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Introduction
Over the last few decades peer-to-peer networks (P2P) have been widely employed in
a variety of settings as a base layer for distributed systems, including the worldwide
web(Lawrence and Giles 2000), file sharing (Oram 2001), instant messaging in social
networks (Cancho et al. 2001; Heidemann et al. 2012; Masinde and Graffi 2020), and dis-
tributed computing (Tanenbaum 2007). In contrast to the client—server system, P2P net-
works stand out as more egalitarian and decentralised, where peers share data resources
with each other without resorting to a central authoritative node (Androutsellis-The-
otokis and Spinellis 2004). Particularly, the emergence of Bitcoin (Nakamoto 2008) has
brought revolutionary technology in socio-technical and socio-economic systems, and
the decentralized P2P network layer is the backbone of its Distributed Ledger Technol-
ogy (DLT).

A DLT is a consensus-driven system where digital data is replicated, shared, and syn-
chronised across multiple sites, countries, or institutions in the absence of a central
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authority, ensuring geographic decentralisation. The process that enables the reaching
of distributed agreement is denoted as the consensus mechanism. A DLT is said to be
“in consensus" when the participants of the network agree on the replicated informa-
tion contained in the distributed ledger. A blockchain is a particular example of DLT,
with Bitcoin (Nakamoto 2008), the first type of DLT to reach worldwide diffusion, using
a blockchain for transaction storing. Bitcoin also introduced the consensus mechanism
commonly known as Proof-of-Work, where users solve complex problems in order to
mint new tokens and, eventually, ensure the consensus of the system.

We can think of the P2P network in DLTs as the infrastructure that enables the dis-
tribution of data among peers, and the establishment of consensus is significantly influ-
enced by the topology of connections within the P2P network (El Ioini and Pahl 2018;
Kraner et al. 2023). The nodes in a generic P2P network are computers, and the infor-
mation they contain and exchange can be files, contracts, and transaction records, to
name a few (Wood 2014). To give an example, if we think of DLTs storing specifically
economic transactions like Bitcoin, the “miners" i.e. the peers driving consensus play the
role of clerks in a bank: they clear the systems transactions in order for the everyday Bit-
coin user to be able to execute their transactions. Their incentive in doing so is the coin-
base reward associated with each block attached to the blockchain, which also serves as
a Bitcoin minting mechanism.

P2P networks

Due to the growing adoption of cryptocurrencies, numerous researchers have exten-
sively explored their P2P networks. One of the main challenges in studying real-world
P2P networks follows from their decentralised nature: they rarely can be fully monitored
by a single agent, as each node only knows about its peers and has no reliable infor-
mation beyond them, nor are they incentivised to share this information as it may lead
to malicious attacks. To address this problem, several scholars have proposed method-
ologies for mapping these networks and conducting subsequent analyses. To cite a few,
Miller introduced “AddressProbe" to uncover the topology of the Bitcoin P2P network
(Miller et al. 2015); Deshpande et al. devised a framework to map the Bitcoin P2P net-
work, presenting an insightful snapshot of its topology (Deshpande et al. 2018); Kim et
al. developed NodeFinder, a tool to measure the Ethereum P2P network’s characteristics
and dissect the intricate DEVp2p ecosystem (Kim et al. 2018). From a different view-
point, Imtiaz et al. revealed the intermittent network connectivity displayed by Bitcoin
nodes (Imtiaz et al. 2019).

Notably, there exists research concerning attacks on P2P networks: Heilman et al.
(2015) proposed employing extremely low-rate TCP connections for network attacks,
while Nayak et al. (2016) devised a combination of mining attacks and network-level
attacks to undermine the consensus in DLT protocols. Additionally, other papers outline
a variety of technical approaches to network attacks (Apostolaki et al. 2017; Tran et al.
2020).

In P2P networks, nodes actively communicate with nearby nodes, facilitating the
exchange of information. This dynamic is crucial for maintaining consensus among
nodes and deterring potential efforts by individuals or attackers to gain complete con-
trol of the network. Despite the original intention of most DLT systems’ P2P networks
to build random, uncontrollable networks, vulnerabilities can arise when certain net-
work information is exploited (Miiller et al. 2021; Moubarak et al. 2018). To prevent such
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attacks, it is essential to have a comprehensive understanding of the inherent topology of
the empirical P2P network within a static network model, achieved by substituting tech-
nical cryptographic elements with graph-based parameters (Dobson et al. 2007; Arianos
et al. 2009; Epstein 2012; Hines et al. 2010). This approach can uncover potential weak-
nesses in the design of P2P network protocols.

