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 a b s t r a c t

The primary objective of this study is to determine how global shocks and commodity-specific 
geographical factors interact to shape the structure, resilience, and vulnerability of the dry bulk 
shipping network. To do so, we examine the global dry bulk shipping network and its coal, grain, 
and iron ore sub-networks from 2015 to 2023 using micro-level trade flow data. We find that 
these networks are highly concentrated around a small number of key export ports, with heavy-
tailed degree distributions and strong core-periphery structures. However, the impact of external 
shocks is sharply commodity-specific: the COVID-19 pandemic triggered a major reorganisation 
of coal trade communities, while the war in Ukraine fragmented the grain network and drastically 
reduced Ukraine’s exports. In contrast, iron ore trade patterns remained relatively stable during 
the same period. Small-world features are present mainly within the densely interconnected core 
of each commodity network, where bi-directional trades are observed, while most peripheral 
ports function as either importers or exporters only. These findings clarify how the interplay 
of geography, trade imbalance, and global disruptions shapes network structure and resilience, 
offering insights for supply chain risk management in maritime logistics.

1.  Introduction

Dry bulk shipping, a segment of tramp shipping where vessels operate without fixed schedules or routes, accounts for approx-
imately 80% of global seaborne trade in volume (UNCTAD, 2019). It serves as the backbone of the world economy through the 
transport of essential raw materials. Despite its scale and significance, the structure and disruption dynamics of dry bulk shipping 
networks remain understudied, especially in comparison to container (liner) shipping. This gap limits the ability of policymakers, 
industry, port authorities, and commodity traders to anticipate, understand, and manage network risks and disruptions.

Unlike liner shipping which operates on regular published schedules, dry bulk shipping is shaped by irregular demand-driven 
movements, a diverse array of cargoes, and market segmentation. The characteristics of liner shipping, along with its network’s cen-
tralised logistic system, and scale-free properties, have made it more appealing to researchers. In comparison, the inherent variability 
in trade flows make dry bulk networks more complex to analyse using conventional network science approaches (Ducruet, 2013, 
2020).

Thus, most existing research has focused on container networks which benefit from standardised schedules and richer data. By 
contrast, dry bulk networks are complex, segmented, and governed by demand for specific commodities, as their routes are irregular, 
highly sensitive to geopolitical and market shocks, and evolve with global supply/demand cycles. Consequently, although dry bulk 
shipping plays a critical role in international trade and seaborne transportation, it has received far less academic attention than the 
liner shipping sector.
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We address these gaps by analysing global dry bulk shipping as a series of trade flow networks observed over time, using micro-
level data from 2015 to 2023. In addition to the full dry bulk network, we also focus on its coal, grain, and iron ore sub-networks 
that together account for over 60% of dry-bulk volume, and examine how network structure changes during periods of major global 
disruption. The chosen period combines the most complete dataset available with coverage of unprecedented geopolitical and market 
shocks.

The main objective of this study is to reveal how major external shocks reshape the structure and resilience of the global dry 
bulk shipping network and its key commodity sub-networks. The static analysis characterises the organisation of each commodity 
network, highlighting both the similarities and contrasts among coal, grain, and iron-ore networks and the broader aggregate system. 
This baseline explains why shocks produce distinct structural responses across commodity networks. The temporal analysis then 
pinpoints when major structural breaks occurred and how community configurations were reorganised during shocks such as COVID-
19 and the war in Ukraine.

To our knowledge, this is the first study to examine global dry-bulk shipping networks from a trade flow perspective. Most 
previous studies rely on ship movement or port-call data, which lack commodity-specific detail. Our approach directly analyses trade 
flow networks using micro-level cargo data, capturing the underlying patterns of commodity movement and demand that shape the 
evolution of the dry bulk system. This granularity enables data-driven analysis of how network properties respond to disruption and 
how vulnerability differs across commodities. These insights have direct value for stakeholders seeking to manage operational risk 
and strengthen the resilience of maritime logistics.

The remainder of the paper is organised as follows: Section 2 reviews the relevant literature; Section 3 describes the dataset and 
its limitations; Section 4 outlines the network methods; Section 5 presents the empirical results; and Section 6 concludes.

