard deviations of hue and Value of the matches (between the 

Munsell chips and each of the eight test patches) for all subjects and for both 

Mondrians are shown in Figure 3. 
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Figure 3. Variability of colour matching responses for each of the eight test patches for both 

Mondrian displays. Rings denote the mean and the error bars the standard deviation. The 

horizontal lines show the variability in the hue dimension and the vertical lines the variance 
in the Value dimension. Achromatic contours correspond to high levels (white), medium 

levels (grey) and low levels (black) of saturation (Chroma).  The colour terms under each 

Munsell hue indicate the nearest hue of each test patch in terms of ΔE00 in CIELAB. 

 

The patches with the lowest hue variance in their matched Munsell chips were red, 

yellow, orange and brown, followed by green. The highest variability was observed 

for the ‘extra-spectral’ purple patch followed by blue and the boundary colour 

turquoise. Thus, the variability in colour matching responses is lower for reddish than 

bluish colours (r = 0.94, n = 8, p < 0.0005); this reflects the smaller perceptual extents 

of categories in the warm region (in terms of steps leading to a change in hue), than in 

the cool region of colour space (Berlin & Kay, 1969/1991; Mylonas & MacDonald, 

2016). A comparison of the means obtained for the different patches in the two 

Mondrian displays produced a good agreement (mean CIE ΔΕ 2000 = 2.00), with the 

largest differences being observed for the brown and purple patches (ΔΕ00 = 4.58 and 

ΔΕ00=2.23, respectively) and the smallest for the yellow patch (ΔΕ00 = 1.08). The 

uneven saturation levels of the Munsell surface (see achromatic contours) can only 

account for part of our results, namely for two (red and orange) out of eight test 

colours (Witzel & Franklin, 2014; Witzel, Cinotti & O’Regan, 2015).  

The matching of the test patches showed that the categorization was constant, in other 

words that patches were neither identified as a different category nor was there a 

systematic shift towards the dominant long wavelength light. 

The above description applies to hues of the Munsell chips; we were in fact more 

interested in the variability of colour categories, because it is the colour category 

rather than the hue that remains constant (Zeki et al., 2017). In Figure 4, we convert 

the matches given in terms of the Munsell chips into categories following the k-means 
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classification scheme given above, i.e. without the use of language (Figure 2). There 

is no variability for matching the red, yellow and orange patches to their 

corresponding Munsell categories and high consistency for brown (χ2 = 61.2, p> 

0.0001), turquoise (χ2= 48.05, p> 0.0001), purple (χ2 = 42.05, p> 0.0001), and green 

(χ2 = 18.05, p> 0.0001) using Yate’s correction for all chi-square tests.  For the blue 

test patch, although the allocation was placed more frequently in the correct (blue) 

category, this allocation was not significant (χ2 = 0.45, p= 0.5) as it was often placed 

within the turquoise category. It should be noted however that they were placed in the 

blue or turquoise (neighbouring) categories, in spite of the fact that they were 

reflecting twice the amount of long-wave compared to middle- or short-wave light.  

 
 

Figure 4. Frequency of corresponding colour categories of Munsell chips selected as 

the best match for each test patch in both Mondrians. Colours denote the colour of 

the test patch and the labels show the corresponding clusters for the Munsell chips.  
 

In summary, our results shows that, of a total of 320 responses, 88% allocated the test 

patches of the Mondrian displays to the Munsell chips belonging to the same 

category. The 12% were matched to chips belonging to other, but closely 

neighbouring, colour categories (χ2 = 250, p < 0.0001). Of these, there was a high 

consistency of 90% in allocation of the boundary colour (turquoise) while the 

consistency was over 87% for ’extra-spectral’ purple.  
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Discussion 
The experiments reported here constitute part of a series in which we explore, within 

the context of the brain as a knowledge-acquiring system, judgments that can 

reasonably be accounted for by supposing that they are based on biologically 

inherited concepts or mechanisms and are thus distinct from post-natally acquired 

ones (Zeki, 2009). Certain characteristics facilitate the categorization of experiences 

or judgments as being based predominantly or even exclusively on biologically 

inherited concepts.  Prominent among these are: (a) a lesser variability between 

subjects, even those belonging to different races and cultures, when making 

judgments based on inherited concepts and (b) a resistance of such concepts to change 

through experience and learning (Zeki & Chen, 2019). The consequence of this more 

restricted variability is that the individual making a judgment based on inherited 

concepts is more entitled to assume that his or her judgment has universal validity and 

assent. This has so far been found to be true for aesthetic judgments of portraits and 

landscapes (Vessel, Maurer, Denker & Starr, 2018) as well as mathematical formulae 

experienced as beautiful (Zeki et al.,  2018), all of which we consider to belong to the 

biological category. Aesthetic judgments based on such concepts are characterized by 

lesser variability in judgment ratings compared to aesthetic judgments of man-made 

artefacts (which are more likely to be interfaced through synthetic concepts). In the 

work reported here, we extend this approach to colour vision and do so in a Bayesian 

context.  

