
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. 
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party 
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​​/​c​r​e​a​​t​i​v​e​c​o​​m​m​o​n​​s​.​o​r​g​​/​l​i​c​e​​n​s​
e​s​/​b​​y​-​n​c​​-​n​d​/​4​.​0​/.

Gao et al. Applied Network Science           (2025) 10:62 
https://doi.org/10.1007/s41109-025-00740-9

†Carlo Campajola, Nicolò 
Vallarano, Andreia Sofia 
Teixeira, and Claudio J. Tessone 
have contributed equally to 
this work.

*Correspondence:
Yu Gao
yu.gao2@uzh.ch

Full list of author information is 
available at the end of the article

Heterogeneity- and homophily-induced 
vulnerability of a P2P network formation model: 
the Mana based auto-peering protocol
Yu Gao1*, Carlo Campajola2,3,5†, Nicolò Vallarano1,2†, Andreia Sofia Teixeira4,6† and Claudio J. Tessone1,2†

Introduction
Over the last few decades peer-to-peer networks (P2P) have been widely employed in 
a variety of settings as a base layer for distributed systems, including the worldwide 
web(Lawrence and Giles 2000), file sharing (Oram 2001), instant messaging in social 
networks (Cancho et al. 2001; Heidemann et al. 2012; Masinde and Graffi 2020), and dis-
tributed computing (Tanenbaum 2007). In contrast to the client–server system, P2P net-
works stand out as more egalitarian and decentralised, where peers share data resources 
with each other without resorting to a central authoritative node (Androutsellis-The-
otokis and Spinellis 2004). Particularly, the emergence of Bitcoin (Nakamoto 2008) has 
brought revolutionary technology in socio-technical and socio-economic systems, and 
the decentralized P2P network layer is the backbone of its Distributed Ledger Technol-
ogy (DLT).

A DLT is a consensus-driven system where digital data is replicated, shared, and syn-
chronised across multiple sites, countries, or institutions in the absence of a central 
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authority, ensuring geographic decentralisation. The process that enables the reaching 
of distributed agreement is denoted as the consensus mechanism. A DLT is said to be 
“in consensus" when the participants of the network agree on the replicated informa-
tion contained in the distributed ledger. A blockchain is a particular example of DLT, 
with Bitcoin (Nakamoto 2008), the first type of DLT to reach worldwide diffusion, using 
a blockchain for transaction storing. Bitcoin also introduced the consensus mechanism 
commonly known as Proof-of-Work, where users solve complex problems in order to 
mint new tokens and, eventually, ensure the consensus of the system.

We can think of the P2P network in DLTs as the infrastructure that enables the dis-
tribution of data among peers, and the establishment of consensus is significantly influ-
enced by the topology of connections within the P2P network (El Ioini and Pahl 2018; 
Kraner et al. 2023). The nodes in a generic P2P network are computers, and the infor-
mation they contain and exchange can be files, contracts, and transaction records, to 
name a few (Wood 2014). To give an example, if we think of DLTs storing specifically 
economic transactions like Bitcoin, the “miners" i.e. the peers driving consensus play the 
role of clerks in a bank: they clear the systems transactions in order for the everyday Bit-
coin user to be able to execute their transactions. Their incentive in doing so is the coin-
base reward associated with each block attached to the blockchain, which also serves as 
a Bitcoin minting mechanism.

P2P networks
Due to the growing adoption of cryptocurrencies, numerous researchers have exten-

sively explored their P2P networks. One of the main challenges in studying real-world 
P2P networks follows from their decentralised nature: they rarely can be fully monitored 
by a single agent, as each node only knows about its peers and has no reliable infor-
mation beyond them, nor are they incentivised to share this information as it may lead 
to malicious attacks. To address this problem, several scholars have proposed method-
ologies for mapping these networks and conducting subsequent analyses. To cite a few, 
Miller introduced “AddressProbe" to uncover the topology of the Bitcoin P2P network 
(Miller et al. 2015); Deshpande et al. devised a framework to map the Bitcoin P2P net-
work, presenting an insightful snapshot of its topology (Deshpande et al. 2018); Kim et 
al. developed NodeFinder, a tool to measure the Ethereum P2P network’s characteristics 
and dissect the intricate DEVp2p ecosystem (Kim et  al. 2018). From a different view-
point, Imtiaz et al. revealed the intermittent network connectivity displayed by Bitcoin 
nodes (Imtiaz et al. 2019).