2.  Literature review

Recent advances in tracking and mapping technologies, particularly those outlined in studies on big data in maritime networks 
(Ducruet, 2017a), have transformed the analysis of ship trajectories and the spatial structure of maritime transport networks. Much of 
the existing literature has concentrated on liner shipping networks (Ducruet et al., 2010a,b; Ducruet and Notteboom, 2012; Ducruet 
et al., 2020; Laxe et al., 2012; Tsiotas and Polyzos, 2015; Wang et al., 2016; Calatayud et al., 2017a,b; Liu et al., 2018; Pan et al., 2019; 
Cheung et al., 2020; Bai et al., 2023; Kanrak et al., 2019; Wei et al., 2025; Williams and Del Genio, 2014), which use network methods 
to provide valuable insights into hierarchical structure, with implications for network’s connectivity, vulnerability and efficiency as 
well as trade patterns.

In contrast, tramp shipping, including oil tankers and dry bulk carriers, operates with much greater variability and unpredictability, 
akin to a taxi service in its responsiveness to real-time demand (Kaluza et al., 2010; Brancaccio et al., 2020). Far fewer studies focus 
specifically on dry bulk networks (notable exceptions include Kaluza et al., 2010; Ducruet, 2013; Cremaschini et al., 2024; Wei et al., 
2025). Of these, Kaluza et al. (2010) identified how dry bulk carriers exhibit much greater randomness in their movement patterns 
than container ships and oil tankers. Furthermore, Ducruet (2013) highlights the importance of network diversity, port centrality, 
and the impact of the combination of various cargo types on network resilience and vulnerability. These studies use concepts such 
as multi-sector shipping networks to analyse relationships between flows of different cargo types, showing that ports handling more 
diversified commodities tend to be more central and resilient.

Recent work in tramp shipping by Cremaschini et al. (2024) and Wei et al. (2025) focus on the analysis of disruption and resilience 
in dry bulk contexts. Cremaschini et al. (2024) examine the structural disruption of Ukraine’s maritime trade following the war in the 
region, showing how geopolitical conflict reshapes network connectivity, port hierarchy, and trade resilience. As an example of such 
patterns, they document a collapse in hub centrality and a growing reliance on external transshipment hubs, particularly in Turkey 
and Romania, which they term “hub dependence”. While this offers valuable insight into the geopolitical contingencies of maritime 
logistics, the analysis is regional in scope and does not assess global impacts.

Partially addressing this gap, Wei et al. (2025) study the resilience of the global grain trade network during the COVID-19 
pandemic, using AIS data combined with trade data, to compare networks from 2020 to 2021. Applying a multidimensional resilience 
framework, they distinguish four phases of network response, which consist of reliability, vulnerability, robustness, and recoverability. 
Subsequently they find that recovery trajectories vary by region. However, despite this emphasis on regional diversity, due to the 
scope of its data, the study does not account for the profound structural changes surrounding the subsequent the war in Ukraine. 
Given continued geopolitical instability, and that the war in Ukraine impacted particularly on grain trade, there remains a need for 
data-driven methods that identify and interpret commodity-specific structural shifts in real time.

While the above two studies compare networks before and after major shocks, most existing studies do not incorporate temporal 
analysis of global trade networks. Although recent advances in dynamic and multilayered network modelling have expanded pos-
sibilities in maritime research (Ducruet, 2017b), such approaches have not been widely applied. Our study addresses this gap by 
capturing both dynamic and commodity-specific variations in trade flows.

In addition to the lack of temporal analysis, existing studies typically rely on vessel movement or port call data, which record port 
call sequences but not origin-destination relationships for each commodity. This is a critical limitation: dry bulk shipping operates 
through distinct commodity sub-networks, each with unique geographical patterns and logistics. These networks are driven by demand 
for physical cargo (Stopford, 2008), not simply vessel movement, so commodity-specific flows cannot be precisely captured without 
actual trade flow data. Our study, along with Brancaccio et al. (2020), addresses this limitation by using micro-level commodity-
specific trade flow data, enabling the analysis of laden voyages by commodity and clarifying how demand-driven flows shape network 
dynamics. By doing this, we can directly observe how external shocks reshape network structure and connectivity. Our approach 
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identifies the timing of structural breaks, as well as the differentiated impacts of shocks on coal, grain, and iron ore networks. These 
results provide insights for resilience planning and commercial decision-making, addressing both academic developments and industry 
needs.

