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Abstract 

A range of explanations have been advanced for the systems of colour names found in different 

languages. Some explanations give special, fundamental status to a subset of colour categories. 

We argue that a subset of colour categories, if fundamental, will be coherent - meaning that a 

non-trivial criterion distinguishes them from the other colour categories. We test the coherence 

of subsets of achromatic (white, black and grey), primary (white, black, red, green, yellow, 

blue) and basic (primaries plus brown, orange, purple, pink and grey) colour categories in 

English. Criteria for defining colour categories were expressed in terms of behavioural, 

linguistic and geometric features derived from colour naming and linguistic usage data; and 

were discovered using machine learning methods. We find that achromatic and basic colour 

categories are coherent subsets but not primaries. These results support claims that the basic 

colour categories have special status, and undermine claims about the fundamental role of 

primaries in colour naming systems. 
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1 Introduction 

Colour naming is the ability to group millions of discriminable colours into a smaller set of 

categories and denote them by names such as yellow, turquoise and olive green (Pointer & 

Attridge, 1998; Derefeldt, et al., 2004). These categories are often called linguistic categories 

because of their correspondence to colour names (Witzel & Gegenfurtner, 2018). A range of 

neurophysiological (Kay & McDaniel, 1978; Griffin, 2001; Philipona & O’Regan, 2006; 

Skelton et al., 2017; Witzel & Gegenfurtner, 2018), ecological (Shepard, 1992; 

Yendrikhovskij, 2001; Mollon & Jordan, 1997) and cultural (Brown & Lenneberg, 1954; 

Davidoff et al., 1999; Gibson et al., 2017) explanations have been advanced for the underlying 

mechanisms of colour categories. 

 

Explanations for colour categorization often give a special role to a subset of categories. An 

early example is Aristotle’s (350 B.C.E.) suggestion that five pure colours – crimson, green, 

cyan, purple and possibly yellow (Sorabji, 1972) – arise from the mixture of white (light) and 

black (darkness) and from these all the other impure or irregular colours arise as mixtures of 

the pure. Hering (1878/1964) also appealed to the idea of purity in his proposal that all colours 

arise from opponent pairs (red versus green, yellow versus blue, and white versus black) of 

primary colours. Each Hering primary is considered pure in that it contains no quality of the 

others; and are widely considered an important early perceptual component in the formation of 

colour categories (Kay & McDaniel, 1978; Kuehni, 2005; Philipona & O’Regan, 2006; Regier, 

Kay, & Khetarpal, 2007). Other authors (Dimmick, 1925; Boring, 1949) have argued that grey 

should also be considered an additional achromatic pure colour arising when each of the 

opponent processes is in a state of equilibrium, but this has been challenged (Quinn, et al., 

1985). Berlin & Kay (1969), proceeding from cross-language comparisons, defined Basic 

Colour Terms (BCTs) as those terms that are a) monolexemic, b) with scope disjoint from any 

other BCT, c) not restricted to a limited class of objects and d) psychologically salient. In 

English this criterion identifies the six Hering opponent colours and additionally brown, 

orange, purple, pink and grey. Here, it is important to distinguish these linguistic colour 

primaries from the six Hering primaries (his word ‘Grundfarben’ may be translated in English 

as ‘elemental’ colours), which may refer to the three opponent axes of colour sensation. 

Nevertheless, the relationship between the perceptual and the linguistic primaries is not trivial 
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as the most typical examples of colour names in different languages correspond roughly to the 

unique hue settings (Miyahara, 2003; Kuehni, 2005; Regier, Kay & Cook, 2005) and a recent 

study showed only partial support for whether unique hues are perceptual categories (Witzel 

& Gegenfurtner, 2018). 

 

In this study, we make the claim that if a subset of colour categories has a foundational role in 

the system of colour naming then that will be identifiable in their properties and they will be 

distinguishable from all other colour categories. We formalize this idea as a subset of colour 

categories forming a coherent class, defined by a generalizable membership criterion. We 

define a criterion to be generalizable if it can be reliably identified from a subset of members 

of the class. This rules out trivial list-membership style criteria. If we show that some subset 

of colours cannot be distinguished by a generalizable criterion, hence do not form a coherent 

class, then we suggest that this presents a challenge to any explanation for colour naming that 

gives that subset a fundamental role, as no evidence of that role exists.  

 

The criteria that we will consider for defining classes of colour categories are defined in terms 

of features (or attributes) of colour categories. These features are of diverse type. Linguistic 

features relate to the name of the category, behavioural features relate to the application of that 

name, and geometric features relate to the colour space extent of the category. 