Notably, there exists research concerning attacks on P2P networks: Heilman et  al. 
(2015) proposed employing extremely low-rate TCP connections for network attacks, 
while Nayak et  al. (2016) devised a combination of mining attacks and network-level 
attacks to undermine the consensus in DLT protocols. Additionally, other papers outline 
a variety of technical approaches to network attacks (Apostolaki et al. 2017; Tran et al. 
2020).

In P2P networks, nodes actively communicate with nearby nodes, facilitating the 
exchange of information. This dynamic is crucial for maintaining consensus among 
nodes and deterring potential efforts by individuals or attackers to gain complete con-
trol of the network. Despite the original intention of most DLT systems’ P2P networks 
to build random, uncontrollable networks, vulnerabilities can arise when certain net-
work information is exploited (Müller et al. 2021; Moubarak et al. 2018). To prevent such 
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attacks, it is essential to have a comprehensive understanding of the inherent topology of 
the empirical P2P network within a static network model, achieved by substituting tech-
nical cryptographic elements with graph-based parameters (Dobson et al. 2007; Arianos 
et al. 2009; Epstein 2012; Hines et al. 2010). This approach can uncover potential weak-
nesses in the design of P2P network protocols.

Network Science offers a comprehensive tool-set to effectively model these types of 
complex systems (Newman 2018; Watts and Strogatz 1998). Socio-technical systems 
have been largely studied in the context of complex networks (Vespignani 2012; Watts 
et al. 2005): translating such systems into network representations allows us to exploit 
their topological properties in order to identify vulnerabilities and nonlinear properties. 
P2P protocols have a natural network representation, where peers can be represented as 
nodes, while edges embody peer connections. An obstacle to a straightforward applica-
tion of network analysis to these systems is that by design P2P protocols make the con-
nection construction unknown globally, as peers only know their local connectivity. On 
the contrary, peers generally have a huge security incentive not to reveal their connec-
tions to possible malicious adversaries (Heilman et al. 2015; Singh et al. 2006). A possible 
approach to this challenge is to define theoretical models that describe P2P networks, 
starting from the P2P protocol rules, in order to gain further insight.

IOTA
The prevailing research naturally focuses on Bitcoin and Ethereum, both operating in 

a permissionless manner. Generally, these platforms incentivise validators—i.e. the peers 
tasked with verifying transactions and upholding network integrity—by issuing rewards 
for their honest contribution and penalties if their actions contradict rules or network 
interests. However, for platforms lacking such reward and penalty systems for peers like 
IOTA,1 the design of the peer connection algorithms can have a profound influence on 
the consensus integrity.

IOTA has been introduced to address one of the main limitations of mainstream 
blockchains, namely their scalability. Blockchain addresses the challenge of decen-
tralising digital transaction systems while enhancing data transparency and security. 
However, it may encounter scalability issues when managing a large volume of trans-
actions (Khan et  al. 2021). Each node is required to verify and store a complete copy 
of the blockchain, leading to limited network capacity and slower transaction process-
ing; in addition to this, blockchains have an intrinsic transaction volume limit, depend-
ing on how many transactions can fit inside a block and the time that occurs between 
two blocks. To tackle this, IOTA introduced the Tangle (Popov 2018), a new ledger data 
structure based on a directed acyclic graph (DAG) instead of the classic linear chain. 
By enabling concurrent transaction processing, the Tangle can theoretically handle 
increased transaction throughput as the network expands. Another peculiarity of IOTA 
is “Mana", a scarce quantity associated with a peer that would tokenize its reputation, 
which has been proposed to be introduced in an upcoming upgrade (Popov et al. 2020). 
Mana is intended as a Sybil protection mechanism (Douceur 2002; Cheng and Fried-
man 2005), i.e. a mechanism that sets a cost (in this case, acquiring reputation) for nodes 
to participate in the consensus formation. This prevents Sybil attacks, where malicious 
agents are able to manipulate consensus by the creation of a large number of nodes.

1 https://www.iota.org/.

https://www.iota.org/
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It was proposed to use Mana within a pseudo-random P2P network formation model, 
the IOTA auto-peering module (Müller et al. 2021), which favors homophilic connec-
tions, i.e. among nodes in a close Mana range. Homophily is known in sociology as the 
tendency of individuals to bind by similarities. In network theory, we observe homophily 
when nodes tend to connect preferentially with nodes with similar characteristics (New-
man 2002; Kossinets and Watts 2009; Shalizi and Thomas 2011; Hasheminezhad and 
Brandes 2023). Many social networks demonstrate connection mechanisms in which 
each node possesses a distinct trait, such as wealth, age, or trustworthiness. Connections 
in these networks arise from similarities, as observed in friendship networks (Moody 
2001), collaboration networks (Newman 2001) or actor networks (Watts 1999).

