
Chaos, Solitons and Fractals 202 (2026) 117589 

A
0
(

 

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier.com/locate/chaos  

Dynamics of defensive and malicious worm co-propagation across 
networked systems
Andreia Sofia Teixeira a,b , Ignacio Echegoyen c , Rasha Shanaz d, Alberto Aleta e ,∗

a BRAN Lab, Network Science Institute, Northeastern University London, London, United Kingdom
b LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
c Grupo Interdisciplinar de Sistemas Complejos (GISC) & Department of Psychology, Comillas Pontifical University, Madrid, Spain
d Department of Physics, Bharathidasan University, Tiruchirappalli, India
e Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain

A R T I C L E  I N F O

Dataset link: https://github.com/aaleta/whitew
orms

Keywords:
Complex networks
Black worms
Network epidemiology
White worms
IoT

 A B S T R A C T

The proliferation of Internet of Things (IoT) devices has greatly enhanced global connectivity 
but has also amplified cybersecurity risks, particularly from self-propagating malware or black 
worms. As a countermeasure, some researchers have proposed white worms: benign, self-
replicating agents designed to autonomously patch vulnerable systems. Yet, their autonomous 
behavior raises complex ethical and legal concerns. In this paper, we develop a dynamical model 
of interacting black and white worms using tools from network epidemiology to explore their 
co-propagation and emergent behavior across IoT networks. We investigate how parameters 
related to user response, worm aggressiveness, and network topology shape the system’s stability 
and their dynamics. Our results show that ethical restrictions, such as reduced autonomy or 
shorter activity, significantly limit the ability of white worms to suppress botnets. Moreover, 
network structure plays a decisive role in shaping these outcomes. Overall, the study highlights 
a fundamental tension between ethical design and practical efficacy: to be truly effective, a 
white worm must behave in ways that challenge its ethical intent.

1. Introduction

The Internet of Things (IoT) has become ubiquitous, with estimates suggesting between two and three connected devices per 
person worldwide [1]. Even seemingly mundane household items, such as light bulbs and toasters, are now regularly networked. 
However, this widespread connectivity has led to growing cybersecurity concerns, particularly regarding the escalating threat of 
malware infections [2]. IoT devices are especially vulnerable due to their limited built-in security and the challenges of deploying 
timely updates across distributed systems [3]. A striking example of such vulnerability was the 2016 Mirai worm attack, which 
exploited weakly secured IoT devices to create a large-scale botnet. This botnet was then used to launch a distributed denial-of-
service (DDoS) attack against a major DNS provider, temporarily rendering popular websites such as Amazon, Twitter, Netflix, and 
GitHub inaccessible [4,5].

Such attacks have led to a growing body of research into detecting compromised IoT devices, often leveraging machine learning 
and neural network approaches [6,7]. Yet, some researchers advocate for more proactive defense mechanisms that move beyond 
passive detection and response [8–10]. One such concept is the ‘‘white worm’’, a self-propagating agent designed to patch affected 
systems. A notable example is AntioBioTic, a proposed white worm designed to exploit the same vulnerabilities targeted by malware 
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in order to propagate, patch affected systems, and notify device owners of the breach [11]. Although not the first of its kind [12], 
AntioBioTic opens an important debate on the ethical and legal implications of deploying self-spreading defensive software [13]. 
For instance, the European Directive on attacks against information systems explicitly criminalizes the creation of botnets, defined 
as ‘‘establishing remote control over a significant number of computers by infecting them with malicious software’’ [14]. Even if 
white worms are arguably not malicious in intent, hijacking third-party devices conflicts with Articles 3 (unauthorized access) and 
5 (unauthorized modification) of the Directive.

In this paper, we investigate whether incorporating ethical constraints into white worms affects their defensive effectiveness. 
Drawing inspiration from AntioBioTic’s design, our analysis focuses on their operational viability under ethically bounded behavior, 
not on the normative or legal dimensions of white worms. Specifically, we explore the conditions under which a constrained white 
worm could interfere with botnet formation and how such constraints shape co-propagation dynamics. To this end, we model 
the simultaneous spread of a generic ‘‘black worm’’ and a ‘‘white worm’’ using tools from network epidemiology [15,16]. These 
methods have a long history in modeling computer virus propagation [17,18], and indeed, several foundational results in network 
epidemiology originated from studies of digital infections [19].