 

We derive the numerical values of the features from responses to an online colour naming 

experiment (Mylonas & MacDonald, 2010) and a large dataset of social media posts. For the 

social media dataset, we used a million random tweets from Twitter posted in English from 

within Britain. We consider this dataset as representative of ordinary language use. For 

linguistic features, we use a) name length measured in letters; b) the number of derivative forms 

(e.g. greener, greenish, and sea green are all consider derivatives of green) in the naming 

experiment; and c) usage frequency based on counts in the social media dataset. The 

behavioural features, computed from the naming dataset, are: a) naming frequency, b) response 

latency and c) inter-subject consensus. The geometric features, computed from the naming 

dataset, are: the mean colour space location of the distribution of samples that generate the 

naming response, and the size and shape of that distribution.  
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Having defined numerical features for a large set of colour categories we are in a position to 

specify class membership criteria that define subsets of these categories. Although there is a 

rich and venerable literature on how class membership can be defined such as ‘necessary and 

sufficient conditions’ (Berlin & Kay, 1969), ‘similarity to prototypes’ (Rosch Heider, 1972), 

or ‘networks of family resemblances’ (Rosch & Mervis, 1975) these methods have been 

superseded by techniques developed in the context of computational statistics and machine 

learning. In particular a ‘forest of decision trees’ is an extremely general method for expressing 

class membership. Each decision tree specifies a rule of the form: x is in X if and only if f1<t1 

or f2>t2 where x is an element (here a colour category such as ‘red’), X is a class of colour 

categories (such as the primaries), fi are features (e.g. naming frequency) describing x, and ti 

are thresholds (1 in 10000). In a forest of decision trees each tree is different, and the 

membership decision of the forest is the majority opinion of the constituent trees. 

 

Effective algorithms (‘Random Forests’) exist for construction of forests of decision trees 

based on training examples (e.g. x1,…xn are in X, xn+1,…,xN are not). The forests that result from 

these algorithms correctly predict the membership of the training data, and are often very 

effective at successfully predicting the membership of held-out data not used for training. The 

key to this generalization success is the technique used to ensure that the trees of the forest are 

sufficiently diverse. The most important of these are that each tree is constructed from a 

different random subset of the training data, and the splitting rule at the branch of each tree is 

not the best possible rule at that branch, but only one of the best. Random Forests constructed 

like this have been shown to be highly effective for many diverse classification problems 

(Breiman, 2001; Gislason et al., 2006; Cutler et al., 2007). An advantage of them, useful for 

our application, is that they do not assume commensurate feature dimensions, or 

normally-distributed features values. 

 

To assess the coherence of a class of colour categories we measure how well it is defined by a 

generalizable criterion. We enforce generalizability by using a leave-one-out evaluation: for 

each colour category (in class or out) we build a random forest classifier using all other colour 

categories, together with their labels as in-class or out; and then evaluate the class membership 

confidence of the left-out colour category using that classifier. Finally, we evaluate whether 

the membership confidences of in-class terms are higher than those of out-of-class terms. 
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In the main paper, we report the coherence of the Hering primary class (black, white, red, green, 

blue & yellow) and the Berlin & Kay’s basic class (Hering’s primaries plus purple, orange, 

pink, grey & brown). Additionally, we report the coherence of an achromatic class (black, grey 

& white) to check whether smaller classes are necessarily less coherent because they have 

fewer examples from which to determine a membership criterion. In the Supplementary 

Material, we report results for other plausible sets of primary and basic colour categories. 

2 Methods 

 

2.1 Online Colour Naming Experiment 

An online colour naming experiment was designed to collect unconstrained names for 

presented colour samples (Mylonas & MacDonald, 2010). Participation was voluntary and 

anonymous and the experimental sessions were conducted after obtaining informed consent 

(Varnhagen et al., 2005). Colour stimuli were presented sequentially as rectangles (subtending 

a visual angle of about 3 degrees at a viewing distance of 50 cm) against a neutral grey 

background with a black outline of 1 pixel. In response to each stimulus, subjects typed any 

colour descriptor, either a single or multiple words, without time constrain. Typed responses, 

along with the typing onset delay were recorded. Each subject viewed 20 colour samples 

randomly from six hundred colour samples in total from the Munsell Renotation Data set 

(Newhall et al., 1943), including eleven achromatic samples. The colour samples were 

specified in the sRGB standard colour space for the Internet. To achieve an approximately 

uniform sampling within the Munsell colour solid, we followed the suggestions of Billmeyer 

in Sturges and Whitfield (1995). Specifically, a variable number of hues were sampled at 

different levels of Value and Chroma. At Chroma 2 - ten hues were sampled, whilst at each 

successive Chroma step the sampled hues were increased by ten. That means from Chroma 8 

to the boundaries of the sRGB gamut, all 40 hues were sampled (Mylonas & MacDonald, 

2010).  

 

In this study, we consider 10,000 raw responses from 500 British English participants. 

Typographic conventions (hyphens, commas, parentheses) were replaced with spaces, 

leading/trailing spaces were removed, and all multi-character spaces were reduced to single 

spaces. Different word orders (i.e. orange-red or red-orange) were considered as different 

names. Capitalization was ignored. Common spelling errors (e.g. ‘turqose’ for ‘turquoise’) 
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were corrected with supervision. We excluded disruptive observations (1%) including 

incomplete, numerical and responses written with non-English characters, and responses from 

participants with possible colour deficiencies (9.7%). This filtering resulted in a dataset for 447 

respondents. Their mean age was 33 years (SD = 13.5 years). Females provided 63% of the 

responses while males provided 37%. 