 

Berlin and Kay (1969/1991) proposed a total universal inventory of eleven basic 

colour categories (corresponding to the English terms: white, black, red, yellow, green 

and blue, grey, purple, brown, orange and pink) defined by a combination of multiple 

linguistic and psychological criteria. Such criteria have been strongly criticized as 

being not equally applicable across languages (Biggam, 2012). Others have identified 

basic colour categories on more objective behavioural criteria such as frequency, 

response time and consistency of colour naming responses (Boynton & Olson, 1987; 

Lindsey & Brown, 2014; Mylonas & MacDonald 2016). Recently, colour categories 

have been measured using simulated Munsell chips under varying lighting conditions; 

the strong correlation between naming consistency across illuminants and across 
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observers suggests a close link between categorical colour constancy and consistent 

colour communication (Olkkonen, Hansen & Gegenfurtner, 2009).   

Because these approaches have been based on the use of language and because 

variations in categorizations are traceable to language, we opted for a different 

approach, one that is widely used to access colour constancy and offers comparable 

performance (Troost  & De Weert, 1991; Speigle & Brainard, 1996); we investigated 

whether subjects of different linguistic and ethnic backgrounds categorize different 

colours in a similar way when light reflected from patches of different colour have the 

same wavelength-energy composition. We did so by asking subjects to match the 

experienced colours of the viewed patches with that of a standard set of Munsell 

chips, without the use of language. 

Colour categorization is dictated by inherited programs or concepts 

Colour is perhaps the most extreme example of an experience that is dictated by an 

inherited brain concept. We refer to this concept, based largely on the work of Edwin 

Land and his colleagues, as that of ratio-taking although one could equally refer to it 

as a brain algorithm or program (see Introduction). Specifically, the concept here is 

one in which light of any waveband reflected from a surface is compared with light of 

the same waveband reflected from surrounding surfaces, and a ratio between the two 

taken to  categorize the colour (β prior) of the viewed patch; this constitutes the initial 

prior to which an initial hue is attached. Therefore the prior consists of two 

components – the categorization of the colour and the hue attached to that 

categorization.  Although Land supposed that the ratio taking is applied three times, 

for long-, middle- and short-wave light, it is equally possible that it is done many 

times for lights of many different wavebands, given the wide distribution in peak 

wavelength selectivity of cells in the cerebral cortex and particularly in area V4 

(Zeki, 1980). The net result of these operations is that colour perception becomes 

largely independent of the continuous fluctuations in the wavelength-energy 

composition of the light reflected from a surface, thus leading to a perceptual 

stabilization of colours. It is common to suppose and write of the result of such a 

stabilization as colour constancy, by which is meant that the colours generated are 

constant and largely independent of the precise wavelength-energy composition of the 

light reflected off them. We believe, however, that describing the end result as a 

constant colour category is preferable because what does not change as a result of this 
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ratio-taking operation is in fact the colour category, not the hue (or shade of colour); 

the latter changes when surfaces are viewed in different illuminants (Zeki et al., 

2017).  

 

Within a Bayesian context, of the two linked initial β priors in colour vision - the 

constant colour category and the hue attached to it - the latter (hue or shade of colour) 

can change with changes in wavelength composition of the light reflected from a 

patch or with changes in the arrangements of the surrounds, while the former  (the 

colour category) either does not or changes much less. In this work, we showed that 

even when a patch (say the green or blue one) is reflecting more long-wave light, its 

colour category does not change to red or reddish colours but remains within the 

green category for all subjects.   Our experiment is a first step in showing that there is 

a high consistency across individuals in matching, without the use of language, 

patches that differ in colour but reflect light of the same wavelength-energy 

composition, to definitive colour categories in the Munsell system.  The implication 

of this is that the colour category β prior must be resistant to change or modification 

through experience and learning, in other words that there will be little variation in the 

posterior generated from the colour category β prior with experience and knowledge 

for individuals differing in their ethnic and cultural backgrounds. One would expect 

that to be so because the primordial function of the brain’s colour system is to acquire 

knowledge about the world in terms of colour; it has to undertake this task when the 

signals and information reaching it from the outside world is never the same from 

moment to moment. Hence the brain must stabilize the world of colour as best it can, 

in order to be able to acquire knowledge about the constant and invariant properties of 

objects and surfaces in terms of colour. Hence, if a constant colour category 

biological prior were to be hostage to change through experience, then that would 

diminish considerably the ability of the brain’s colour system to stabilize the world of 

colour and thus allow the organism to use colour as biological signalling mechanism 

and to communicate through it.  