Network Science offers a comprehensive tool-set to effectively model these types of
complex systems (Newman 2018; Watts and Strogatz 1998). Socio-technical systems
have been largely studied in the context of complex networks (Vespignani 2012; Watts
et al. 2005): translating such systems into network representations allows us to exploit
their topological properties in order to identify vulnerabilities and nonlinear properties.
P2P protocols have a natural network representation, where peers can be represented as
nodes, while edges embody peer connections. An obstacle to a straightforward applica-
tion of network analysis to these systems is that by design P2P protocols make the con-
nection construction unknown globally, as peers only know their local connectivity. On
the contrary, peers generally have a huge security incentive not to reveal their connec-
tions to possible malicious adversaries (Heilman et al. 2015; Singh et al. 2006). A possible
approach to this challenge is to define theoretical models that describe P2P networks,
starting from the P2P protocol rules, in order to gain further insight.

I0TA

The prevailing research naturally focuses on Bitcoin and Ethereum, both operating in
a permissionless manner. Generally, these platforms incentivise validators—i.e. the peers
tasked with verifying transactions and upholding network integrity—by issuing rewards
for their honest contribution and penalties if their actions contradict rules or network
interests. However, for platforms lacking such reward and penalty systems for peers like
IOTA,! the design of the peer connection algorithms can have a profound influence on
the consensus integrity.

IOTA has been introduced to address one of the main limitations of mainstream
blockchains, namely their scalability. Blockchain addresses the challenge of decen-
tralising digital transaction systems while enhancing data transparency and security.
However, it may encounter scalability issues when managing a large volume of trans-
actions (Khan et al. 2021). Each node is required to verify and store a complete copy
of the blockchain, leading to limited network capacity and slower transaction process-
ing; in addition to this, blockchains have an intrinsic transaction volume limit, depend-
ing on how many transactions can fit inside a block and the time that occurs between
two blocks. To tackle this, IOTA introduced the Tangle (Popov 2018), a new ledger data
structure based on a directed acyclic graph (DAG) instead of the classic linear chain.
By enabling concurrent transaction processing, the Tangle can theoretically handle
increased transaction throughput as the network expands. Another peculiarity of IOTA
is “Mana", a scarce quantity associated with a peer that would tokenize its reputation,
which has been proposed to be introduced in an upcoming upgrade (Popov et al. 2020).
Mana is intended as a Sybil protection mechanism (Douceur 2002; Cheng and Fried-
man 2005), i.e. a mechanism that sets a cost (in this case, acquiring reputation) for nodes
to participate in the consensus formation. This prevents Sybil attacks, where malicious

agents are able to manipulate consensus by the creation of a large number of nodes.

!https://www.iota.org/.
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It was proposed to use Mana within a pseudo-random P2P network formation model,
the IOTA auto-peering module (Miiller et al. 2021), which favors homophilic connec-
tions, i.e. among nodes in a close Mana range. Homophily is known in sociology as the
tendency of individuals to bind by similarities. In network theory, we observe homophily
when nodes tend to connect preferentially with nodes with similar characteristics (New-
man 2002; Kossinets and Watts 2009; Shalizi and Thomas 2011; Hasheminezhad and
Brandes 2023). Many social networks demonstrate connection mechanisms in which
each node possesses a distinct trait, such as wealth, age, or trustworthiness. Connections
in these networks arise from similarities, as observed in friendship networks (Moody
2001), collaboration networks (Newman 2001) or actor networks (Watts 1999).

Overview

In the present work, we develop a set of strategies to identify a cost-effective set of
nodes that, if controlled by a malicious actor, can functionally disconnect an homophily
induced P2P network. In order to provide an empirical analysis, we develop our strate-
gies on a real case example, the proposed IOTA P2P network formation model,? and we
additionally develop an ulterior attack strategy refined trough the simulations results.

While the proposed results are tailored for the IOTA case, we observe that with mini-
mal additional work, the same strategies apply to any kind of P2P homophilic network.