 

The 8940 filtered colour naming responses from the online experiment consist of 1490 distinct 

names. Many of these were produced infrequently and can be considered rare and idiosyncratic.  

We restrict our analysis to 73 colour names in wide cultural use which were produced at least 

20 times in our data to give us confidence in their measures. This accounts for 62% of the 

responses. We have confirmed that considering all colour names (n = 478) given by more than 

one observer does not change our main conclusions but produces untrustworthy or empty 

measurements (e.g. linguistic frequency, median response latency and volume) for uncommon 

colour names and restricts the visualization of the ranks of all test colour names. 

 

Although online experimentation introduces variability in the stimulus and viewing conditions, 

we have previously argued that the advantages of a very large subject pool, plus familiarity of 

the setting for each subject, compensate for that (Mylonas & MacDonald, 2010; Mylonas & 

MacDonald, 2016; Paramei et al., 2018). In addition, a direct evaluation of the web-based 

experiment against a laboratory-based experiment produced a better correspondence between 

the loci of their colour terms than the agreement between previous laboratory-based studies 

(Mylonas, Griffin & Stockman, 2019; Boynton & Olson, 1987; Sturges & Whitfield, 1995). In 

Figure S6, we also compare the location of primary colour terms in colour space against the 

results of a previous study conducted in controlled viewing conditions to show their good 

agreement (Sturges & Whitfield, 1995). 

 

2.2 Twitter 

To examine the frequency of usage of colour names in everyday online conversations, we 

counted their rates of occurrence in 1,036,103 random tweets downloaded using the Twitter 

API. Similarly, to the online colour naming experiment, messages in Twitter are given 

voluntarily and provide greater volume and variability than other refined sources (Corbett & 

Davies, 1997). We filtered Twitter’s public stream with the geo-location coordinates [-5.4, 
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50.1, 1.7, 55.8] that correspond to a rectangle approximating the extent of the British mainland. 

We excluded tweets in other languages than English. Each tweet was tokenized using the 

Natural Language Toolkit (Bird et al., 2009) producing 129,355,280 tokens. Again, 

typographic conventions and leading/trailing spaces were removed; hyphenated and comma 

separated and words in parenthesis were treated as multiword colour expressions. 

3 Features for colour categories 

For each of the 73 common colour names, three sets of behavioural, geometric and linguistic 

features were computed.  

3.1 Behavioural Features 

The behavioural features include naming frequency, consensus and response time. 

3.1.1 Naming Frequency 
Frequency in colour naming experiments quantifies how often each colour name was used to 

describe any colour stimuli by any observer (Boynton & Olson, 1987; Sturges & Whitfield, 

1995). This naming frequency is thus affected by the number of colour samples that evoke 

that response, and the regularity that they do so. Purple was the most frequent colour name 

followed by pink, blue and green (Figure S1). The difference between green and the fifth 

most frequent term - brown - was more than 2% in absolute terms, and more than 50% in 

relative terms. The least frequent basic term was white, found in the 20th position, while the 

non-basics lilac and turquoise were found in the 6th and 7th positions respectively. 

 

3.1.2 Consensus 

Consensus describes the agreement among observers in naming colour samples (Brown & 

Lenneberg, 1954; Boynton & Olson, 1987; 1990; Davies & Corbett, 1994; Sturges & 

Whitfield, 1995). Previous studies have used thresholds for a colour sample being named with 

consensus, but this approach gives undefined results for rarely named colours. To provide a 

measure for all colours, in this study consensus is computed by calculating for each colour 

sample what fraction of the responses are the name, and averaging this fraction over samples 

where at least one response was the name. Yellow was the colour with the most consistent 

responses, with orange and pink ranked in the second and third positions respectively (Figure 

S2). The top 10 ranked colour names were all basic colour terms but grey was ranked in the 

13th position following khaki and turquoise.  
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3.1.3 Reaction time 

Reaction time, also called latency, is a measure of the time required to name a colour (Brown 

& Lenneberg, 1954; Boynton & Olson, 1987; Sturges & Whitfield, 1995). In the online colour 

naming experiment latencies were measured from the onset of the stimulus to the observer’s 

first keystroke of the typed colour name. Response time distributions are rightwards skewed, 

so we express their central tendency using the median response latency for each colour name 

rather than the mean (Whelan, 2008). White and red were the fastest to name colours and all 

11 basic colours were ranked in the top 11 positions (Figure S3). 

 

3.2 Geometric features 

The geometric features include the size (volume), shape (anisotropy) and location (centroids) 

of colour categories in colour space. 

3.2.1 Volume (size) 

The size of colour categories was measured by their volume in colour space. To approximate 

the CIELAB volume of the category corresponding to a colour we first described the dispersion 

of the sample locations evoking each response matching the name of the colour by their 

covariance matrix. Volume was then measured as the square root of the determinant of this 

matrix (i.e. the volume of the approximating ellipsoid). To avoid effects of the sampling of 

colours used in the experiment, that could in principle produce near-to-zero volumes for 

distributions thin in one direction despite having substantial spread in other directions, we 

added to the covariance matrix an identity matrix multiplied by the mean colour difference of 

the four nearest neighbours across stimuli (mean ΔΕab = 7.14). With this way of computing 

volume, green was the largest category followed by violet and blue (Figure S4). Several basic 

colours (i.e. white, black and yellow) were not amongst the largest categories in colour space. 