In this context, a network is an abstraction that encodes the information on the direct connections between devices, not the 
infrastructure and software that build up the internet. Mathematically, these networks are described by graphs, where nodes 
represent the entities of interest — IoT devices in our case — and links their direct connections. Note also that even though early 
malware such as Mirai used a centralized distribution approach, new malware such as IoT_Reaper may spread through peer-to-peer 
networks [5].

Most existing research on malware propagation in computer networks either focuses on highly detailed, system-specific 
simulations or on evaluating defensive mechanisms under realistic assumptions [20–28]. Sophisticated simulators can capture the 
interplay of diverse vulnerabilities, countermeasures, and network topologies [7]. However, our goal is different as we aim to isolate 
and understand the impact of ethical design constraints on white worm dynamics. For this purpose, we adopt a simplified modeling 
approach that prioritizes analytical clarity.

Beyond their immediate cybersecurity relevance, the interaction between defensive and malicious worms constitutes a good 
example of coupled contagion processes in complex systems [29–32]. Such highly interconnected systems are inherently vulnerable 
to large-scale failures and systemic dysfunction, which may be even triggered by initially localized events [33–36]. Framing malware 
and white worm co-propagation within this broader context highlights their nature as competing spreading processes on networks, 
where topology and interaction dynamics jointly determine collective outcomes.

The remainder of this paper is organized as follows. Section 2 presents the model and analyzes its main characteristics under 
the homogeneous mixing approximation. Section 3 investigates how network topology influences spreading dynamics and the 
effectiveness of white worm strategies. Finally, Section 4 discusses the implications of our findings and summarizes the main 
conclusions. Additional analyses and clarifications are provided in Appendix.

2. Model definition and analysis

2.1. Overview of the contagion process

We consider the propagation of two different worms within a network of vulnerable devices (𝑉 ): a malicious black worm and a 
benign white worm. The black worm seeks to infiltrate any unprotected device by exploiting an unspecified security vulnerability. 
Once inside, it propagates through the network to other devices at a transmission rate 𝛽𝐵 , awaiting orders from a botmaster to 
initiate an attack. The set of devices infected by the black worm is denoted by 𝐵.

Conversely, the white worm aims to spread across the network to secure vulnerable devices. It does so with a transmission rate 
𝛽𝑊 . Following the approach proposed in [11], we assume that the white worm attempts to behave ethically. Although it breaches 
the system, initially it only notifies the device owner of the issue and then enters a dormant state (𝐷), consuming no resources and 
making no modifications to the system.

Upon notification, owners may patch their devices at rate 𝛾. When this occurs, the white worm detects the update and, having 
fulfilled its defensive purpose, erases itself. However, many IoT devices cannot easily notify their owners-or owners may lack the 
motivation or technical ability to patch them. Consequently, the white worm may reactivate from its dormant state at rate 𝜖, entering 
an active state (𝑊 ). While active, it propagates to other devices for a limited period before patching the system and deleting itself. 
This final transition is governed by rate 𝜇.

Note that the presence of a white worm does not automatically eliminate the device’s vulnerability as doing so would require 
system modification, which the ethical design avoids except as a last resort. As a result, both worms may temporarily coexist on 
the same device. The possible states and transitions of the model are illustrated in Fig.  1 and summarized in Table  1.

Our analysis focuses on the two parameters that control the ethical behavior of the white worm: 𝛾, representing the rate at 
which owners secure their devices after being notified; and 𝜖, the inverse of the time the white worm allows owners to act before 
it intervenes directly. However, we recognize that ethical considerations cannot be reduced to only these two parameters. Thus, in 
the rest of the paper, we will often discuss these parameters using the term ‘‘roughness’’ as it will be explained in the next section. 
In addition, we explore how the relative propagation speed — the ratio between 𝛽𝑊  and 𝛽𝐵 — influences the overall dynamics. In 
particular, we examine whether a white worm spreading at the same rate, more slowly, or faster than its malicious counterpart can 
effectively prevent large-scale infection.
2 
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Table 1
List of symbols and their explanations.
 Symbol Explanation  
 𝑉 Number of vulnerable devices  
 𝐵 Devices infected by the black worm  
 𝐷 Devices infected by the white worm in a dormant state  
 𝑊 Devices infected by the white worm in an active state  
 𝐷𝐵 Devices infected by both worms, with the white worm dormant  
 𝑊𝐵 Devices infected by both worms, with the white worm active  
 𝑃 Devices fully protected after patching  
 𝛽𝐵 Infection rate of the black worm  
 𝛽𝑊 Infection rate of the white worm  
 𝜖 Inverse of the time allowed for the owner to patch the device  
 𝜇 Inverse of the active spreading duration of the white worm  
 𝛾 Rate at which owners act upon receiving a notification  
 𝜌𝑋 Fraction of devices in state 𝑋  
 𝜙𝑋 Total fraction of devices carrying worm 𝑋 (black or white) in an active state 