The rest of the paper is organised as follows: Section II formally describes IOTA
network formation model and the attack strategies. Section III presents the strategies
simulation’s results. Section IV concludes the paper with the result’s comments and

discussion.

Approach

Mana

The auto-peering module, as described by IOTA? generates a P2P network composed
of N nodes. Each node has a given amount of Mana and, for convenience, we will index
them from the largest endowment of Mana (identified as 1) to the lowest (identified as
N). These Mana values are publicly known to all nodes and regularly broadcast over
the P2P network itself. The distribution of Mana is the result of a dynamical process,
where nodes can accrue their endowment through fair participation in the consensus
mechanism, and their chance to do so is itself a function of their Mana endowment; in
our setting we assume Mana to be an equilibrium value, not depending on time. As is
commonly found in similar systems like Proof-of-Work mining (Campajola et al. 2022;
Makarov and Schoar 2021), Proof-of-Stake validation (Chohan 2022; Sai et al. 2021) or
any system where the growth of a quantity is proportional to its current level, the so-
called “Matthew effect” enters the picture and a Zipf’s law often emerges after sufficient
time. For this reason, we assume the Mana distribution follows a Zipf (2016) with expo-
nent s so that the Mana value of node i is

m(i) = Ki~*, 1)

where m(i) is the Mana endowment of the i-th ranked node and K is an arbitrary posi-
tive constant used for numeric stability, in our case K = 10'°.

Zhttps://github.com/iotaledger/autopeering-sim.
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Peer discovery

The protocol prescribes that each node i will add node j > 7 to its list of eligible neigh-
bours, N;, if m(i) < pm(j), where p is a given constant. If this condition is not met for at
least R other nodes, i will add the R nodes ranked after itself to the list. Any time a node
j is added to the set N;, i will be added to N; to reciprocate. Therefore, the potential
neighbours of any node i are formally identified as

M:{j:l,...,N:;m(i)<m(j)<pm(i)\/j—i|<R}. (2)

From this set, i randomly picks k elements to link to and receives k links from other
nodes in the set. The result is a random regular network with coordination number k (or
in other words where each node has degree 2k), and links appear only between nodes
with similar Mana endowment. From a modelling perspective, N, k, R, p and the Zipf’s

exponent s are the parameters needed to generate a network.

Network formation

We base our simulation on the publicly available Go code by the IOTA research team.® A
node will compile its potential neighbours’ list and cease searching for neighbours when
it has established k connections, while it accepts connection requests from other nodes
until it has received another k connections. Communication is then bidirectional along
these links, so the resulting network is undirected. As a result, each node ultimately has
2k neighbours.

Combining the aforementioned rules, we can deduce that an increase in the Zipf’s
exponent s leads to the most affluent nodes having relatively short potential neighbour
lists. This happens because of the increased inequality in the distribution of Mana among
nodes, meaning a larger Mana gap between nodes. The parameters R and p, although
not as influential, still impact the IOTA P2P network and contribute to its structure
by tuning the tolerance that the nodes have in terms of the Mana endowment of their
potential neighbours. As can be seen by the definition of Eqs. 1 and 2, when s is small
the distribution is relatively homogeneous and peers easily have many potential neigh-
bours through the range condition set by p, forming a network that is closely resembling
a regular (i.e. where all nodes have the same degree) version of the Erdés-Rényi (ER)
random network. However, as s increases, nodes that fail to find enough peers within the
Mana ratio condition can acquire sufficient potential neighbours through the alternative
condition based on R. In this situation, peers that have fewer potential neighbours can
solely establish connections with peers that are in their immediate vicinity in terms of
Mana ranking. Consequently, the network will tend towards resembling a k-regular 1D
lattice network.

To have a more intuitive understanding of the IOTA auto-peering model, we provide
a visualisation of networks generated under various s and p values in Fig. 1. As it can
be seen, when the Mana (shown in colour in log scale) is relatively homogeneous and
when the tolerance parameter p is high enough the network does not show any particu-
lar asymmetry, but in a low p scenario and whenever s is increased there is a clear ori-

entation of the network, with the nodes with the largest Mana endowment being shifted

3https://github.com/iotaledger/autopeering-sim.
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Fig. 1 Intuitive visualisation of the different topologies realised by the IOTA auto-peering formation model as a
function of p and s. The graphs are generated with fixed N = 100, R = 10, k = 4. Colour represents the Mana
endowment of nodes, in a logarithmic scale

towards one end of the network and the shape becomes more linear, following the nodes
Mana hierarchy.