Overview
In the present work, we develop a set of strategies to identify a cost-effective set of 

nodes that, if controlled by a malicious actor, can functionally disconnect an homophily 
induced P2P network. In order to provide an empirical analysis, we develop our strate-
gies on a real case example, the proposed IOTA P2P network formation model,2 and we 
additionally develop an ulterior attack strategy refined trough the simulations results.

While the proposed results are tailored for the IOTA case, we observe that with mini-
mal additional work, the same strategies apply to any kind of P2P homophilic network.

The rest of the paper is organised as follows: Section II formally describes IOTA 
network formation model and the attack strategies. Section III presents the strategies 
simulation’s results. Section IV concludes the paper with the result’s comments and 
discussion.

Approach
Mana

The auto-peering module, as described by IOTA2, generates a P2P network composed 
of N nodes. Each node has a given amount of Mana and, for convenience, we will index 
them from the largest endowment of Mana (identified as 1) to the lowest (identified as 
N). These Mana values are publicly known to all nodes and regularly broadcast over 
the P2P network itself. The distribution of Mana is the result of a dynamical process, 
where nodes can accrue their endowment through fair participation in the consensus 
mechanism, and their chance to do so is itself a function of their Mana endowment; in 
our setting we assume Mana to be an equilibrium value, not depending on time. As is 
commonly found in similar systems like Proof-of-Work mining (Campajola et al. 2022; 
Makarov and Schoar 2021), Proof-of-Stake validation (Chohan 2022; Sai et al. 2021) or 
any system where the growth of a quantity is proportional to its current level, the so-
called “Matthew effect" enters the picture and a Zipf ’s law often emerges after sufficient 
time. For this reason, we assume the Mana distribution follows a Zipf (2016) with expo-
nent s so that the Mana value of node i is

m(i) = Ki−s,� (1)

where m(i) is the Mana endowment of the i-th ranked node and K is an arbitrary posi-
tive constant used for numeric stability, in our case K = 1010.

2 ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​i​o​​t​a​l​e​d​​g​e​r​/​a​​u​t​o​p​e​e​​r​i​n​g​​-​s​i​m.

https://github.com/iotaledger/autopeering-sim
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Peer discovery

The protocol prescribes that each node i will add node j > i to its list of eligible neigh-
bours, Ni, if m(i) < ρm(j), where ρ is a given constant. If this condition is not met for at 
least R other nodes, i will add the R nodes ranked after itself to the list. Any time a node 
j is added to the set Ni, i will be added to Nj  to reciprocate. Therefore, the potential 
neighbours of any node i are formally identified as

Ni =
{

j = 1, . . . , N : 1
ρ

m(i) < m(j) < ρm(i) ∨ |j − i| < R

}
.� (2)

From this set, i randomly picks k elements to link to and receives k links from other 
nodes in the set. The result is a random regular network with coordination number k (or 
in other words where each node has degree 2k), and links appear only between nodes 
with similar Mana endowment. From a modelling perspective, N, k, R, ρ and the Zipf ’s 
exponent s are the parameters needed to generate a network.

Network formation

We base our simulation on the publicly available Go code by the IOTA research team.3 A 
node will compile its potential neighbours’ list and cease searching for neighbours when 
it has established k connections, while it accepts connection requests from other nodes 
until it has received another k connections. Communication is then bidirectional along 
these links, so the resulting network is undirected. As a result, each node ultimately has 
2k neighbours.

Combining the aforementioned rules, we can deduce that an increase in the Zipf ’s 
exponent s leads to the most affluent nodes having relatively short potential neighbour 
lists. This happens because of the increased inequality in the distribution of Mana among 
nodes, meaning a larger Mana gap between nodes. The parameters R and ρ, although 
not as influential, still impact the IOTA P2P network and contribute to its structure 
by tuning the tolerance that the nodes have in terms of the Mana endowment of their 
potential neighbours. As can be seen by the definition of Eqs. 1 and 2, when s is small 
the distribution is relatively homogeneous and peers easily have many potential neigh-
bours through the range condition set by ρ, forming a network that is closely resembling 
a regular (i.e. where all nodes have the same degree) version of the Erdős-Rényi (ER) 
random network. However, as s increases, nodes that fail to find enough peers within the 
Mana ratio condition can acquire sufficient potential neighbours through the alternative 
condition based on R. In this situation, peers that have fewer potential neighbours can 
solely establish connections with peers that are in their immediate vicinity in terms of 
Mana ranking. Consequently, the network will tend towards resembling a k-regular 1D 
lattice network.