Fig. 1. Model scheme - Model describing the simultaneous spread of black and white worms. Vulnerable devices (𝑉 ) can be infected by either 
worm. Devices infected by the black worm (𝐵) actively spread it. Devices infected by the white worm enter a dormant state (𝐷) until a user 
patch or self-activation occurs. Activated white worms (𝑊 ) propagate briefly before patching and securing the system. Devices in any state with 
a white worm may also be infected by a black worm (𝐷𝐵, 𝑊𝐵), and vice versa. Once a device is updated, either by user action or white worm 
intervention, it becomes protected (𝑃 ), closing its vulnerability.

2.2. Dynamics under the homogeneous mixing approximation

As it is commonly done in the study of malware propagation [20,21,28], to gain insight on the dynamical properties of this model, 
we begin with the homogeneous mixing approximation. This approximation considers that all devices can potentially interact every 
other device. Consequently, malware propagation depends only on the overall fractions of vulnerable and infected devices, not on 
network topology.

Let 𝜌𝑋 (𝑡) denote the fraction of devices in state 𝑋 at time 𝑡. The dynamics of the system are then governed by the following set 
of differential equations:

𝜌̇𝑉 = −
(

𝛽𝐵𝜙
𝐵 + 𝛽𝑊 𝜙𝑊 )

𝜌𝑉

𝜌̇𝐵 = 𝛽𝐵𝜙
𝐵𝜌𝑉 − 𝛽𝑊 𝜙𝑊 𝜌𝐵

𝜌̇𝐷 = 𝛽𝑊 𝜙𝑊 𝜌𝑉 −
(

𝛽𝐵𝜙
𝐵 + 𝜖 + 𝛾

)

𝜌𝐷

𝜌̇𝐷𝐵 = 𝛽𝐵𝜙
𝐵𝜌𝐷 + 𝛽𝑊 𝜙𝑊 𝜌𝐵 − (𝜖 + 𝛾) 𝜌𝐷𝐵 (1)

𝜌̇𝑊 = 𝜖𝜌𝐷 −
(

𝛽𝐵𝜙
𝐵 + 𝜇

)

𝜌𝑊

𝜌̇𝑊𝐵 = 𝜖𝜌𝐷𝐵 + 𝛽𝐵𝜙
𝐵𝜌𝑊 − 𝜇𝜌𝑊𝐵

𝜌̇𝑃 = 𝜇
(

𝜌𝑊𝐵 + 𝜌𝑊
)

+ 𝛾
(

𝜌𝐷𝐵 + 𝜌𝐷
)

where 𝜙𝐵 = 𝜌𝐵 + 𝜌𝐷𝐵 + 𝜌𝑊𝐵 is the total fraction of devices carrying an active black worm, and 𝜙𝑊 = 𝜌𝑊 + 𝜌𝑊𝐵 represents the 
corresponding quantity for the white worm. By construction, ∑ 𝜌𝑋 = 1. For the definition of all parameters and states, see Section 2.1 
and Fig.  1. Following standard practice, we set 𝜇 = 1 without loss of generality (as time can be rescaled accordingly) though we 
retain it in analytical expressions for completeness.
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A key quantity in epidemic modeling is the basic reproduction number (𝑅0), which measures the expected number of secondary 
infections generated by a single infected entity in a fully susceptible population [37]. For the black worm, which follows a simple 
SI-like propagation pattern, the basic reproduction number is 

𝑅𝐵
0 = 𝛽𝐵 (2)

For the white worm, we derive the equivalent quantity using the next-generation matrix approach (see Appendix  A for details): 

𝑅𝑊
0 =

𝛽𝑊
𝜇

⋅
𝜖∕𝛾

𝜖∕𝛾 + 1
≡

𝛽𝑊
𝜇

⋅
𝜖′

𝜖′ + 1
. (3)

Hence, the infectiveness of the white worm depends on the ratio 𝜖∕𝛾, which we define as the roughness of the worm, 𝜖′. This ratio 
encapsulates the ethical trade-off in the worm’s design:

• When 𝜖′ = 0 (either 𝜖 = 0 or 𝛾 → ∞), the worm never self-activates or owners respond instantaneously, resulting in an almost 
passive agent that only notifies.