Finally, the focus on micro-level shipping data distinguishes this study from other network-based research that relies mainly on 
macro-level trade data and often overlooks the specific dynamics revealed by actual ship movements (Iapadre and Tajoli, 2014; 
Klimek et al., 2015; Kiyota, 2022; Wei et al., 2022; Yin et al., 2024; Zhang et al., 2024). In contrast, our approach aligns with 
maritime economics, which emphasises “the physical quantity of cargo” over trade value and prioritises geographical regions rather 
than political states (Stopford, 2008). Instead of ranking export or import regions, we adopt a commodity-specific network perspective 
to analyse dry bulk shipping system from the demand side.

In summary, the literature reveals three main gaps: (1) a historical focus on container shipping over dry bulk trade flows; (2) 
insufficient attention to the demand-derived nature of the dry bulk shipping network structure; most studies do not capture the 
actual trade relationships that underpin the demand-driven seaborne transportation system; and (3) a lack of commodity-specific and 
temporal analysis of network changes under major external shocks. Our study addresses these gaps by using micro-level, commodity-
disaggregated trade flow data to examine structural dynamics in global dry bulk shipping networks.

3.  Data

For our analysis of dry bulk shipping networks, we use the Oceanbolt Maritime Market Intelligence dataset provided by Veson 
Nautical. This source offers comprehensive coverage of global dry bulk shipping activity from January 2015 to December 2023, 
drawing on AIS-derived records of vessel movements and trade flows.1 The dataset contains detailed information on vessel identity, 
size, commodity types, timestamps, and the geographic coordinates for loading and discharging events, enabling robust analysis of 
both the spatial and temporal dimensions of trade flows. A sample of the full dataset is provided in Supplemental Materials A.

Prior to analysis, we performed critical data cleaning to ensure reliability. Voyages with unknown load or discharge ports were 
excluded, and non-trade-related flows such as “Transit” and “Yard” were removed. After these steps, the final dataset comprised over 
16,000 ships and 1.67 million trade flows spanning 21 commodity categories.

Coal, grain, and iron ore (labelled major bulk) together account for 64% of total seaborne dry bulk trade volume (measured in 
metric tonnes) over the study period, yet represent only 32% of all trade flows. This difference reflects the operational realities of 
bulk shipping, where major bulks are shipped in larger quantities per voyage, while minor bulks account for a greater number of 
smaller, more fragmented flows.

A key limitation of the dataset is the relatively large share of voyages with unknown cargo types (see Table 7 in Supplementary 
Material A), which reflects the common challenge of incomplete cargo reporting in maritime data. While we acknowledge this 
limitation, the dataset remains sufficiently large and robust for structural analysis. Notably, coal, iron ore, and grain together account 
for 64% of the total observed trade volume (34.7 out of 53.9 billion GT), confirming their dominance in the network despite the 
presence of unknown cargo flows.

The choice of this dataset enables commodity-specific network construction and temporal analysis at high resolution. This granu-
larity allows us to examine differences in the structure and evolution of trade flows for each major dry bulk commodity, providing the 
foundation for the network analysis in subsequent sections. For each major commodity (grain, coal, and iron ore), we create separate 
sub-networks using the same port set. Using quarterly time windows (reflecting an average voyage of approximately 35 days) ensures 
well-connected snapshots for structural analysis and allows us to capture the evolution of network properties over time. Summary 
statistics for trade flow durations are provided in the Supplementary Material A.

Advantages of the trade flow dataset. Unlike standard port call data, trade flow data records only laden legs between load and discharge 
ports, thus directly representing existing trade relationships and excluding ballast legs. This approach avoids overestimating the trade 
flow network connectivity and allows direct integration with freight rate data, since each network edge corresponds to an economic 
transaction for a specific cargo type.

Additionally, trade flow data provides a more accurate representation of network centrality and clustering, particularly for voyages 
with multiple loads or discharges, as it captures actual cargo flows from the perspective of trade origin to destination. Further technical 
details and illustrative figures are provided in Supplementary Material A.

4.  Methods

This section outlines the network analysis framework and statistical approaches to examine the structure and evolution of the 
global dry bulk trade flow shipping network and its key commodity sub-networks.