3.2.2 Anisotropy (shape) 

The shape of colour categories (Gärdenfors, 2004; Jäger, 2010, 2012) was measured by their 

sphericity assessed from the same covariance matrix used to compute category volume. The 

logic behind this measure is that if members of the primary class are centred on some ‘bumps’ 

of saturation on the uneven surface of the colour solid while secondaries are located in the 

intermediate regions (Jameson & D’Andrade, 1997; Regier et al., 2007) then this difference 

will be manifested in their shape and primary categories would be more spherical than non-

primaries. The specific quantification used for measuring sphericity was Fractional Anisotropy 
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(Basser & Pierpaoli, 1996), a size invariant, pure-shape measure that ranges from zero for 

spherically distributed 3-D data, up to unity for data constrained to a line, hence maximally 

anisotropic. Intermediate values indicate degrees of anisotropy. Hence, colour categories that 

are near spherical, whether large or small, will have low anisotropy scores; elongated 

categories will have high scores; and flattened categories will have intermediate scores (Figure 

S5). Terracotta was the most and bright blue was the least spherical colour categories. Blue 

and white were the only basic colours found in the top 10 positions while brown was found in 

the 3rd last position. 

3.2.3 Centroids (location) 

Centroids mark the centre of a colour category in colour space. For each colour name, we 

determined the centroid of the locations giving rise to each matching response using the 

CIELAB Cartesian-style coordinate system. The Cartesian coordinates a* and b* of the 

centroid were then converted to the perceptual polar coordinates of Chroma (C*) and hue (h).  

Lime green and fuchsia were the colour names with the highest Chroma (Figure S6) while 

white and black had respectively the highest and lowest lightness. The comparison of the 

location of the six centroids of primary terms between a previous study (Sturges & Whitfield, 

1995) conducted in controlled viewing conditions and of this study produced a satisfactory 

agreement with a mean colour difference of ΔΕ00 = 5.97; STD = 2.88.  

3.3 Linguistic features 

The linguistic features include the frequency in ordinary communication, the length of the 

words and the number of derivative forms. 

3.3.1 Linguistic frequency 

Linguistic frequency measures the usage of a colour name (Hays et al., 1972). To determine 

the frequency of colour names in everyday online conversations, we measured their probability 

of occurrence in 1,036,103 random tweets compiled using the Twitter API. Black followed by 

white and red were the most frequent colour names in Twitter (Figure S7). The 11 basic colours 

were found in the top 12 positions. The non-basic term cream ranked in the 4th position but 

possibly because it also has a common non-colour usage. 

3.3.2 Name length 

We quantify colour name length by the total number of letters in all words (Brown & 

Lenneberg, 1954; Berlin & Kay, 1969). This measure correlates with phonetic length, and 
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across language negatively correlates with frequency of usage (Zipf, 1935; Piantadosi et al. 

2011). Basic red and non-basic tan were the colours with the shortest name length (Figure S8). 

Purple, yellow and orange were the basic colours with the longest name length. 

3.3.3 Number of derivative forms 

Derivative production is a measure of the number of derivative types of a colour name in colour 

naming responses (Corbett & Davies, 1997). Specifically, Y is a derivative form of term X if 

Y contains X as a substring. This definition captures suffixes such as –ish (e.g. greenish) and 

–er (e.g. greener), and compound colour words such as light green or sea green. Green was 

found with the largest number of derivative forms followed by blue and pink (Figure S9). 

Turquoise and lilac were the non-basic terms with largest derivative production in the 10th and 

12th position. Black was the basic colour with the smallest number of derivative forms. Note 

that although we counted derivative forms for this feature, we did not combine their responses 

together for computation of other features. 

 

3.4 Classifier 

We constructed criteria for demarcating classes of colour categories using the Random Forests 

algorithm (Breiman, 2001). As input the algorithm receives a training dataset of colour 

categories, each described by a vector of feature values, and associated with a binary label 

indicating whether it is in-class or out-. Based on this input, the algorithm creates an ensemble 

(forest) of 100 independently-generated decision-trees. We have confirmed that a larger forest 

does not change the results. 

 

Each tree is grown using a separate dataset created by bootstrap sampling-with-replacement 

from the training data. Trees are grown down from a root node at which all training data arrives. 

At each node a feature dimension is chosen to be the basis for a splitting rule. The choice of 

dimension is made from a subset of all feature dimensions, chosen randomly for that node. 

Following the standard recommendation, if there are n feature dimensions, then the subset size 

is (rounded) square root of n; so in our trees, at each node, a subset of three feature dimensions 

were considered out of the full eleven. Given the feature subset, the particular feature and 

threshold value that best segregates the data arriving at the node according to its labels are 

identified. The arriving data is then sent to left and right sub-nodes according to this criterion. 