• When 𝜖′ → ∞ (either 𝜖 → ∞ or 𝛾 = 0), the worm always activates without allowing owners to intervene, representing the 
most aggressive configuration.

Thus, 𝜖′ quantifies how forcefully the white worm enforces protection: higher values correspond to more coercive, ‘‘rougher’’ 
behavior. As we will show, many macroscopic outcomes depend solely on this ratio.

Using 𝑅𝑊
0 , the final fraction of protected devices can be estimated from the transcendental equation [38]: 

𝜌𝑃 (𝑡 → ∞) = 1 − 𝑒−𝑅
𝑊
0 𝜌𝑃 . (4)

Fig.  2a compares the analytical solution of Eq. (4) with numerical integrations of the full system in Eq. (1). As expected, the 
fraction of protected devices increases with the white worm’s infection rate 𝛽𝑊 . Importantly, protection also grows with the worm’s 
roughness 𝜖′. Rougher worms protect more devices even at moderate transmission rates, whereas ethically restrained worms require 
significantly higher 𝛽𝑊  to achieve comparable protection levels.

To determine whether protection arises primarily from owner intervention or forced updates, Fig.  2b compares the proportion 
of devices patched by their owners and the total amount of protected devices. When 𝜖′ < 1 (𝜖 < 𝛾), most devices are protected 
voluntarily by their owners, but overall coverage remains limited. Larger-scale protection requires higher roughness, at the cost of 
increased autonomous intervention, or higher transmission rates.

We now examine the interplay between the black and white worms as they spread simultaneously. Linearizing the system around 
𝑡 → 0 [39], we find that a botnet can grow only if: 

𝛽𝐵 > 1
2

[

−(𝜖 + 𝛾 + 𝜇) +
√

(𝜖 + 𝛾 − 𝜇)2 + 4𝛽𝑊 𝜖
]

. (5)

Note that this expression depends on 𝜖 and 𝛾 separately and not on their ratio (see Appendix  B for the complete derivation).
Fig.  2c shows the final botnet size as a function of 𝛽𝑊  and 𝛽𝐵 , with the theoretical threshold given by the dashed line from 

Eq. (5). The agreement between theory and simulation is excellent: below the threshold, the botnet size approaches zero. Moreover, 
in the limit 𝜖 → ∞, Eq. (5) simplifies to 𝛽𝐵 > 𝛽𝑊 − 𝜇, implying that even a maximally rough white worm must spread faster than 
𝛽𝐵 + 𝜇 to completely prevent botnet formation (see also Fig.  B.1 in Appendix  B).

Finally, we study the duration for which the botnet remains active. Fig.  2d shows the number of time steps during which the 
botnet exceeds a given size threshold. For instance, the botnet occupies more than 25% of devices for nearly the entire simulation, 
limiting protection to about 75%. The dashed line, corresponding to Eq. (4), accurately predicts this upper bound. For larger botnets, 
we observe that the white worm eventually dismantles them provided its roughness exceeds a critical threshold. Appendix  C further 
explores the dependence of this threshold on 𝛽𝑊  and 𝛾.

3. Spreading on networks

3.1. Network topologies

The topology of the network through which a contagion spreads has a major impact on its dynamics [18,19,40]. Therefore, 
understanding how different network structures affect the behavior of our model is essential. In real-world computer and IoT systems, 
network structures are rarely homogeneous. Further, in the literature on malware spreading and IoT systems, it is possible to find 
many different topologies that depend both on the communication scheme and the actual infrastructure building up the network.

Common examples include simple configurations such as rings, stars, or meshes for small networks, and larger-scale structures 
such as small-world, scale-free (SF), Erdős–Rényi (ER), or random geometric graphs [7]. For instance, networks of mobile wearable 
devices communicating through wireless technologies are better represented by ER or random geometric graphs [41], while 
non–peer-to-peer systems with centralized servers would follow more hierarchical communication patterns.