4.1.  Network representation and construction

The dry bulk shipping network is constructed from micro-level trade flow data covering the period 2015–2023. In this framework, 
each node represents a seaport included in the dataset, and directed edges are established between ports whenever a trade flow is 

1 A trade flow here refers to a single laden leg between a load and discharge port, as distinct from a full vessel voyage, which may comprise 
multiple trade flows.
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recorded from a load port to a discharge port. The resulting network is represented by an adjacency matrix, where the element 𝐴𝑖𝑗 is 
assigned a value of 1 if there is a trade flow from port 𝑖 to port 𝑗, and 0 otherwise.

To account for the intensity of shipping activity, edge weights are incorporated based on the frequency of voyages, cargo volume, 
or deadweight tonnage associated with each connection. Both an aggregate network (encompassing all cargo types of trade flows in 
the data sample) and separate commodity-specific sub-networks (for coal, grain, and iron ore) are generated, allowing for analysis at 
commodity level.

For temporal analysis, the data are organised into a sequence of quarterly network snapshots. Each snapshot aggregates all trade 
flows occurring within a given quarter, providing a series of static networks through which structural changes and disruptions can 
be traced over time. As noted by Holme and Saramäki (2012) and Guinand and Pigné (2015), the snapshot method is widely used in 
empirical studies, including those in maritime and transport network analysis. Although such representations are static, the quarterly 
resolution provides sufficient granularity to capture key structural transitions in the dry bulk network over eight years, particularly in 
response to major events such as the COVID-19 pandemic and the war in Ukraine. Nevertheless, it should be acknowledged that the 
chosen window size may influence sensitivity to rapid, short-term changes, and future research could explore the utility of alternative 
temporal resolutions or event-based analyses as higher-frequency data become available.

4.2.  Network properties and benchmarking

In general, networks are measured by various metrics. At the node level, degree centrality and strength centrality which incorpo-
rates edge weights, capture the connectivity and trade volume associated with each port. Analysis of degree distributions provides 
insight into network heterogeneity and the presence of ports with unusually high connectivity. In real-world networks, a power-law 
degree distribution is often associated with scale-free networks, where a small number of nodes are highly connected while the ma-
jority have few links (Barabási and Albert, 1999). However, as noted by Ducruet (2020), maritime transport networks are spatially 
embedded and constrained by geography; interpretation of degree distributions is therefore made with caution in light of these factors. 
Nevertheless, analysis of degree distribution remains relevant for understanding whether dry bulk trade is centralised, fragmented, 
or balanced across commodities.

At the global level, the average shortest path length (ASPL) measures the mean of the shortest paths between all pairs of ports 
and is used to assess network efficiency. The clustering coefficient, or transitivity, indicates the tendency for triadic closure among 
ports, capturing the likelihood that a port’s neighbours are themselves interconnected. A short ASPL suggests that most ports can be 
reached with relatively few connections, while a high clustering coefficient implies significant local interconnectedness. Together, 
these metrics are used to evaluate the potential presence of a small-world property, where networks combine short path lengths with 
high clustering.

Here, the degree assortativity coefficient is computed to quantify whether ports with similar connectivity tend to trade with each 
other, with values ranging from –1 (disassortative) to +1 (assortative), akin to a correlation coefficient. This metric characterises the 
structural organisation of the network with respect to connectivity patterns.

To assess the statistical significance of observed structural features, we implement a null model by generating randomised networks 
that preserve the observed degree sequence. This configuration model serves as a baseline for comparison of metrics such as clustering 
coefficient and ASPL. We further adopt the benchmarking framework of Humphries and Gurney (2008) and Telesford et al. (2011), 
computing the 𝜎 and 𝜔 indices to quantify the degree of small-world-ness:

𝜎 =
𝐶∕𝐶rand
𝐿∕𝐿rand

(1)

𝜔 =
𝐿rand
𝐿

− 𝐶
𝐶latt

(2)

where 𝐶 is the observed clustering coefficient, 𝐿 is the observed average path length, 𝐶rand and 𝐿rand are values from an equivalent 
random network, and 𝐶latt denotes the clustering coefficient for a lattice network.

As argued by Telesford et al. (2011), it is insufficient to assess small-world structure by comparing 𝐶 and 𝐿 to their random 
equivalents alone, since 𝜎 is highly sensitive to small values of 𝐶rand. Instead, it is important to identify where a network lies along the 
spectrum between lattices and random graphs. Lattices exhibit high clustering but long path lengths, whereas random graphs achieve 
very short path lengths but small clustering. Small-world networks combine both properties: they preserve the high clustering typical 
of lattices while also achieving the short average path lengths found in random networks, meaning that ports form tight trading 
groups but are still easily reachable across the wider network.