To have a more intuitive understanding of the IOTA auto-peering model, we provide 
a visualisation of networks generated under various s and ρ values in Fig. 1. As it can 
be seen, when the Mana (shown in colour in log scale) is relatively homogeneous and 
when the tolerance parameter ρ is high enough the network does not show any particu-
lar asymmetry, but in a low ρ scenario and whenever s is increased there is a clear ori-
entation of the network, with the nodes with the largest Mana endowment being shifted 

3 ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​i​o​​t​a​l​e​d​​g​e​r​/​a​​u​t​o​p​e​e​​r​i​n​g​​-​s​i​m.

https://github.com/iotaledger/autopeering-sim
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towards one end of the network and the shape becomes more linear, following the nodes 
Mana hierarchy.

Attack damage and cost

Figure 1 neatly highlights the intuition behind a potential attack strategy for this com-
munication network. When s is large and ρ is small, the elongated shape taken by the 
network results in the creation of a choke point separating the few high Mana nodes 
from the many low Mana ones.

In an eclipse attack, the attacker’s goal is to control all the victim’s incoming and out-
going communications, isolating the target from the rest of the peers and destroying the 
ability of all peers to reach a consensus (Singh et al. 2006). In our work, the goal of the 
attacker is to achieve control over all links separating two sub-components of the net-
work: this allows the attacker to manipulate the flow of information between the two 
sub-components, gaining advantage and twisting consensus towards their needs. Since 
the parameters of the network formation protocol are known to the attacker, they only 
need to find an allocation of their Mana endowment across multiple Sybil nodes in a way 
that allows them to control the crucial choke points.

To measure the attack efficiency, we introduce the concept of damage D and cost x. 
The damage is measured in terms of the fraction of Mana the attacker is able to discon-
nect from the network: if the total Mana in the system is denoted as M =

∑
i m(i) and 

the network nodes are split into two components A and B where without loss of general-
ity 

∑
i∈A m(i) ≤

∑
j∈B m(j), then

D(A) =
∑
i∈A

m(i)/M.� (3)

Clearly, the maximum attainable damage is then Dmax = 1/2.
To control a link, the attacker needs to control one of the endpoint nodes. 

The cost of controlling a link (i,  j) is defined as the minimum Mana of its end-
point nodes x(i, j) = min(m(i), m(j)). Then, for a set of links C(A,  B) which 

Fig. 1  Intuitive visualisation of the different topologies realised by the IOTA auto-peering formation model as a 
function of ρ and s. The graphs are generated with fixed N = 100, R = 10, k = 4. Colour represents the Mana 
endowment of nodes, in a logarithmic scale
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separates partition A from B and the set of least Mana endpoints (the “frontier") 
F = {arg min(m(i), m(j)) ∀(i, j) ∈ C(A, B)}, the cost of attack reads

x(C) =
∑
i∈F

m(i).� (4)

The goal of the attacker is, for a given Mana cost xmax they are able to commit, 
to find the optimal set C such that x(C) ≤ xmax and x(C ′) > xmax∀C ′ such that 
D[x(C ′)] ≥ D[x(C)].

In the following, we propose two simplified strategies for the attacker: a “Betweenness" 
strategy and a “Greedy" strategy, which both require full information about the P2P 
structure, and a derived “Blind" strategy that only requires the more realistic assumption 
of knowledge of the parameters used to generate the network.

Attack strategies

To investigate the security of the IOTA P2P network, we develop two attack strate-
gies: the “Betweenness" strategy and the “Greedy" strategy. To quantify the impact of 
the attack, we introduced in the previous section the concepts of “Damage" and “Cost", 
whose ratio we employ as a measure of attack efficiency.

Although both strategies rely on complete topological information about the network, 
it is important to note that in real-world scenarios the specific P2P network topology is 
not publicly accessible. Therefore, to address this limitation, we also propose a “Blind" 
strategy. This strategy is inspired by the results of the simulations of the “Betweenness" 
and “Greedy" strategies, but it is executed assuming the attacker has no knowledge of 
the actual topology of the P2P network except for the knowledge of the Mana distribu-
tion and the IOTA auto-peering network formation model parameters, which are public 
information available to all IOTA nodes.