For simplicity, here we focus on ER and SF networks—two canonical topologies widely studied in network epidemiology that 
represent limiting cases of homogeneous and highly heterogeneous connectivity, respectively. These choices allow us to examine 
the influence of network structure in a controlled way. Equivalent qualitative results were also obtained for hierarchical networks 
generated using a stochastic block model (not shown). All networks consist of 104 nodes with an average degree of ⟨𝑘⟩ = 10, 
generated using the Python package NetworkX (version 3.1) [42].
4 
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Fig. 2. Dynamics of the model under the homogeneous mixing approximation - (a) Final fraction of protected devices as a function of 
the white worm infection rate, 𝛽𝑊 , and its roughness, 𝜖′ = 𝜖∕𝛾. A higher roughness yields greater protection even for low 𝛽𝑊 . Dots correspond 
to numerical integration of Eq. (1), while lines show the analytical solution from Eq. (4). (b) Fraction of protected devices as a function of 
roughness 𝜖′ for selected values of 𝛽𝑊 . Solid lines represent the total number of protected devices, while dashed lines indicate those protected 
by their owner. The fraction of devices forcefully protected is the difference between the two. When 𝜖 < 𝛾, most devices are self-protected but 
overall protection is low; for higher roughness, coverage increases mainly through forced protection. (c) Final botnet size as a function of 𝛽𝑊
and 𝛽𝐵 , with 𝜖′ = 𝜖 = 𝛾 = 1. The dashed line denotes the theoretical threshold given by Eq. (5). Under these conditions, the white worm must 
spread faster than the black worm to prevent botnet formation. (d) Duration (in timesteps) for which the botnet size exceeds a given threshold, 
for 𝛽𝐵 = 1 and 𝛽𝑊 = 2. The dashed line corresponds to the theoretical prediction from Eq. (4). For a fixed botnet size, increasing roughness 
shortens the botnet’s lifetime.

3.2. Stochastic simulations

Stochastic simulations are particularly important for discrete systems where finite-size effects are non-negligible. We simulate 
the joint propagation of both worms using the Gillespie algorithm [43], originally developed for chemical reaction systems and now 
widely used to model epidemic dynamics in continuous time [38,44]. In particular, we employ the implementation available in the 
Python package Epidemics on Networks (EoN) (version 1.1) [45].

Each simulation starts with one device infected by the black worm and another by the white worm. Since the process has an 
absorbing state, the simulation runs until no further transitions are possible—i.e., when the white worm has disappeared and the 
black worm can no longer spread, either because there are no more vulnerable devices left to infect or because the black worm has 
been completely eradicated. To ensure statistical robustness, each configuration is simulated 1000 times, and results are averaged. 
For fair comparison across different network topologies, infection rates are normalized by the average degree, ⟨𝑘⟩.

As a validation step, Appendix  D shows results obtained using the Gillespie algorithm on a complete network, which converge 
to those from the homogeneous-mixing approximation in Section 2 for sufficiently large systems.

3.3. Results

We first compute the maximum botnet size in the 𝛽𝑊 –𝛽𝐵 plane for both network types to identify parameter regions of interest. 
As shown in Fig.  3a, the behavior of the model on a random (ER) network closely resembles that obtained under the homogeneous 
mixing approximation. This similarity is expected, as ER networks lack strong structural correlations. The infection threshold under 
our model’s normalization is 𝛽𝑊 > 1, identical to that of the homogeneous case, since infection rates are normalized by the average 
degree. Consequently, the botnet size distribution mirrors that in Fig.  2c, and the theoretical prediction from the homogeneous 
model still provides a good approximation.

In contrast, the SF network has a slightly different behavior. It is well known that in SF networks, the infectivity threshold 
vanishes as the size of the system grows [19]. In our case, with a network of only 10,000 nodes and an average degree of 10, we are 
far from that limit. Nonetheless, we observe that the white worm can spread over a larger area of the plane and prevent the black 
worm from taking control of the whole system, even though we still need large values of 𝛽𝑊  to completely protect the system.