In practice, 𝜎 > 1 and 𝜔 ≈ 0 indicate small-world organisation (𝐶 ≫ 𝐶rand, 𝐿 ≈ 𝐿rand). Values of 𝜔 > 0 suggest random-like struc-
ture, while 𝜔 < 0 indicates lattice-like organisation. This benchmarking ensures that clustering and path length are interpreted relative 
to appropriate null expectations, rather than in isolation.

4.3.  Community structure analysis

Community structure is a key topological property of complex networks, describing the organisation of nodes into groups with 
dense internal connections and sparser links between groups (Pan et al., 2019). In trade flow networks, community structure analysis 
reveals historical and persistent relationships between countries or regions (Yin et al., 2024). This is particularly relevant in maritime 
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shipping, where global seaborne trade is shaped by physical and geopolitical constraints (Stopford, 2008), and the configuration of 
trade communities may shift significantly in response to exogenous shocks.

In this study, community detection is used to identify groups of ports that are more densely interconnected than with the rest of 
the network. This approach uncovers how global dry bulk trade is segmented into commodity- or region-based blocs, and enables 
the tracking of their evolution over time. In particular, it provides insight into the resilience and vulnerability of supply chains at the 
community level, especially during disruptions such as the COVID-19 pandemic or the war in Ukraine.

Identifying and understanding large-scale patterns in network connectivity is challenging, particularly when the network is large 
and its structure is not easily visualised (Newman, 2010). To address this, we employ the Louvain algorithm for community detection 
(Blondel et al., 2008), which is widely used for large-scale, weighted networks due to its balance of computational efficiency, scalabil-
ity, and interpretability. The Louvain method operates through a two-step modularity optimisation process: it first locally maximises 
modularity by iteratively grouping nodes into communities, and then aggregates these communities to form a new, smaller network, 
repeating the process until no further modularity gain is possible. The resulting partitioning not only provides community assignments 
but also a modularity score that quantifies the strength of internal versus external connectivity within communities.

We select the Louvain algorithm over alternatives such as Infomap or Label Propagation because it offers a robust trade-off 
between performance and interpretability for our application. Infomap excels in detecting overlapping or hierarchical structures but 
can be less stable with weighted, directed graphs. Label Propagation is highly efficient but sensitive to random initialisation and 
less reliable in identifying persistent communities in empirical data (Ghasemian et al., 2019). In contrast, the Louvain algorithm is 
well-suited for weighted, undirected or directed networks, and has demonstrated robustness in maritime and transport studies. It 
produces results that are both computationally tractable and easily interpretable for policy and industry audiences. Full details of the 
Louvain implementation are provided in Supplementary Material B.

Finally, by combining community detection with temporal analysis of quarterly snapshots of the sub-networks, we are able to 
track the formation, merging, or fragmentation of specific commodity trade relationships over time. This enables us to assess the 
dynamic resilience and adaptability of the global dry bulk shipping system.

4.4.  Distance matrix

To quantify the dissimilarity between quarterly networks, we construct a distance matrix based on pairwise comparisons of the 
adjacency matrices for each quarter, following Sugishita and Masuda (2021). Let 𝐃 denote the (𝑛 × 𝑛) distance matrix, where 𝑛 is the 
total number of quarters analysed, and each element 𝑑𝑖𝑗 represents the distance between networks 𝐺𝑖 and 𝐺𝑗 for quarters 𝑖 and 𝑗.

The distance between two directed, unweighted networks 𝐺𝑖 and 𝐺𝑗 is calculated as:

𝐷(𝐺𝑖, 𝐺𝑗 ) = 1 −
𝑀(𝐺𝑖 ∩ 𝐺𝑗 )

√

𝑀(𝐺𝑖)𝑀(𝐺𝑗 )
, (3)

where 𝑀(𝐺𝑖) and 𝑀(𝐺𝑗 ) are the total number of edges in 𝐺𝑖 and 𝐺𝑗 , and 𝑀(𝐺𝑖 ∩ 𝐺𝑗 ) is the number of edges common to both networks. 
The denominator, √𝑀(𝐺𝑖)𝑀(𝐺𝑗 ), is the geometric mean of the edge counts, ensuring that the metric is bounded between 0 and 1. 
A distance of 0 indicates structurally identical networks; a distance of 1 indicates no shared edges. This geometric normalisation 
provides a scale-invariant measure of structural dissimilarity, allowing meaningful comparisons across networks of varying sizes.