Sub-nodes are iteratively constructed below nodes until leaf nodes are reached that receive only 



11 

 

a single training data sample. After tree construction, the unique dataset generating the tree is 

discarded but the structure of the tree, the splitting dimension and threshold at each node, and 

the label of the datum in each leaf node is retained. 

 

After construction of the forest a new datum is classified by passing it through the structure of 

each tree, directing it to sub-nodes according to its feature values, and recording the label of 

the leaf node at which it finally arrives. The proportion of trees of the forest that classify it as 

in-class is the overall in-class classification confidence of the forest. 

 

3.5 Coherence of classes of colour categories 

We assess the class coherence of three subsets of colour categories: 

Achromatic (nin=3): white, black and grey. 

Primary (nin=6): white, black, red, green, yellow and blue. 

Basic (nin =11): white, black, red, green, yellow, blue, brown, orange, purple, grey 

and pink. 

For each class, the other colour categories of the common set (nout=73-nin) were considered 

out-of-class. 

 

3.6 Evaluation of classification 

Evaluating classifiers on data on which they were trained is generally misleading. To avoid 

this, and to ensure that the computed class criteria are generalizable we employ a leave-one-out 

cross-validation strategy. For each class that we assess we build 73 separate classifiers. Each 

is trained on 72 colour names, with a different colour name left out. The in-class confidence of 

each colour name is then computed by the classifier which was trained with it left out. To assess 

the coherence of a class we quantify the extent to which the class confidences of the in-class 

colours are higher than those of the out-of-class. For this quantification we use a measure based 

on rank precision. Precision is the fraction of correct positive classifications to a test class over 

all positive classifications. MAP is the mean average precision of the ranks at the top k 

positions, where k is the size of the test class (Voorhees & Harman, 2005). MAP will be 1.00 

if all in-class confidences are higher than all out-of-class; 0.00 if all in-class confidences are 

lower than all out-of-class; and intermediate if the range of in-class confidences overlaps the 

range of out-of-class.  
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To examine the importance of features for the coherence of each class, we repeat the full leave-

one-out assessment and MAP computation, but with classifiers trained with only a subset of 

features. The subsets we assessed were: all features except one, two out of three families of 

features, and single families of features. The importance of features or families of features for 

each class of colours is quantified by how much the MAP score decreases compared to using 

all features. 

4 Results 

Having established three families of features, computed the feature values for each colour 

category, and determined a procedure for accessing the coherence of a class of colour 

categories, in this section we examine the cohesion of achromatic, primary and basic classes, 

and determine the contribution of different features to that coherence.  

 

4.1 Coherence of achromatic class 

In our first assessment, we examined the coherence of an achromatic class consisting of black, 

white and grey. The Random Forests classifier gave all three in-class colours higher 

confidences than all non-class colour categories, giving a maximum possible MAP score of 

1.00. In Figure 1, we present the confidence for each colour category to belong to the 

achromatic class. We remind the reader that the in-class confidence of each colour category is 

assessed by a classifier that is trained on all colour categories apart from it. White was the 

colour category with the highest confidence, followed closely by black. Grey was found in the 

third position but with lower confidence. Light grey was the out-of-class colour category with 

the highest in-class confidence.  
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Figure 1. Class confidences for the achromatic class. Only colour categories with an in-class confidence above 0 

are shown for clarity. Numbered bars indicate class members. The display colour of each bar is the sRGB centroid 

of the distribution of samples generating that colour name response. 

 

4.2 Coherence of primary class 

As a primary class we took the six suggested linguistic primaries: white, black, red, green, 

yellow and blue (Berlin & Kay, 1969; Kuehni, 2005; Regier, et al., 2005). The classifier 

produced a MAP score of 0.50. Examination of the confidences for individual colour categories 

(Figure 2) showed that this low coherence score was due to failure of the class criteria to 

generalize to all in-class members (especially yellow), and erroneous generalization to non-

class members (especially pink, grey and brown).  
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Figure 2. Class confidences for the primary class. See Figure 1 for additional notes. 

4.3 Coherence of basic class 

For the assessment of the basic class, we considered the 11 basic colour terms of Berlin & Kay 

(1969), white, black, grey, red, orange, yellow, green, blue, purple, brown and pink. All basic 

colour categories were given higher confidences than all non-basic, resulting in a maximum 

possible MAP score of 1.00. Amongst the basics, blue, pink and brown were given the highest 

confidences and purple the lowest (Figure 3). Amongst the non-basics, olive was given the 

highest confidence. 



15 

 

  

 

Figure 3. Class confidences for the basic class. See Figure 1 for additional notes. 

A summary of all evaluations is given in Table 1. 

 

Table 1. MAP scores, expressing class cohesion, for achromatic, primary and basic classes. A score of 1 is perfect 

cohesion according to our assessment. 