Given the similar dependence on 𝛽, Fig.  4 explores the same parametrization used for the homogeneous system to enable direct 
comparison. We first examine the final fraction of protected devices in the ER (Fig.  4a) and SF (Fig.  4b) networks. For the ER 
5 
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Fig. 3. Final botnet size as a function of the spreading rates - Botnet size at the end of the simulation in the 𝛽𝑊 –𝛽𝐵 plane for 𝜖′ = 𝜖 = 𝛾 = 1. 
The dashed line indicates the theoretical threshold from the homogeneous mixing approximation. (a) Results for the ER network, which closely 
reproduce the homogeneous case (cf. Fig.  2c). (b) Results for the SF network, which exhibits a broader region where the botnet fails to occupy 
the entire system compared to the homogeneous case.

Fig. 4. Protection under different network topologies - The first row shows the fraction of protected devices as a function of the worm’s 
roughness, 𝜖′ = 𝜖∕𝛾, for selected values of 𝛽𝑊  and 𝛽𝐵 = 1. Triangles denote the total fraction of protected devices (including both owner- 
and worm-driven updates), while circles indicate those protected voluntarily by their owners. (a) ER network: behavior closely matches the 
homogeneous case. (b) SF network: the white worm spreads more easily even at low 𝜖′, though total protection remains limited. The second row 
shows the fraction of the simulation time during which the botnet size exceeds a given threshold. The dashed line marks the theoretical prediction 
from the homogeneous approximation. (c) ER network: the region where the botnet persists for the entire simulation is narrow (𝜖′ < 1). (d) SF 
network: only when 𝜖′ → 0 can the botnet occupy the whole system for the full simulation.

case, the results closely follow those obtained under homogeneous mixing, particularly for 𝛽𝑊 = 2. When 𝛽𝑊  increases further, 
deviations arise due to the finite connectivity of nodes: once all neighbors of an infected device become protected, further increases 
in infectivity no longer enhance spreading efficiency.

The behavior differs slightly in SF networks. The white worm can still reach a macroscopic fraction of the system even at low 
roughness (𝜖′), but the overall protection coverage tends to be smaller. This reduction arises from the system’s discrete nature and 
from the skewed degree distribution of SF networks: many nodes have degrees below the average, leading to a faster depletion of 
vulnerable neighbors. Regarding the distinction between forced and owner-initiated protection, the results remain similar to the 
homogeneous case, as that mechanism is independent of network topology.

Finally, we study the persistence of the botnet over time. Unlike the continuous equations in Eq. (1), which are valid for arbitrarily 
long times, Gillespie simulations terminate once no further transitions can occur. Therefore, we measure the fraction of the total 
simulation time during which the botnet exceeds a given size instead of the number of timesteps.

In Fig.  4c, we find that ER topology induces two competing effects. On one hand, the botnet can remain above the theoretical 
limit predicted by the homogeneous approximation for a significant fraction of the simulation. On the other, the region where the 
botnet persists throughout the entire simulation is limited to a narrow band of low roughness (𝜖′ < 1). A comparable pattern appears 
6 
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Table 2
Summary of optimal model parameters - For each parameter, we report the 
values required for the white worm to effectively suppress the black worm. 
Successful eradication requires the white worm to infect most of the system, which 
can be achieved either by high infectivity (𝛽𝑊 ) or by remaining active for long 
periods (𝜇). If users patch their devices too quickly (𝛾), the worm cannot spread 
efficiently. Similarly, it should activate rapidly (𝜖) to minimize the chance of being 
neutralized before propagation.
 Description Parameter Effective value 
 Infection rate of white worm 𝛽𝑊 High  
 Activation rate of white worm 𝜖 High  
 Rate of voluntary patching 𝛾 Low  
 Rate of self-destruction 𝜇 Low  

for SF networks, although the region exceeding the homogeneous prediction is smaller, and the botnet survives for the full duration 
only when 𝜖′ ≈ 0.

4. Conclusions

The intersection of cybersecurity and ethics presents complex and often conflicting dilemmas. In this work, we explored 
one such challenge through the lens of white worms—self-propagating agents proposed as a defensive measure for Internet of 
Things (IoT) systems. The use of white worms inherently lies on an ethical and legal boundary: although they may strengthen 
collective cybersecurity, their autonomous propagation and system modification occur without explicit user consent, potentially 
breaching privacy and existing legislation. Some authors have suggested that their deployment could be regulated or managed by 
governments [46], yet this introduces its own set of governance and accountability concerns that extend beyond the scope of this 
study.