Betweenness strategy
The betweenness strategy, as the name suggests, relies on edge betweenness central-

ity to identify the optimal cut. Similar to node betweenness, edge betweenness serves 
as a metric that quantifies the fraction of shortest paths passing through a specific edge 
between any two nodes within a network (Freeman 1977). Inspired by the Girvan-
Newman algorithm for community detection (Girvan and Newman 2002), the strategy 
prescribes removing edges from the network starting from the ones with the highest 
betweenness centrality. However, unlike the community detection process, in this sce-
nario, the removal of the top betweenness links is halted once the network is divided 
into two parts. It is crucial to note that after each removal of the top betweenness link, 
the link betweenness is recalculated for the entire network. The attacker proceeds itera-
tively, removing the top betweenness links until the original network is fragmented into 
two distinct sub-networks, denoted as A and B. The removed links constitute the associ-
ated cut C, and the attack damage D is the total Mana associated to the nodes in the sub-
network deriving from cut C, which has the smaller total Mana share.

Greedy strategy
In the literature, we can find many different instances of network partitioning algo-

rithms, such as spectral partitioning (Fiedler 1973), clustering coefficient (Saramäki 
et al. 2007), community detection (Yang et al. 2016) or heuristic based partitioning (Ker-
nighan and Lin 1970). However, none of these algorithms takes advantage of node 
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attributes, such as the Mana endowment. Here, we introduce a simple method to split 
the auto-peering network according to the Mana ranking information and the network 
topological information, which we call the “Greedy" strategy.

The Greedy strategy is much more simplistic than the Betwenness one: the attacker 
splits the nodes into two sets A = {i ≤ i∗}, and B = {i > i∗} for each possible target 
node i∗ = 1, . . . N − 1. It follows that the cut is the set of links connecting A and B. For 
each i∗ we calculate the cost of the split and choose the i∗ that maximises damage per 
unit cost to run the attack.

Blind strategy
In practical situations, the specific topology of the P2P network is not available, as 

nodes do not have a full picture of all connections in the network but only know their 
own peers. A blind strategy, one that does not require full knowledge about the network 
topology, is therefore needed. We design a blind strategy that is informed by the results 
obtained with the Betweenness and Greedy strategies, namely measuring the frequency 
with which a specific node, given the network formation parameters, ends up being in 
the control set identified by the full-information strategy. We then take the most fre-
quently targeted node iσ , where σ ∈ {B, G} (for Betweenness and Greedy, respectively) 
and define the control set for the strategy Cblind as all nodes within a range L in the Mana 
ranking from node iσ , i.e.

Cblind(σ) = {i : |iσ − i| < L}� (5)

The attacker is assumed to take control of this set of nodes and we verify whether this 
was successful to split the network and quantify the attack efficiency according to our 
Damage and Cost measures.

Results
Simulation results for full information attacks

We explore the parameter space and find that the resulting network structure is most 
sensitive to the value of Zipf ’s exponent s, which describes Mana heterogeneity (see 
Sect. 4.3). We fix all other parameters to reasonable values N = 100, R = 10, ρ = 4, 
k = 4, and focus on the attack vulnerability varying s from 0.5 to 1.5 at intervals of 0.1. 
For each set of parameters, we generate a sample of 1000 networks and apply our attack 
strategies, measuring the damage over cost ratio D/x.

In Fig. 2, we present the results for the average damage over cost E[D/x] over 1000 
simulations and across varying values of s for the full information attacks. We observe 
that both the Betweenness and Greedy strategies, respectively represented by the blue 
and orange violins, attain maximum efficiency when s ≈ 1. Additionally, we show the 
result of applying the Betweenness strategy to a random-regular network where Mana 
does not have a role in the formation of connections, i.e. the fully randomised Watts-
Strogatz (WS) model of small-world networks (Watts and Strogatz 1998) with coordi-
nation number k. Compared to the auto-peering network formation model, the attack 
efficiency in the WS model appears to be much closer to 0 in the vast majority of cases. 
The result in Fig. 2 shows that in specific Mana distribution conditions, the attacker can 
achieve relatively large damage to the network with a small cost and that this vulnerabil-
ity is induced by the presence of Mana in the network formation protocol. Both strate-
gies achieve maximal D/x ≈ 3.5 for s = 1: this is particularly relevant because Zipf laws 
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with exponent in the close range around 1 have been observed to describe wealth distri-
bution in cryptocurrency token holdings in the literature (Kusmierz and Overko 2022).