 

Both Helmholtz and Hering tried to account for colour constancy by invoking, in the 

case of Helmholtz higher cognitive factors such as learning and judgment (Helmholtz, 

1911) and, in that of (Hering, 1877), “memory colours”.  Such factors may well play a 

role to modify the experience of colour for objects of which one has knowledge 
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through experience. But this, significantly, is not true for colour that is detached from 

definitive objects (Vandenbroucke, Fahrenfort, Meuwese, Scholte & Lamme, 2016)  

or colour attached to “nonsense” objects, of which Land’s experiments constitute a 

classic example and which is why we have used these experiments here. But even 

such knowledge about the colour of known objects may be over-ridden by the brain’s 

computational process to generate colours that make little sense in terms of the known 

colours of objects, as Land’s two colour projection experiments show (Land, 1959).  

In any case, the role of memory colours is controversial (Connolly, 2019); we agree 

with Connolly that, where it exists, it may enhance perceptual learning by making it 

easier to separate objects from their backgrounds and that it cannot be a mechanism 

for generating colour constancy as sometimes supposed (e.g. Olkkonen et al., 2009) 

for the simple reason that the universality with which constant colour categorizations 

are generated in all humans makes it inconsistent with the supposition that memory 

colours enable colour constant categorization.    

 

Consistent with the belief outlined above, what we have shown here, in summary, is 

that colour categories remain stable (Figure 4) and that such variation as there is, is 

rather in the hues within these constant colour categories (Figure 3). Thus of the two 

inter-connected β priors in colour vision, colour category and hue, the former remains 

constant, does not vary in terms of the posteriors produced from it when the 

wavelength-energy composition of the light reflected from it is varied, or when 

patches belonging to different colour categories are made to reflect the same 

wavelength-energy composition. The initial colour category β prior is thus highly 

resistant to modification through learning and experience. This represents a departure 

from the general Bayesian principle that priors lead to different posteriors and 

different beliefs attached to them through experience (Zeki & Chen, 2019). 

Specifically, a colour category can never become a posterior; it is always a prior. This 

is because, no matter what the wavelength-energy composition of the light reflected 

from, say, a green patch, it will always belong to the green category. Only the hues 

within that patch can become posteriors which can then act as priors for the 

generation of other (posterior) hues but ones which belong to the same colour 

category.  

 

 



 17 

Differences between ‘warm’ and ‘cool’ colours 

We undertook this study in the belief that the result of ratio-taking operations are 

similar in all humans. The consequence is that the results will also be similar in all 

humans, with little variability in the ascription of colours to given categories. The 

variability in matching the colour of the patches with chips belonging to different 

Munsell categories was indeed very limited, especially for red, yellow and orange 

(warm colours) while it was broadest for purple and blue (cool colours). The small 

variance in the red and yellow matches reflects the fact that, in terms of their extent 

measured as steps leading to a change in hue, they are indeed smaller categories than 

blue or purple, which have a larger number of hue steps and hence a higher variability 

(Berlin & Kay, 1969/1991; Mylonas & MacDonald, 2016). 

 

This difference in the width between warm and cool colours, in terms of hue steps 

needed to change to another colour category, has been observed before. The work of 

(Gibson et al., 2017) showed that warm colour categories are more salient than cool 

ones and (Danilova & Mollon, 2010), in their colour discrimination studies, showed a 

border between warm and cool categories, which we interpret as signifying that warm 

colours are narrower in terms of hue steps than cool ones. Although our results 

correspond to theirs in drawing a distinction between warm and cool colours, we do 

not interpret our results, as they do, in terms either of post-receptoral channels 

(Danilova & Mollon, 2010) or of communication needs (Gibson et al., 2017). For us, 

the task was strictly a computational perceptual task and reflects the constancy of 

colour categories, reached by a computational brain process that is independent of 

learning, memory, environmental and social factors.  And, while acknowledging that 

linguistic criteria may be of importance in classifying colours in terms of language, 

we believe that the classification according to colour categories is not dependent upon 

language and experience. Supporting evidence for this comes from the ability of 

children and monkeys to categorize colours much like adult humans (Sandell et al.,  

1979; Skelton et al.,  2017).  

It is worth adding that although we used “purple” as an example of an extra- spectral 

colour, one that is not considered to be a primary colour according to Hering (1877), 

the constancy of its categorization by different subjects was actually higher than that 

of blue and green, which are considered to be primary colours (see Figure 4). 
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Moreover, for turquoise which we used as an example of a boundary colour, and 

which is not considered to be either a primary colour or a basic colour term (see 

Berlin & Kay 1969/1991), was categorized with consistency, supporting earlier 

findings for its position as a basic colour (Mylonas & MacDonald, 2016). These 

findings suggest that colour categorizations involve higher cortical processes and 

cannot be considered only in terms of early perceptual mechanisms. 