Class MAP 

Achromatic class (n=3) 1.00 

Primary class (n=6) 0.50 

Basic class (n=11) 1.00 

 

4.4 Feature Contribution 

To examine the importance of each feature and each family of features we assessed class 

coherences using different feature subsets, specifically: 
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a) All features (n=11) 

b) All features bar one (n=10), eleven variants 

c) Behavioural plus Geometric features (n=8) 

d) Geometric plus Linguistic features (n=8) 

e) Behavioural plus Linguistic features (n=6) 

f) Geometric features (n=5) 

g) Behavioural features (n=3) 

h) Linguistic features (n=3) 

 

Figure 4 summarizes the effect of excluding individual features. For the achromatic class, the 

greatest effect comes, fittingly, from exclusion of the Chroma feature, which reduces the MAP 

score from 1.00 to 0.33. Exclusion of consensus, shape, lightness and linguistic frequency had 

no effect for the achromatic class. For the primary class the most important feature was 

linguistic frequency, which when excluded reduced the MAP from 0.50 to 0.33. Excluding 

frequency, response time, size, shape or chroma improved the MAP score. This is presumably 

because these features are useful to demarcate some of the class, but generalize inconsistently. 

The greatest improvement was when response time was excluded, raising the MAP score from 

0.50 to 0.67. In this case, pink and cream remains as false positives at ranks 5 and 6 with class 

confidences higher than green and yellow. For the basic class of colour categories none of the 

excluded features reduced the MAP score below 1.00. 
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Figure 4. Class coherence scores when a single feature is excluded [-], compared to when all features are used 
(top). 

 

Considering exclusion of single families of features, for the achromatic class so long as 

geometric is retained the MAP score is 1.00, otherwise it is 0.33 (Figure 5). For the primary 

class, the exclusion of linguistic produced the lowest MAP score of 0.33 and the exclusion of 

behavioural the highest MAP score of 0.66. For basic, the exclusion of geometric and linguistic 

did not influence the coherence of the class with a MAP score of 1 but excluding the 

behavioural reduced the MAP score to 0.90 because cream was then given higher confidence 

than white and black. The assessment of retaining single families of features resulted in a MAP 

score 0.33 for the achromatic class when either behavioural or linguistic were retained and a 

MAP score of 1 when geometric was retained. For the primary class, keeping only geometric 

features produced a MAP score of 0.17 while retaining the linguistic resulted in a maximum 
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MAP score of 0.66. For the basic class, behavioural or linguistic features alone produced a 

MAP score of 0.90, but geometric alone gave a MAP score of 0.54. 

 

Figure 5. Class coherence scores when one family of features is excluded [-], and when only one family of 

features is retained [+], compared to all features (top). 

5 Discussion 

A point of contention that frequently arises regarding the basis of colour categorization is 

whether there are subsets of colour categories with a special fundamental status. Different 

subsets have been suggested as fundamental, and no consistent assessment of each of their 

claims has been previously been made. Here, we argue that a fundamental subset of colour 

categories should form a coherent class, with a generalizable membership criterion 

demarcating it. To test this, we analysed large datasets of colour naming responses from an 

online colour naming experiment and public social media posts to examine the class coherence 

of achromatic, primary and basic colours. Our findings provide evidence to substantiate the 

coherence of basic and achromatic classes but we found less support for the primary class. 

Indeed, the best generalizable criteria for demarcating the primaries consistently also capture 
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secondary colours. These results argue against a set of primary colour categories playing a 

fundamental role in the wider colour naming systems. 

 

In our assessment of the primary class, we considered the linguistic primaries related to 

Hering’s opponent process theory because of a widely held view that these colour categories 

are the basis of colour naming systems across languages (Kuehni, 2005; Regier et al., 2005; 

Philipona & O’Regan, 2006). Still, the number and the members of the primary class vary in 

the literature (Aristotle, 350 B.C.E.; Newton, 1730; Maxwell, 1872; Hering, 1878/1964; 

Eskew, 2009; Skelton et al., 2017). In the supplementary section, we tested whether primary 

classes with different proposed members than those of Hering will be distinguishable from all 

other colour categories but again we found no evidence to substantiate the coherence of any 

primary class. The coherence of primary classes proposed by Aristotle (0.57; Figure S10) and 

Newton (0.57; Figure S11) and Eskew (0.63; Figure S13) were higher than Hering’s primary 

class but those proposed by Maxwell (0.30; Figure S12) and Skelton et al. (0.40; Figure S14) 

were lower. All these primary classes are smaller (3≤ n ≥ 7) than the basic class ( 11n = ) but 

this does not explain their low MAP scores, since the even smaller achromatic class ( 3n = ) 

had perfect coherence (MAP = 1.00) because its members have distinctive, common 

characteristics. Random classes with equal number of randomly selected colour categories (n 

= 6) had an average MAP score of 0.13 (Figure S15), whilst an equally sized class of secondary 

basics colour categories (brown, orange, purple, pink and grey plus one of Hering’s primaries) 

had an average MAP score of 0.53 (Figure S16). An examination for the status of Hering’s 

primaries within the eleven basic colour categories shown in Figure S17 revealed that the 

coherence of the primary class retained a MAP score of 0.5 with the non-primaries orange, 

brown and grey ranking again higher than other primary categories. On the whole, these results 

indicate that primaries are not a completely haphazard class but are not more coherent than 

classes of secondary colour categories; consistent with previous studies in adults (Boynton & 

Olson, 1987), in infants (Franklin, et al., 2008) and in monkeys (Zeki, 1980). 