Attack damage and cost

Figure 1 neatly highlights the intuition behind a potential attack strategy for this com-
munication network. When s is large and p is small, the elongated shape taken by the
network results in the creation of a choke point separating the few high Mana nodes
from the many low Mana ones.

In an eclipse attack, the attacker’s goal is to control all the victim’s incoming and out-
going communications, isolating the target from the rest of the peers and destroying the
ability of all peers to reach a consensus (Singh et al. 2006). In our work, the goal of the
attacker is to achieve control over all links separating two sub-components of the net-
work: this allows the attacker to manipulate the flow of information between the two
sub-components, gaining advantage and twisting consensus towards their needs. Since
the parameters of the network formation protocol are known to the attacker, they only
need to find an allocation of their Mana endowment across multiple Sybil nodes in a way
that allows them to control the crucial choke points.

To measure the attack efficiency, we introduce the concept of damage D and cost x.
The damage is measured in terms of the fraction of Mana the attacker is able to discon-
nect from the network: if the total Mana in the system is denoted as M = ), m(i) and

the network nodes are split into two components A and B where without loss of general-
ity > Siea mli) < ZjeB m(j), then

D(A) = m(i)/M. 3)

i€A

Clearly, the maximum attainable damage is then D, = 1/2.

To control a link, the attacker needs to control one of the endpoint nodes.
The cost of controlling a link (i, j) is defined as the minimum Mana of its end-
point nodes xz(i,j) = min(m(i),m(j)). Then, for a set of links C(A, B) which
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separates partition A from B and the set of least Mana endpoints (the “frontier")
F = {argmin(m(i), m(j)) V(i,j) € C(A, B)}, the cost of attack reads

2(C) =Y m(i). @

i€eF

The goal of the attacker is, for a given Mana cost .., they are able to commit,
to find the optimal set C such that 2(C) < &4 and z(C') > e, VC” such that
D[z(C")] = D[z(C)].

In the following, we propose two simplified strategies for the attacker: a “Betweenness"
strategy and a “Greedy" strategy, which both require full information about the P2P
structure, and a derived “Blind" strategy that only requires the more realistic assumption
of knowledge of the parameters used to generate the network.

Attack strategies

To investigate the security of the IOTA P2P network, we develop two attack strate-
gies: the “Betweenness" strategy and the “Greedy" strategy. To quantify the impact of
the attack, we introduced in the previous section the concepts of “Damage" and “Cost",
whose ratio we employ as a measure of attack efficiency.

Although both strategies rely on complete topological information about the network,
it is important to note that in real-world scenarios the specific P2P network topology is
not publicly accessible. Therefore, to address this limitation, we also propose a “Blind"
strategy. This strategy is inspired by the results of the simulations of the “Betweenness"
and “Greedy" strategies, but it is executed assuming the attacker has no knowledge of
the actual topology of the P2P network except for the knowledge of the Mana distribu-
tion and the IOTA auto-peering network formation model parameters, which are public
information available to all IOTA nodes.

Betweenness strategy

The betweenness strategy, as the name suggests, relies on edge betweenness central-
ity to identify the optimal cut. Similar to node betweenness, edge betweenness serves
as a metric that quantifies the fraction of shortest paths passing through a specific edge
between any two nodes within a network (Freeman 1977). Inspired by the Girvan-
Newman algorithm for community detection (Girvan and Newman 2002), the strategy
prescribes removing edges from the network starting from the ones with the highest
betweenness centrality. However, unlike the community detection process, in this sce-
nario, the removal of the top betweenness links is halted once the network is divided
into two parts. It is crucial to note that after each removal of the top betweenness link,
the link betweenness is recalculated for the entire network. The attacker proceeds itera-
tively, removing the top betweenness links until the original network is fragmented into
two distinct sub-networks, denoted as A and B. The removed links constitute the associ-
ated cut C, and the attack damage D is the total Mana associated to the nodes in the sub-
network deriving from cut C, which has the smaller total Mana share.