Here, rather than engaging directly in the ethical debate, we modeled the dynamics of a white worm inspired by the behavioral 
principles proposed in the literature [11,13]. We characterized the worm by its roughness, defined as the ratio between its activation 
rate — representing the intensity of its use of system resources for propagation and forced protection (𝜖) — and the rate at which 
users voluntarily act upon receiving a security notification (𝛾). Another relevant parameter is 𝜇, describing how long the white 
worm remains active before patching the system and deleting itself. Since other parameters can be rescaled as a function of 𝜇, its 
role can be studied indirectly through variations in 𝛽𝑊 , which encapsulates both the worm’s infectivity and its active lifetime. Thus, 
large values of 𝛽𝑊  correspond either to faster identification of vulnerable devices or to prolonged activity before self-destruction 
(see Table  2).

We then examined how different network topologies influence these dynamics. The main conclusion is that although structured 
networks facilitate partial protection, achieving full system coverage becomes more difficult. Specifically, the region in which the 
botnet remains active for extended periods is considerably smaller in networks with heterogeneous (power-law) degree distributions. 
These findings highlight the critical role of network structure in determining the feasibility and efficiency of white worm deployment 
strategies.

Despite these insights, our study has several limitations. First, it relies on simplifying assumptions about the behavior of both 
worms and users, which may not fully capture real-world complexities. For example, we assumed that once a device is patched it 
becomes completely immune to reinfection, whereas in practice updates may not close all vulnerabilities. In some cases, rebooting 
might remove both worms, leaving the system temporarily unprotected. Moreover, our model does not consider direct interactions 
between the worms, such as the white worm actively detecting and removing the black worm from infected devices.

Future work could extend the model to incorporate such interactions and recurrent infections, for instance by transforming 
the SEIR-like formulation into a SEIRS-like model. Empirical validation through experiments or real-world data would also help 
assess the predictive power of the model and refine its assumptions. Furthermore, studying the dynamics on realistic IoT network 
topologies or under different communication paradigms such as centralized update servers would provide a more accurate assessment 
of deployment feasibility and control effectiveness.

In conclusion, our results show that the co-dynamics of black and white worms can generate complex nonlinear behaviors that 
determine whether a botnet survives or collapses. However, the success of white worms depends on aggressive parameter regimes 
(high infectivity, prolonged activity, and low voluntary user response) that challenge the very ethical principles motivating their 
design. Thus, while technically promising, the idea of an ethical white worm remains paradoxical: to be effective, it must behave in 
ways that are inherently intrusive and ethically questionable. Comparable levels of protection might instead be achieved through 
safer alternatives, such as coordinated automatic patching or federated defense systems, which emulate the cooperative dynamics 
of white worms without requiring autonomous propagation.
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Appendix A. Derivation of the basic reproduction number, 𝑹𝟎

The next-generation matrix defines 𝑅0 as [37,47]: 

𝑅0 = 𝜌(−𝐹𝑉 −1), (A.1)

where 𝜌 denotes the spectral radius, and 𝐹  and 𝑉  represent, respectively, the rate of appearance of new infections and the rate of 
transfer of individuals across states. In the case of the white-worm, which follows a SEIR-like structure, we have: 

𝐹 =
(

0 𝛽𝑊
0 0

)

, 𝑉 =
(

−(𝜖 + 𝛾) 0
𝜖 −𝜇

)

. (A.2)

Hence, 

𝐹𝑉 −1 =
⎛

⎜

⎜

⎝

𝛽𝑊 𝜖
(𝜖 + 𝛾)𝜇

𝛽𝑊
𝜇

0 0

⎞

⎟

⎟

⎠

. (A.3)

So that the spectral radius is 

𝑅0 = 𝜌(−𝐹𝑉 −1) =
𝛽𝑊
𝜇

⋅
𝜖

𝜖 + 𝛾
(A.4)

Appendix B. Early growth of the worms

Following [39], we linearize the system of equations around 𝑡 → 0 to approximate the early dynamics. For the black worm: 

𝜌̇𝐵 ≈ 𝛽𝐵𝜌
𝐵 , (B.1)

so that in the early phase of an outbreak the size of the botnet will grow as: 

𝜌𝐵(𝑡) = 𝜌𝐵(0)𝑒𝛽𝐵 𝑡. (B.2)