 

Considering why the class coherence was low for all systems of primary evaluated, we note 

that yellow (considered primary in all schemes) was consistently given low class-confidence. 

The particular characteristics of yellow that might explain these results is its narrower 

distribution (see Figure S4) and higher lightness (see Figure S6) than other chromatic members 

of the primary class. Interestingly, yellow was absent in Aristotle’s original text where he 
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named only six out of the seven pure categories; is missing from the wavelength sensitivities 

of cells in V4 reported by Zeki (1980); and produced only partial evidence for being a 

perceptual category (Witzel & Gegenfurtner, 2018). A second reason for the universally low 

coherence scores for primary classes were the consistently high in-class confidences given to 

pink and brown (non-primary in all schemes). Pink and brown, similarly to green and blue, 

were responded very frequently, in a very short period of time and with very good agreement 

between subjects. It is also interesting to note that pink and brown appear as a symmetrically 

related pair within the cognitive structure of the basic colour categories determined through 

analysis of similarity, relative lightness and adjacency (Griffin, 2001), suggesting that the 

salience of these two categories may have a shared explanation. 

 

Consistent with our findings, doubts about primary colour categories as the origin of colour 

categorization have been raised on conceptual grounds (van Brakel, 1993; Jameson & 

D’Andrade, 1997; Ocelák, 2014) and in a reanalysis of the World Color Survey (Kay et al. 

2010) by Jameson (2010). Doubts have also been raised on neurobiological accounts about the 

priority of primary colour categories over non-primaries in cortical regions as the peak 

wavelength sensitivity of neurons is distributed through the spectrum while some neurons are 

sensitive to extra-spectral (e.g. purple) and desaturated (e.g. pale pink) colours (Zeki, 1980; 

Komatsu, 1992; Bohon et al., 2016). This is not to say that Hering’s primaries have no special 

status at some stage of visual processing that has yet to be found (Dimmick & Hubbard, 1939; 

Larimer, Krantz, & Ciceronem, 1975; Abramov & Gordon, 1994; Valberg, 2001; Wuerger, 

Atkinson & Cropper, 2005; see Lindsey & Brown, 2019 for a recent review); but even if they 

do, this does not penetrate to them being special at the cognitive level.  

 

In contrast to the poor coherence of the primaries, the 11 basic colour categories (Berlin & 

Kay, 1969) had a perfect MAP score of 1.00. The coherence of the basic class was also apparent 

when the classifier was trained with reduced features: behavioural or linguistic features alone 

gave score of 0.90, together 1.00, geometric features contribute little. Coherence of the basic 

class is unsurprising given that they were originally identified according to a criterion based 

on features similar to the ones we use. Our results are a confirmation that the Berlin and Kay’s 

basic colour categories can be distinguished from other colour categories by such a criterion in 

English.  
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Discussion of the basic colour categories is frequently concerned with why these particular 

colour terms satisfy this criterion, rather than some other colour terms. Different candidate 

answers have been advanced, placing different emphasis on the role of physiology or natural 

world properties. On the one hand, Griffin (2001) has shown that the cognitive similarity 

structure of the 11 basic colour categories has a symmetry which corresponds to a symmetry 

of the cone response functions. At the other end of the spectrum of explanations is grounding 

in the statistical regularities found in natural images (Yendrikhovskij, 2001; but see Steels & 

Belpaeme, 2005, for arguments that the claim is spurious as different colour spaces produce 

diverging results), or optimal performance at tasks where semantics must be inferred from 

appearance (Griffin, 2006). Any explanation, whether it lies in the spectrum, must account for 

the variation in the number of basic colour names across languages; and some authors have 

questioned whether the same set of basic colour categories is coherent in all cultures, dependent 

on the communication needs of semantic categories that are locally most important (Davidoff 

et al., 1999; Gibson et al., 2017). A cross-language extension of the current methodology could 

shed light on this.  

 

The examination for a possible additional 12th basic colour term in the supplementary section 

showed a slight deterioration of the coherence of the class, except when cream was added 

which also produced a perfect MAP score of 1.00. The reversal of the confidence ranking of 

cream and olive, when olive or cream is added to the basic class (compare Figure 3 and Figure 

S18 and S19) is surprising but explicable. Consider the category of ‘flying birds’. What animal 

is the closest to being in-class by generalizing from the class? Possibly penguins, with emus 

further behind. But when penguins are grouped with flying birds, then the criterion which 

demarcate the class from all other animals would change substantially (promoting the 

importance of feathers perhaps), and emus could become more in-class than penguins. Cream 

was also suggested as a candidate for a 12th basic colour terms in a previous study (Sturges & 

Whifield, 1995) but similarly to our findings with much lower scores than the other 11 basic 

terms. This indicates that the upper limit of the basic class has some fuzziness and new basic 

terms may arise (Hardin & Maffi, 1997; Mylonas & MacDonald, 2016; Witzel, 2018).  