Greedy strategy

In the literature, we can find many different instances of network partitioning algo-
rithms, such as spectral partitioning (Fiedler 1973), clustering coefficient (Saraméki
et al. 2007), community detection (Yang et al. 2016) or heuristic based partitioning (Ker-
nighan and Lin 1970). However, none of these algorithms takes advantage of node
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attributes, such as the Mana endowment. Here, we introduce a simple method to split
the auto-peering network according to the Mana ranking information and the network
topological information, which we call the “Greedy” strategy.

The Greedy strategy is much more simplistic than the Betwenness one: the attacker
splits the nodes into two sets A = {i <i*}, and B = {i > i*} for each possible target
node +* = 1,... N — 1. It follows that the cut is the set of links connecting A and B. For
each ¢* we calculate the cost of the split and choose the i* that maximises damage per
unit cost to run the attack.

Blind strategy

In practical situations, the specific topology of the P2P network is not available, as
nodes do not have a full picture of all connections in the network but only know their
own peers. A blind strategy, one that does not require full knowledge about the network
topology, is therefore needed. We design a blind strategy that is informed by the results
obtained with the Betweenness and Greedy strategies, namely measuring the frequency
with which a specific node, given the network formation parameters, ends up being in
the control set identified by the full-information strategy. We then take the most fre-
quently targeted node i,, where o € { B, G} (for Betweenness and Greedy, respectively)
and define the control set for the strategy Cping as all nodes within a range L in the Mana

ranking from node i, i.e.
Cblind(U) - {Z : |ZO' - 7’| < L} (5)

The attacker is assumed to take control of this set of nodes and we verify whether this
was successful to split the network and quantify the attack efficiency according to our
Damage and Cost measures.

Results

Simulation results for full information attacks

We explore the parameter space and find that the resulting network structure is most
sensitive to the value of Zipf’s exponent s, which describes Mana heterogeneity (see
Sect. 4.3). We fix all other parameters to reasonable values N = 100, R = 10, p =4,
k = 4, and focus on the attack vulnerability varying s from 0.5 to 1.5 at intervals of 0.1.
For each set of parameters, we generate a sample of 1000 networks and apply our attack
strategies, measuring the damage over cost ratio D/x.

In Fig. 2, we present the results for the average damage over cost E[D/z] over 1000
simulations and across varying values of s for the full information attacks. We observe
that both the Betweenness and Greedy strategies, respectively represented by the blue
and orange violins, attain maximum efficiency when s ~ 1. Additionally, we show the
result of applying the Betweenness strategy to a random-regular network where Mana
does not have a role in the formation of connections, i.e. the fully randomised Watts-
Strogatz (WS) model of small-world networks (Watts and Strogatz 1998) with coordi-
nation number k. Compared to the auto-peering network formation model, the attack
efficiency in the WS model appears to be much closer to 0 in the vast majority of cases.
The result in Fig. 2 shows that in specific Mana distribution conditions, the attacker can
achieve relatively large damage to the network with a small cost and that this vulnerabil-
ity is induced by the presence of Mana in the network formation protocol. Both strate-
gies achieve maximal D/x =~ 3.5 for s = 1: this is particularly relevant because Zipf laws
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Fig. 2 The average damage over cost ratio by attack strategy and underlying network formation model.
Each auto-peering generated network has N = 100, p = 4, R = 10, k = 4. WS generated networks have
N =100, k = 4, p = 1, the data size is 1000 graphs
with exponent in the close range around 1 have been observed to describe wealth distri-
bution in cryptocurrency token holdings in the literature (Kusmierz and Overko 2022).

Next, we compare the frequency of endpoint removals between the betweenness strat-
egy and the greedy strategy under the conditions of p = 4, R = 10, and N = 100, based
on a sample of 1000 graphs. Our findings, which for the sake of conciseness we report
in Figs. 7 and 8 in the Appendix, reveal that the greedy strategy, which aims to optimise
the D/x ratio, typically removes node ¢ = 14 as the maximum frequency endpoint. On
the other hand, for the betweenness strategy, the maximum frequency endpoint that is
removed is node ¢ = 12. We find that in the case of s = 1, the endpoints selected with
maximum frequency F by both the “betweenness” strategy and the “greedy" strategy are
typically in the same range, albeit not precisely the same nodes.

We are going to use the maximum frequency endpoints hereby identified to inform
the blind attacks analysed in the next section.