That is, exponentially with rate 𝛽𝐵 .
For the white worm, the early dynamics are governed by:

𝜌̇𝐷 ≈ 𝛽𝑊 𝜌𝑊 − (𝜖 + 𝛾)𝜌𝐷 (B.3)

𝜌̇𝑊 ≈ 𝜖𝜌𝐷 − 𝜇𝜌𝑊 . (B.4)

In this case, we can obtain the early growth of the white worm outbreak using the eigenvalues of the Jacobian matrix: 

𝐽 =
(

−(𝜖 + 𝛾) 𝛽𝑊
𝜖 −𝜇

)

, (B.5)

with eigenvalues: 

𝜆 =
𝑡𝑟(𝐽 ) ±

√

(𝑡𝑟(𝐽 ))2 − 4 det(𝐽 )
2

. (B.6)
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Fig. B.1. Growth of the botnet as a function of 𝜖 - The plot depicts the critical boundary separating the botnet-free region of the 𝛽𝑊 − 𝛽𝐵
plane. Below the line, the botnet cannot grow.

Fig. C.1. Threshold botnet size - (a) number of timesteps during which the botnet remains above a given size for a more infectious white 
worm (𝛽𝐵 = 1, 𝛽𝑊 = 6). (b) same setup as in the main text (𝛽𝐵 = 1, 𝛽𝑊 = 2) but with 𝛾 = 0.5.

Hence, the leading eigenvalue, which determines the early growth rate of the white worm, is: 

𝜆 =
−(𝜖 + 𝛾 + 𝜇) +

√

(𝜖 + 𝛾 − 𝜇)2 + 4𝛽𝑤𝜖
2

. (B.7)

Comparing both expressions, we can set an approximate threshold for the black worm to be able to spread through the system, 
since if the white worm spreads much faster it may remove it completely before it can grow. As such, the black worm will only be 
able to spread substantially if 

𝛽𝐵 > 1
2

[

−(𝜖 + 𝛾 + 𝜇) +
√

(𝜖 + 𝛾 − 𝜇)2 + 4𝛽𝑊 𝜖
]

. (B.8)

Fig.  B.1 shows this threshold as a function of 𝜖 for 𝛾 = 1. In the limit 𝜖 → ∞, the right-hand side approaches 𝛽𝑊 − 𝜇, implying 
that for the white worm to completely suppress the botnet, its effective spreading rate must satisfy 𝛽𝑊 > 𝛽𝐵 + 𝜇.

Appendix C. Threshold botnet size

The black worm will eventually cover the whole system, since it never deletes itself unless the white worm protects the device. 
Thus, the maximum size of the botnet depends directly on the total coverage achieved by the white worm, as given by Eq. (4). The 
only effective way of reducing the botnet size is therefore to increase 𝑅𝑊

0 .
As shown in Fig.  C.1a, where we set 𝛽𝐵 = 1 and 𝛽𝑊 = 6, this is indeed the case: the botnet remains large only when the white 

worm roughness is close to zero. Fig.  C.1b illustrates a similar situation with the same parameters as in the main text, but with 
𝛾 = 0.5. In this case, the theoretical threshold is still valid, although it takes slightly longer for the white worm to eradicate the 
botnet.
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Fig. D.1. Simulations on the complete graph - Fraction of protected devices at the end of the simulation as a function of 𝛽𝑊  for several values 
of the roughness 𝜖′ = 𝜖∕𝛾. Dots represent the average of 1000 simulations, and error bars denote the 95% confidence interval. Lines show the 
theoretical prediction from the homogeneous system (Eq. (4)).

Appendix D. Stochastic simulation on the complete graph

The homogeneous mixing approximation assumes that each device can communicate directly with every other device. We can 
mimic this condition in a network by connecting all nodes to each other, forming a complete graph. To verify that the stochastic 
model accurately reproduces the dynamics described by Eq. (1), Fig.  D.1 compares the results of stochastic simulations on a complete 
graph of 10,000 nodes with the theoretical predictions from Eq. (4).

The agreement between both approaches is very good, with only minor deviations due to finite-size effects and stochastic fluc-
tuations. Some additional noise is expected because of the limited number of simulation runs (1000), constrained by computational 
cost.

Data availability

The code used in this study is publicly available at https://github.com/aaleta/whiteworms.
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