 

In the collection of our behavioural colour naming data, we extend earlier studies which used 

only the most saturated colour samples on the surface of the Munsell system (Berlin & Kay, 

1969; Kay et al., 2010; Lindsey et al., 2015; Skelton et al., 2017) by sampling also the interior 
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of the colour solid. Despite the uneven surface of the Munsell system in terms of saturation 

(Witzel & Franklin. 2014) that is a necessity for sampling typical colours of colour categories 

at different chroma steps, like red and pink, we found no higher confidence for the primary 

terms. Consistent with our findings about the lack of advantage of primaries over non-primaries 

in colour naming are also results restricted to equiluminant hues of fixed saturation and 

constrained terms (Emery et al., 2017a). A further methodological improvement includes the 

departure from usual methods which would use a small number of observers and/or the use of 

only a restricted set of monolexemic terms (Berlin & Kay, 1969; Boynton & Olson, 1987; 

Sturges & Whitfield, 1995; Lindsey & Brown, 2014). Instead, thousands of volunteers from 

linguistically and demographically diverse populations named freely a large number of colours 

online (Moroney, 2003; Mylonas & MacDonald, 2010). We also depart from previous research 

which used a refined corpus for the linguistic measurements (Corbett & Davies, 1997) by 

analyzing a big dataset of real-time Twitter messages in a specific geolocation. We argue that 

extracting behavioural, geometric and linguistic features of colours from large online datasets 

allows us to generalize our findings to a larger population sample than earlier studies. 

 

Could our results be influenced by our online experimental methodology, the quality of features 

and absent features? Regarding the uncontrolled colour reproduction of web-based colour 

naming experiments, the comparisons against results of previous studies conducted in 

laboratory conditions produced similar centroids for the basic colour terms in English and in 

different languages (see Figure S8; Moroney, 2003; Mylonas & MacDonald, 2010; Mylonas 

& MacDonald, 2016; Paramei et al., 2018). An assessment of the precision of our uncalibrated 

colour naming experiment conducted over the Internet against a calibrated experiment – using 

the same sample set and background – performed in a laboratory environment (Mylonas, 

Griffin & Stockman, 2019) showed also superior agreement than the comparisons between 

previous laboratory-based studies (Boynton & Olson, 1987; Sturges & Whitfield, 1995). 

Furthermore, the response times reported here, albeit longer than latencies recorded in 

laboratory settings, replicates the advantage of the basic terms and the equality of primary and 

secondary basic terms reported in previous studies (Boynton & Olson, 1987, Corbett & Davies, 

1997). Collectively these results suggest that crowdsourcing- and laboratory- based colour 

naming experiments produce consistent results and support the validity of both methods in 

estimating colour naming functions in laboratory and real-world monitor settings. 
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With respect to different computational approaches for determining the features of each colour 

category, we recognize that there are alternative reasonable ways to compute some of these. 

For example, replacing the reported median response time with the mean as used in previous 

studies (Boynton and Olson, 1987) or replacing the probabilistic calculation of consensus of 

this study with a more information-based computation (Gibson et al., 2017). We have not found 

that variants of computations for either response time or consensus substantially alters our 

results.  

 

A possible missing feature could be the purity of each colour category. Purity is related to our 

naming consensus measure but it could be argued that a hue cancelation task would provide a 

better measure. Nevertheless, previous studies (Malkoc, Kay & Webster, 2005; Bosten & 

Boehm, 2014) found no differences between unique-hue judgments of non-primary (i.e., 

orange, purple) and primary hues (i.e. red, yellow, green and blue), suggesting that inclusion 

of such a feature would not be sufficient to make the primaries coherent. The lack of advantage 

for unique hues over non-unique hues has also been reported in visual search and hue scaling 

tasks (Wool et al., 2015; Emery et al., 2017b).  

 

A different type of missing feature would be relational features, such as the small colour 

differences between category members and large colour differences between members of 

different categories, employed in recent computational methods (Regier et al., 2007; Regier, 

Kemp & Kay, 2015; Zaslavsky et al., 2018). For example, Regier and his colleagues (2007) 

suggested that there might be optimal ways of dividing the surface of the colour solid into the 

6 colour categories of Hering (white, black, red, yellow, green but blue-purple are combined 

into a single category) based on the uneven shape of perceptual colour space where several 

large ‘bumps’ of saturation presumably produce areas with greater consensus among speakers 

across languages (Jameson & D’Andrade, 1997). Our class coherence approach is not 

accommodating relational features directly since they belong jointly to a class, not separately 

for each colour category. However, by sampling the surface and also the interior of the colour 

solid, we found that neither their shape (measured by Fractional Anisotropy), nor consensus, 

not even saturation was sufficient to demarcate Hering’s primaries from all other categories. 

Indeed, we consider that the most compelling justification for most systems of primaries is not 

their fundamental role in colour categorization but their practical success in subtractive or 

additive colour mixing. 
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In summary, we show that primary colour categories do not form a coherent class, whilst 

achromatic and basic classes do. These results provide evidence against primaries playing a 

fundamental role in the development of colour naming systems and support the particular role 

of basic colour categories. 
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