Simulation results for blind attacks

A pitfall of the two strategies above is that they both require the attacker to have per-
fect knowledge of the network structure, which is unrealistic. A more realistic relaxation
of this assumption is that the attacker is only aware of the network formation model
parameters. Given such information, the attacker can reproduce the above results and
inform a “Blind" strategy, aiming to control the nodes that are most often needed to per-
form the split. In particular, for the specific case of N = 100, we take the “target” nodes
ip = 12 and i = 14 (for the Betweenness and Greedy strategy respectively) and define
the parameter L such that the blind attacker controls nodes Cpjina (o) for o € {B, G}. We
then measure the D/x ratio over 1000 simulated networks along with the success ratio
p, i.e. the fraction of simulations where the network is successfully split by the blind
attacker, and show the results in Fig. 3 as a function of L.

The red and yellow lines show E[D/x], the average damage over cost attack efficiency
associated with a Blind strategy informed either by the Greedy (red, “BG") or Between-
ness (yellow, “BB") results, averaged over a sample of 1000 networks. The blue and green
lines track the attack success rate p using the target node from the “Greedy" strategy
(blue line) and from the “Betweenness" strategy (green line).

As should be expected, for low choices of L the strategy is unsuccessful in splitting
the network. The Blind-Betweenness (BB) strategy reaches a peak average efficiency of
E[D/xz] = 1.75 for L} =7, corresponding to 100% attack success. On the other hand,
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Fig. 3 Success ratio p (on the right y-axis) and average damage E[D/z] (on the left y-axis) per unit cost of a Blind
strategy informed by the Greedy (“BG") and Betweenness (“BB") strategies. The results are averaged over a sample
of 1000 simulated networks with N = 100, p = 4, R = 10 and s = 1 while the error bars are 95% confidence
intervals. As comparisons, we also show the success ratio p on an equivalent 1D lattice and a fully randomised
regular WS-type network in the inset

the Blind-Greedy (BG) strategy reaches peak efficiency for L = 8: while requiring more
nodes to be controlled, the efficiency is larger on average (E[D/x] = 2). Summarising,
both strategies allow the attacker to successfully split the network from a low informa-
tion context. Based on our simulations the BG strategy attains a better efficiency, but we
observe that we did not assign an additional cost to the number of controlled nodes, we
only considered the Mana required to control the node: the number of nodes to control
may affect the cost of an attack in a real-world situation. Interestingly, both strategies
at their peak efficiency L command the same cost of around 24% of all the Mana in the
system, as shown in Fig. 5. This means that an attacker controlling 24% of the system’s
Mana would be able to identify a distribution strategy to control the choke points of the
P2P network 100% of the times.

To compare the severity of the attacks with some baseline scenarios, we also run the
same attacks on a 1D lattice with the same coordination number & as the auto-peering
network and on a fully randomised Watts-Strogatz (WS) network model, i.e. a random-
regular network of degree 2k. For the one-dimensional lattice, for which we show the
success ratio with the cyan triangles in Fig. 3, it is straightforward to see that the network
is always split whenever L > k, where in this case £ = 4. Compared with a 1D k-regular
lattice, the auto-peering networks are more resilient. This makes perfect sense: 1D lattice
are completely predictable networks, where the attacker does not need to acquire infor-
mation to predict the topology of the network. On the other extreme the WS networks,
being fully randomised, are much more resistant to attacks and the networks are almost
never successfully split unless L is chosen to be of the same order of magnitude as N. We
show this result in the inset of Fig. 3.

This result shows clearly that the IOTA auto-peering protocol produces networks that
are in between the fully deterministic 1D lattice and a fully random regular network.
Depending on the parameter values, the Mana-based connection rules can severely
restrict the options for nodes to connect between themselves, resulting in the loss of the
security provided by randomness and consequently in predictable network structures
that can be exploited.
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Strategy robustness

In order to verify the robustness of our results, we test the proposed strategies by simu-
lating the model on a realistic range in the parameters’ space. We choose p € [1.5,4] and
s € [0.5,1.5] as they should provide a comprehensive overview of realistic parameters
choices.

We find that, as long as N is large enough compared to k, varying the number of nodes
has no particular effect on the results. This is mostly due to the fact that the Mana is dis-
tributed according to Zipf’s law, and so most of the Mana is concentrated in the first few
nodes in the ranking regardless. Similarly, we do not find effects of particular interest
when changing R within reasonable ranges. For the sake of space, we report additional
results testing N and R dependence in Figs. 10 and 11 (see Appendix). For each combina-
tion of parameters, the results were averaged over a sample of 1000 graphs generated by
the auto-peering network formation model. On the other hand, we find an interesting
interplay between the p and s parameters, which we discuss in the present section.