Next, we compare the frequency of endpoint removals between the betweenness strat-
egy and the greedy strategy under the conditions of ρ = 4, R = 10, and N = 100, based 
on a sample of 1000 graphs. Our findings, which for the sake of conciseness we report 
in Figs. 7 and 8 in the Appendix, reveal that the greedy strategy, which aims to optimise 
the D/x ratio, typically removes node iG = 14 as the maximum frequency endpoint. On 
the other hand, for the betweenness strategy, the maximum frequency endpoint that is 
removed is node iB = 12. We find that in the case of s = 1, the endpoints selected with 
maximum frequency F by both the “betweenness" strategy and the “greedy" strategy are 
typically in the same range, albeit not precisely the same nodes.

We are going to use the maximum frequency endpoints hereby identified to inform 
the blind attacks analysed in the next section.

Simulation results for blind attacks

A pitfall of the two strategies above is that they both require the attacker to have per-
fect knowledge of the network structure, which is unrealistic. A more realistic relaxation 
of this assumption is that the attacker is only aware of the network formation model 
parameters. Given such information, the attacker can reproduce the above results and 
inform a “Blind" strategy, aiming to control the nodes that are most often needed to per-
form the split. In particular, for the specific case of N = 100, we take the “target" nodes 
iB = 12 and iG = 14 (for the Betweenness and Greedy strategy respectively) and define 
the parameter L such that the blind attacker controls nodes Cblind(σ) for σ ∈ {B, G}. We 
then measure the D/x ratio over 1000 simulated networks along with the success ratio 
p, i.e. the fraction of simulations where the network is successfully split by the blind 
attacker, and show the results in Fig. 3 as a function of L.

The red and yellow lines show E[D/x], the average damage over cost attack efficiency 
associated with a Blind strategy informed either by the Greedy (red, “BG") or Between-
ness (yellow, “BB") results, averaged over a sample of 1000 networks. The blue and green 
lines track the attack success rate p using the target node from the “Greedy" strategy 
(blue line) and from the “Betweenness" strategy (green line).

As should be expected, for low choices of L the strategy is unsuccessful in splitting 
the network. The Blind-Betweenness (BB) strategy reaches a peak average efficiency of 
E[D/x] = 1.75 for L∗

b = 7, corresponding to 100% attack success. On the other hand, 

Fig. 2  The average damage over cost ratio by attack strategy and underlying network formation model. 
Each auto-peering generated network has N = 100, ρ = 4, R = 10, k = 4. WS generated networks have 
N = 100, k = 4, p = 1, the data size is 1000 graphs
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the Blind-Greedy (BG) strategy reaches peak efficiency for L∗
g = 8: while requiring more 

nodes to be controlled, the efficiency is larger on average (E[D/x] = 2). Summarising, 
both strategies allow the attacker to successfully split the network from a low informa-
tion context. Based on our simulations the BG strategy attains a better efficiency, but we 
observe that we did not assign an additional cost to the number of controlled nodes, we 
only considered the Mana required to control the node: the number of nodes to control 
may affect the cost of an attack in a real-world situation. Interestingly, both strategies 
at their peak efficiency L command the same cost of around 24% of all the Mana in the 
system, as shown in Fig. 5. This means that an attacker controlling 24% of the system’s 
Mana would be able to identify a distribution strategy to control the choke points of the 
P2P network 100% of the times.

To compare the severity of the attacks with some baseline scenarios, we also run the 
same attacks on a 1D lattice with the same coordination number k as the auto-peering 
network and on a fully randomised Watts-Strogatz (WS) network model, i.e. a random-
regular network of degree 2k. For the one-dimensional lattice, for which we show the 
success ratio with the cyan triangles in Fig. 3, it is straightforward to see that the network 
is always split whenever L ≥ k, where in this case k = 4. Compared with a 1D k-regular 
lattice, the auto-peering networks are more resilient. This makes perfect sense: 1D lattice 
are completely predictable networks, where the attacker does not need to acquire infor-
mation to predict the topology of the network. On the other extreme the WS networks, 
being fully randomised, are much more resistant to attacks and the networks are almost 
never successfully split unless L is chosen to be of the same order of magnitude as N. We 
show this result in the inset of Fig. 3.

This result shows clearly that the IOTA auto-peering protocol produces networks that 
are in between the fully deterministic 1D lattice and a fully random regular network. 
Depending on the parameter values, the Mana-based connection rules can severely 
restrict the options for nodes to connect between themselves, resulting in the loss of the 
security provided by randomness and consequently in predictable network structures 
that can be exploited.