Limitations and future directions 

It is worth emphasizing some limitations of the present study.  Although we 

believe that our results are indicative of a fundamental uniformity, across races 

and cultures, in brain mechanisms that are engaged in categorizing colours, our 

sample nevertheless falls far short in that it was limited to 20 subjects. One 

future direction is to extend the sample significantly, not only by incorporating 

more subjects but by ensuring that there is an adequate representation of 

subjects from vastly under-represented populations. An interesting example is 

that of the Amazon Indian tribe, the Nambikwara, whose language does not 

distinguish between different shades of blue which is consequently often 

categorized with green or even black and for whom red and yellow “often” fall 

into the same category. Such a categorization that has been traced to the use 

members of the tribe make of seeds to prepare different dyes (Lévi-Strauss, 

1955/2008). In addition, there might be subjects in industrialised societies, such 

as Russian speakers, who divide the unitary English blue category into light and 

dark segments (Paramei, Griber & Mylonas, 2018). This points to the 

importance, in future studies, of testing the constant categorization abilities of 

subjects from more diverse cultural, ethnic and environmental backgrounds.  

Another limitation relates to the fact that we used mostly typical examples of 

colour categories and did not investigate the shape of the categories by including 

in our studies a large number of boundary colours. Our test boundary colour 

(turquoise) between blue and green revealed an underlying constant category 

important to the subjects which is not named using a traditional universal basic 

colour term (Berlin & Kay, 1969/1991) and thus might be independent of 

language. Our study thus says little about possible variabilities in the 

categorization of the borders of colour categories, even though it shows that 
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there is little variability when the matching is limited to more typical colours, 

which we believe to be an important step in demonstrating the restricted 

variability in categorizing colours. Future studies may well show that there is 

more variability in the shape of colour categories especially in the blue-green 

regions between subjects belonging to different races and different cultural and 

environmental backgrounds. 

This ushers in another future direction that is important in pursuing studies in 

colour categorization. Although both monkeys and human infants appear to be 

able to categorize colours (see above), it is possible that subtler colour categories 

are acquired post-natally with exposure to different environments and that this 

fine-tuning may be dependent upon culture and environment. It would be 

fascinating to undertake such a study in the future, especially with humans who 

develop in environmentally conspicuously distinct surroundings. 

 

Conclusion 

In summary, there was a trivial variability in assigning colours that reflect a constant 

ratio of long-, middle- and short- wave light to different categories by subjects of 

different ethnic and cultural origins. This is a pointer to an important principle of the 

organization of the sensory brain, at least in terms of colour vision, namely that there 

is a very significant similarity in the inherited computational mechanisms for 

generating colour categories in all humans. 
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Supplementary Material 

 
 Table S1. Long (L), Medium (M) and Short (S) cone excitation ratios (Stockman & Sharpe, 

2000) in 10-degrees for each of the eight test stimuli of the Mondrian displays. 

  L M S 

Blue 0.45 0.31 0.23 

Brown 0.47 0.31 0.22 

Green 0.45 0.32 0.23 

Orange 0.47 0.31 0.22 

Purple 0.46 0.31 0.23 

Red 0.47 0.32 0.21 

Turquoise 0.45 0.32 0.23 

Yellow 0.46 0.32 0.22 
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Figure S1. Munsell chips shown as though viewed from above (a* b* plane of CIELAB 
space) segregated into lexical colour categories by a colour naming model trained by human 

observers (Mylonas & MacDonald, 2016). 

 
Table S2. Munsell notation of comparison stimuli. 

N° Hue Value Chroma 
1 2.5R 5 14 

2 5R 4 14 

3 7.5R 4 16 

4 10R 5 16 

5 2.5YR 6 16 

6 2.5YR 2 4 

7 5YR 7 14 

8 5YR 3 6 

9 7.5YR 7 14 

10 7.5YR 4 8 

11 10YR 8 14 

12 10YR 4 8 

13 2.5Y 8 16 

14 5Y 8 14 

15 7.5Y 8 12 

16 10Y 8 12 

17 2.5GY 7 12 

18 5GY 7 12 
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19 7.5GY 6 12 

20 10GY 5 12 

21 2.5G 5 12 

22 5G 5 10 

23 7.5G 7 8 

24 10G 6 10 

25 2.5BG 6 10 

26 5BG 6 10 

27 7.5BG 5 10 

28 10BG 5 10 

29 2.5B 5 10 

30 5B 6 10 

31 7.5B 6 10 

32 10B 5 12 

33 2.5PB 5 12 

34 5PB 5 12 

35 7.5PB 4 12 

36 10PB 4 12 

37 2.5P 4 12 

38 5P 4 12 

39 7.5P 4 12 

40 10P 4 12 

41 2.5RP 6 12 

42 5RP 6 12 

43 7.5RP 5 14 

44 10RP 5 14 
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