In Fig. 4 we show the expected damage over cost ratio across different parameter com-
binations for the two informed strategies. While the performances of the two strategies
are slightly different, we do observe a similar trend: both attain maximum success (in
terms of damage over cost) for low p and for s between 0.5 and 1, i.e. when the Mana

)«

distribution is sufficiently heterogeneous compared to nodes” “tolerance” p, but not so

Betweenness, R =10

3.78 3.97 3.53 3.04 2.72
4.06 4.16 3.73 3.24 2.85
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4.06 3.66

4.32 3.87

4.85 4.27

5.64 4.96

5.94

05 06 0.7 08 09 1 1.1 12 13 14 15
s

Fig. 4 Heatmaps of the expected damage over cost, E[D/x], plotted over p and s, for the betweenness (up plot)
and greedy (down plot) strategy. R = 10 is kept constant. The maximum for each fixed s is when p is minimal,
meaning that whenever the P2P model is more similar to a chain, the network is maximally vulnerable
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heterogeneous that attacks can only be successful by controlling the top Mana nodes
themselves. At the same time, we observe that p has a similar effect on both strategies
for all values of s, with a stronger effect when s is low (so when Mana distribution is
homogeneous). This is explained by the role of p, which is increasing (by a multiplicative
factor) the tolerance for each node in terms of Mana difference to its potential neigh-
bours; this means that when the network is homogeneous, a large p implies longer range
connections, while when s is very large, the randomness effect of p is diminished.

In Fig. 5 we present the Mana cost (as a percentage of the total Mana) that is neces-
sary to successfully split the network with 100% success, following a blind attack with
the BB or BG strategy. We notice that the regions of the parameters space which deliver
the worst output in terms of attack efficiency are also the ones with the largest cost of
attack, where graphs generated form the auto-peering model resemble random regular
graphs. The cost is monotonically decreasing in s and increasing in p for both the blind
strategies.

Conclusion
In conclusion, our results point out that a malicious agent controlling just over 24% of
the total Mana can divide their Mana into a set of nodes that will most likely act as choke

points of the P2P network from the auto-peering network formation model, leading to
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Fig. 5 Cost in Mana (as a percentage of the total Mana in the system) of a blind attack strategy inspired by be-
tweenness strategy results (bottom plot) and greedy strategy results (upper plot) necessary to obtain a successful
network split 100% of the times, the results are averaged over 1000 simulations for each parameters combination.
sand pvary, while R = 10 and N = 100 are kept constant
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the attacker successfully splitting the P2P network and achieving damage that is close
to the maximum possible. Such an attack would potentially end up compromising the
operations of the IOTA network, as the attacker can control the flow of information
between the high-Mana portion of the network and the vast majority of nodes on the
other side. For comparison, we also apply the strategies on 1D lattices and fully rewired
Watts-Strogatz (WS) networks, finding that the IOTA auto-peering protocol is far less
resistant than the latter while slightly more resistant than the 1D lattice.

To conclude, we want to provide a practical comment to interpret our results: the
auto-peering network formation model is not currently implemented on the IOTA sys-
tem; as such there is no immediate risk to the IOTA network.

The results of the present work are to be interpreted as a policy suggestion, present-
ing a potential attack vector: our results suggest that homophilic P2P network forma-
tion models may increase the attack surface of a DLT, increasing the risk of Consensus
failure.

At the same time, from a network science perspective, we believe that the IOTA auto-
peering model provides an interesting interpretation of random assortative formation
models, and provides an alternative bridge between k-regular Poisson graphs and 1D lat-
tices, complementing the popular Watts-Strogatz model.

Appendix

In this appendix, for a better understanding of the strategies employed in the paper, we
present additional details regarding the simulation results of the two full information
strategies ("Betweenness strategy" and "Greedy strategy"), which in turn were used to
develop the "Blind strategy."

In Fig. 6, we show the simulation results of E[D/x] for 1000 graphs, where N = 100,
R =10, p =1, and NV = 100 when applying the Greedy strategy. This figure explains the
target selection mechanism of the Greedy strategy, which selects the target node i* based
on the highest E£[D/x] value among the N — 1 potential splits.