The resulting distance matrix provides a comprehensive view of structural changes across quarters. To further analyse network 
dynamics, we apply hierarchical clustering (using the Ward linkage method) to group quarters with similar network structures. This 
approach highlights periods of stability and episodes of disruption in trade connectivity.

Identified clusters are then examined to interpret key periods of significant structural change, enabling a thorough assessment of 
how major events, such as the COVID-19 pandemic and the war in Ukraine, influenced dry bulk trade patterns. Further details on the 
clustering algorithm are provided in the Supplemental Materials B.

5.  Results

The results are presented in two parts: (1) the static analysis of the global dry-bulk network and its coal, grain and iron ore sub-
networks, and (2) the temporal analysis identifying structural breaks and community reorganisation. Throughout, we include spatial 
visualisations to illustrate the geographic distribution of ports and flows within each commodity-specific network, recognising, as 
Stopford (2008) notes, that “maritime trade analysis emphasises geographical regions over political states.”

5.1.  Network properties

We begin by assessing metrics such as network size, degree distribution, assortativity, strongly connected components, and small-
worldness, which together establish the essential foundation needed to interpret trade flow patterns and understand how these systems 
respond to external shocks.

Network size and connectivity. The full dry bulk network comprises 2748 ports and 171,631 unique trade routes, with an average in- 
or out-degree of 62.5 and a density of 0.023 (Table 1). Among the sub-networks, coal has the broadest port coverage (1,525 ports), 
grain is the most densely connected (density 0.011), and iron ore is the smallest and sparsest, served by only 902 ports and exhibiting 
the lowest density (0.007).
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Table 2 
Estimated parameters of the power-law distributions across different sub-networks. Estimated power-law 
exponents (𝛾) for different sub-networks, including: 𝛾_𝑎𝑙𝑙 (total degree, combining in-degree and out-degree), 
𝛾_𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (inbound connections), and 𝛾_𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 (outbound connections). Each row corresponds to a specific 
commodity sub-network as well as the full dry bulk network. We find heavy-tailed degree distributions with strong 
exporter-side concentration (out-degree exponent ≈ 0.7) and moderate importer-side skew (in-degree > 1); hence, 
not scale-free but highly concentrated.

𝜸_𝐚𝐥𝐥 𝜸_𝐢𝐧𝐝𝐞𝐠𝐫𝐞𝐞 𝜸_𝐨𝐮𝐭𝐝𝐞𝐠𝐫𝐞𝐞

Dry Bulk 0.704 0.834 0.811
Coal 1.075 1.331 0.749
Grain 1.010 1.207 0.710
Iron Ore 1.069 1.328 0.761

Degree distribution. We next examine degree distribution to characterise the heterogeneity of port connectivity and to identify po-
tential hub structures within the network. In Fig. 1, we observe heavy-tailed degree distribution in the full dry bulk network and its 
commodity sub-networks, consistent with power-law behaviour. The estimated exponents for total degree are 0.7 for the aggregate 
network and around 1.0 in the commodity sub-networks (shown in Table 2). Notably, for all sub-networks, out-degree exponents 
(𝛾𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒) are much lower (around 0.7) than in-degree exponents (equal or above 1.2). This means that export connectivity is highly 
concentrated among a few ports, while import connectivity, though skewed, is comparatively more dispersed.

All estimated exponents lie outside the canonical 2-3 interval for strict scale-free networks (Barabási and Albert, 1999). Thus, 
while the network exhibits strong heterogeneity, it cannot be considered scale-free in the classic sense. Instead, the heavy-tailed 
distribution points to the dominance of a small number of export hubs, whose prominence is driven by commodity-specific resource 
geography. As a result, network resilience depends disproportionately on the operational continuity of these key exporters. Disruption 
at these gateways could cause cascading effects across global dry bulk flows, particularly for commodities with limited alternative 
sources. Future extensions could explore multilayer or targeted-attack simulations to quantify the propagation of cascading failures 
and to evaluate how the removal of large, diversified ports would impact overall network resilience.