Fig. 3  Success ratio p (on the right y-axis) and average damage E[D/x] (on the left y-axis) per unit cost of a Blind 
strategy informed by the Greedy (“BG") and Betweenness (“BB") strategies. The results are averaged over a sample 
of 1000 simulated networks with N = 100, ρ = 4, R = 10 and s = 1 while the error bars are 95% confidence 
intervals. As comparisons, we also show the success ratio p on an equivalent 1D lattice and a fully randomised 
regular WS-type network in the inset
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Strategy robustness

In order to verify the robustness of our results, we test the proposed strategies by simu-
lating the model on a realistic range in the parameters’ space. We choose ρ ∈ [1.5, 4] and 
s ∈ [0.5, 1.5] as they should provide a comprehensive overview of realistic parameters 
choices.

We find that, as long as N is large enough compared to k, varying the number of nodes 
has no particular effect on the results. This is mostly due to the fact that the Mana is dis-
tributed according to Zipf ’s law, and so most of the Mana is concentrated in the first few 
nodes in the ranking regardless. Similarly, we do not find effects of particular interest 
when changing R within reasonable ranges. For the sake of space, we report additional 
results testing N and R dependence in Figs. 10 and 11 (see Appendix). For each combina-
tion of parameters, the results were averaged over a sample of 1000 graphs generated by 
the auto-peering network formation model. On the other hand, we find an interesting 
interplay between the ρ and s parameters, which we discuss in the present section.

In Fig. 4 we show the expected damage over cost ratio across different parameter com-
binations for the two informed strategies. While the performances of the two strategies 
are slightly different, we do observe a similar trend: both attain maximum success (in 
terms of damage over cost) for low ρ and for s between 0.5 and 1, i.e. when the Mana 
distribution is sufficiently heterogeneous compared to nodes’ “tolerance" ρ, but not so 

Fig. 4  Heatmaps of the expected damage over cost, E[D/x], plotted over ρ and s, for the betweenness (up plot) 
and greedy (down plot) strategy. R = 10 is kept constant. The maximum for each fixed s is when ρ is minimal, 
meaning that whenever the P2P model is more similar to a chain, the network is maximally vulnerable
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heterogeneous that attacks can only be successful by controlling the top Mana nodes 
themselves. At the same time, we observe that ρ has a similar effect on both strategies 
for all values of s, with a stronger effect when s is low (so when Mana distribution is 
homogeneous). This is explained by the role of ρ, which is increasing (by a multiplicative 
factor) the tolerance for each node in terms of Mana difference to its potential neigh-
bours; this means that when the network is homogeneous, a large ρ implies longer range 
connections, while when s is very large, the randomness effect of ρ is diminished.

In Fig. 5 we present the Mana cost (as a percentage of the total Mana) that is neces-
sary to successfully split the network with 100% success, following a blind attack with 
the BB or BG strategy. We notice that the regions of the parameters space which deliver 
the worst output in terms of attack efficiency are also the ones with the largest cost of 
attack, where graphs generated form the auto-peering model resemble random regular 
graphs. The cost is monotonically decreasing in s and increasing in ρ for both the blind 
strategies.

Conclusion
In conclusion, our results point out that a malicious agent controlling just over 24% of 
the total Mana can divide their Mana into a set of nodes that will most likely act as choke 
points of the P2P network from the auto-peering network formation model, leading to 

Fig. 5  Cost in Mana (as a percentage of the total Mana in the system) of a blind attack strategy inspired by be-
tweenness strategy results (bottom plot) and greedy strategy results (upper plot) necessary to obtain a successful 
network split 100% of the times, the results are averaged over 1000 simulations for each parameters combination. 
s and ρ vary, while R = 10 and N = 100 are kept constant
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the attacker successfully splitting the P2P network and achieving damage that is close 
to the maximum possible. Such an attack would potentially end up compromising the 
operations of the IOTA network, as the attacker can control the flow of information 
between the high-Mana portion of the network and the vast majority of nodes on the 
other side. For comparison, we also apply the strategies on 1D lattices and fully rewired 
Watts-Strogatz (WS) networks, finding that the IOTA auto-peering protocol is far less 
resistant than the latter while slightly more resistant than the 1D lattice.

To conclude, we want to provide a practical comment to interpret our results: the 
auto-peering network formation model is not currently implemented on the IOTA sys-
tem; as such there is no immediate risk to the IOTA network.

The results of the present work are to be interpreted as a policy suggestion, present-
ing a potential attack vector: our results suggest that homophilic P2P network forma-
tion models may increase the attack surface of a DLT, increasing the risk of Consensus 
failure.

At the same time, from a network science perspective, we believe that the IOTA auto-
peering model provides an interesting interpretation of random assortative formation 
models, and provides an alternative bridge between k-regular Poisson graphs and 1D lat-
tices, complementing the popular Watts-Strogatz model.