Betweenness strategy VS Greedy strategy

We then compare the consistency of the Betweenness strategy and Greedy strategy in
terms of the nodes that are typically included in the control set. Under the same param-
eters conditions used to produce Fig. 6, our findings in Fig. 7 reveal that the greedy strat-
egy most often targets node i = 14, whereas the betweenness strategy’s most frequently
targeted node is ip = 12.

To compare the attack efficiency in these two strategies, we also reframe the result
shown in Fig. 4 of the main text by showing the ratio between the two E[D/x]. The result
is displayed in Fig. 8, which shows that while for the large majority of parameters the
two strategies are similarly effective, in the top-left corner (when p is large and s is small)
the greedy strategy significantly outperforms the betweenness strategy. This is the same
region of the parameters space where both strategies have the worst efficiency, as reported
in Fig. 4 of the main text. It is also the range of parameters where the networks produced
by the auto-peering model are maximally close to a random-regular topology. In Erdos-
Renyi graphs the betweenness information is homogeneous and the attacker gains no
advantage from the distribution of link betweenness.
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Fig.6 Theaverage Greedy damage over cost by targetednodes* = 1,... N — 1,whereN=100,p = 4, R = 10,
and sample size is 1000 graphs

Greedy Betweenness
1000 1000
800 A 800 A
600 - 600 -
w w
400 A 4004
200 A 200 A
04 0L i
0 20 40 60 80 100 0 20 40 60 80 100
Node ID Node ID

Fig. 7 Histogram of frequencies F(i) with which node i is in the control set according to the Greedy and Between-
ness strategies on a sample of 1000 graphs, where p = 4, R =10, N =100,k =4,s =1
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Fig. 8 The heatmap shows the ratio of E[D/z] for the Betweenness strategy over the E(D/z) for the Greedy
strategy, effectively representing the relative efficiency of the betwenness attack with respect to the greedy strat-
egy. s and p varies, while R = 10 is kept constant. The reader can notice a minimum placed at s = 0.5 and
p = 3.5. That is the region of the parameters’ space where the auto-peering model networks most resemble
regular Erdos-Renyi random graphs, and the link betweenness becomes homogeneous and highly uninformative
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Figure 9 provides an overview of the effect of BB (Blind-Betweenness) and BG (Blind-
Greedy) attacks. Here the heatmap indicates the minimum Z, that is the count of nodes
removed before and after the target nodes i, identified by the full-information strategies,
such that the blind attack is 100% successful in splitting the simulated graphs. This mea-
sure can be intended as a measure for the robustness of the generated networks. We see
that in BB attacks the value of L is relatively stable until it explodes in the region of the
parameters’ space where the network is more akin to an unstructured random regular
network, i.e. low s and high p. The L values of BG attacks are more gradually increasing
when moving towards the same region of the parameters’ space. The overall take-home
message about the robustness of the different methodologies is that BG attacks are less
sensitive to parameter variation.

Finally, we provide a sensitivity analysis for our results with respect to the parameters R
and N in Figs. 10 and 11. The analysis demonstrates that both network size N and param-
eter R present minimal quantitative influence on the results, and do not affect the over-
all qualitative behaviour. In Fig. 10, varying N yields consistently marginal differences in
E[D/x] across the subplots. Similarly, Fig. 11 indicates that altering R produces negligible
variations in E[D/x] within each subplot grid. These observations confirm the robustness
of the outcomes to changes in both network size N and the parameter R in the additional
peer discovery condition.

Betweenness, R =10

50

40

w
o

N
o
Remove set L

10

Fig. 9 Each cell's number indicates the minimum value of L necessary to obtain a successful network split 100%
of the times in the betweenness and greedy strategies respectively. The results are averaged over 1000 simulations
for each parameters combination. s and p vary, while R = 10 is kept constant
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Fig. 10 The heatmap shows the ratio of E[D/z] for the Betweenness strategy E(D/x), where s, N and p varies,
while R = 10 is kept constant. From the three heat map plots, we can see that there is no big gap for the damage
over cost in different network sizes
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Fig. 11 The heatmap shows the ratio of E[D/z] for the Betweenness strategy over the E(D/z) for the Greedy
strategy varying s, R and p, where N = 100
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BG Blind-greedy
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