Appendix
 In this appendix, for a better understanding of the strategies employed in the paper, we 
present additional details regarding the simulation results of the two full information 
strategies ("Betweenness strategy" and "Greedy strategy"), which in turn were used to 
develop the "Blind strategy."

In Fig. 6, we show the simulation results of E[D/x] for 1000 graphs, where N = 100, 
R = 10, ρ = 1, and N = 100 when applying the Greedy strategy. This figure explains the 
target selection mechanism of the Greedy strategy, which selects the target node i∗ based 
on the highest E[D/x] value among the N − 1 potential splits.

Betweenness strategy VS Greedy strategy
We then compare the consistency of the Betweenness strategy and Greedy strategy in 
terms of the nodes that are typically included in the control set. Under the same param-
eters conditions used to produce Fig. 6, our findings in Fig. 7 reveal that the greedy strat-
egy most often targets node iG = 14, whereas the betweenness strategy’s most frequently 
targeted node is iB = 12. 

To compare the attack efficiency in these two strategies, we also reframe the result 
shown in Fig. 4 of the main text by showing the ratio between the two E[D/x]. The result 
is displayed in Fig. 8, which shows that while for the large majority of parameters the 
two strategies are similarly effective, in the top-left corner (when ρ is large and s is small) 
the greedy strategy significantly outperforms the betweenness strategy. This is the same 
region of the parameters space where both strategies have the worst efficiency, as reported 
in Fig. 4 of the main text. It is also the range of parameters where the networks produced 
by the auto-peering model are maximally close to a random-regular topology. In Erdos-
Renyi graphs the betweenness information is homogeneous and the attacker gains no 
advantage from the distribution of link betweenness.



Page 14 of 19Gao et al. Applied Network Science           (2025) 10:62 

Fig. 8  The heatmap shows the ratio of E[D/x] for the Betweenness strategy over the E(D/x) for the Greedy 
strategy, effectively representing the relative efficiency of the betwenness attack with respect to the greedy strat-
egy. s and ρ varies, while R = 10 is kept constant. The reader can notice a minimum placed at s = 0.5 and 
ρ = 3.5. That is the region of the parameters’ space where the auto-peering model networks most resemble 
regular Erdos-Renyi random graphs, and the link betweenness becomes homogeneous and highly uninformative

 

Fig. 7  Histogram of frequencies F(i) with which node i is in the control set according to the Greedy and Between-
ness strategies on a sample of 1000 graphs, where ρ = 4, R = 10, N = 100, k = 4, s = 1

 

Fig. 6  The average Greedy damage over cost by targeted node i∗ = 1, . . . N − 1, where N = 100, ρ = 4, R = 10, 
and sample size is 1000 graphs
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Figure 9 provides an overview of the effect of BB (Blind-Betweenness) and BG (Blind-
Greedy) attacks. Here the heatmap indicates the minimum L, that is the count of nodes 
removed before and after the target nodes iσ  identified by the full-information strategies, 
such that the blind attack is 100% successful in splitting the simulated graphs. This mea-
sure can be intended as a measure for the robustness of the generated networks. We see 
that in BB attacks the value of L is relatively stable until it explodes in the region of the 
parameters’ space where the network is more akin to an unstructured random regular 
network, i.e. low s and high ρ. The L values of BG attacks are more gradually increasing 
when moving towards the same region of the parameters’ space. The overall take-home 
message about the robustness of the different methodologies is that BG attacks are less 
sensitive to parameter variation.

Finally, we provide a sensitivity analysis for our results with respect to the parameters R 
and N in Figs. 10 and 11. The analysis demonstrates that both network size N and param-
eter R present minimal quantitative influence on the results, and do not affect the over-
all qualitative behaviour. In Fig. 10, varying N yields consistently marginal differences in 
E[D/x] across the subplots. Similarly, Fig. 11 indicates that altering R produces negligible 
variations in E[D/x] within each subplot grid. These observations confirm the robustness 
of the outcomes to changes in both network size N and the parameter R in the additional 
peer discovery condition.

Fig. 9  Each cell’s number indicates the minimum value of L necessary to obtain a successful network split 100% 
of the times in the betweenness and greedy strategies respectively. The results are averaged over 1000 simulations 
for each parameters combination. s and ρ vary, while R = 10 is kept constant
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Fig. 10  The heatmap shows the ratio of E[D/x] for the Betweenness strategy E(D/x), where s, N and ρ varies, 
while R = 10 is kept constant. From the three heat map plots, we can see that there is no big gap for the damage 
over cost in different network sizes
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