To better understand the implications of this vulnerability, it is important to clarify how hub-like structures in dry bulk differ 
from those observed in container and oil shipping. In liner shipping and airline networks, central hubs redistribute flows from many 
peripheral nodes (Newman, 2010; Ducruet, 2013, 2020). In oil shipping, hub-and-spoke patterns also emerge, but primarily due to 
geographic and infrastructural constraints: large crude carriers discharge at a limited number of hubs, which then redistribute via 
smaller vessels (Peng et al., 2019). In contrast, in dry bulk, hubs such as Port Hedland and Richards Bay serve as specialised gateways 
directly tied to resource locations, not as transshipment centres (Ducruet, 2020, 2013). This pattern arises from the geographic 
concentration of resource production and demand, rather than from network design. As a result, risk management and investment 
strategies should prioritise the resilience and capacity of these key export and import ports, as disruptions at these gateways can 
significantly impact global trade flows. Further research should also examine the mechanisms shaping hub-like structures in dry-bulk 
networks and how these may evolve under changing market and technological conditions.

Assortativity. Building on the evidence of hub dominance from the degree distribution, we next examine degree assortativity to 
evaluate how these hubs are connected within the network. Here, degree assortativity measures the tendency for ports to connect 
with others of similar or dissimilar connectivity. As shown in Table 1, assortativity values, 𝑎, are mildly negative or near zero across all 
networks, indicating a weak core-periphery (disassortative) structure and a tendency for high-degree nodes to connect to low-degree 
ones. Correlation analysis (Table 11, Supplementary Material A) further shows that major exporters and importers are typically distinct 
from one another. Positive correlations occur among same-direction centralities, while the lack of significant correlation between in-
degree and out-degree highlights the asymmetric roles of most ports. Negative correlations between in-strength and out-strength, 
especially in grain and iron ore, reinforce this specialisation.

Overall, the patterns observed in degree distribution and assortativity demonstrate that trade imbalances are structurally embed-
ded within the network. First, major export gateways are not necessarily the same as those for import. Second, highly connected nodes 
tend to link with smaller, peripheral ports. Third, exports are concentrated through a few high-volume gateways, while imports are 
distributed across a broader range of destinations. These patterns are further illustrated in Table 13 in Supplementary Material A, 
which lists the world’s largest dry bulk ports according to various centrality metrics across different commodity groups. This structural 
configuration increases the strategic importance of key export gateways for supply chain resilience and risk management.

Spatial patterns and trade imbalances. The trade imbalances revealed by degree distribution and assortativity can be directly observed 
in the geographic layout of global dry bulk shipping activity. To visualise these static structural asymmetries, we map the distribution 
of ports and trade flows for each commodity-specific network. The complete dry bulk map (Fig. 2a) highlights the global reach of 
maritime trade, with most coastal countries engaged in either import or export.

Commodity-specific maps (Fig. 2b-d) reveal the underlying trade asymmetries. Exporting activity is highly concentrated: coal 
exports are dominated by Australia, Indonesia, Russia, South Africa, and North America; grain exports by Ukraine, Brazil, Argentina, 
North America, and Australia; and iron ore by a small group of resource-rich countries, notably Australia, Brazil, Canada and South 
Africa, with China as the principal importer. Imports, by contrast, are more widely distributed, particularly for grain, which is received 
across Africa, the Middle East, and Asia.
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Fig. 1. Log-logdegree distributions for all sub-networks. The 𝑥-axis shows log(degree), and the 𝑦-axis shows log(frequency) of nodes with that 
degree. A linear trend in log–log plot indicates a power-law relationship of the form 𝑓 (𝑘) = 𝐶 𝑘−𝛾 , , which is consistent with the regression log(𝑓 (𝑘)) =
log(𝐶) − 𝛾 log(𝑘) . The slope in these log–log plots is −𝛾. The plus (+) marker in the plot represents the log of out-degrees, whereas the round (◦) 
marker represents the log of in-degrees. A colour scheme is used to distinguish different sub-networks: light blue denotes the full dry bulk network, 
black represents grain, red indicates coal and dark blue signifies the iron ore sub-network. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

The maps reinforce our earlier findings that major export nodes are few and highly central, while importing nodes are geographi-
cally dispersed. For example, within Australia, coal flows are concentrated on the east coast, iron ore on the west, and grain primarily 
through south Australia, corresponding directly to where major mining operations and grain-producing regions are located, and where 
the largest export ports have been developed to handle these specific commodities.

These spatial patterns confirm that the observed network structure, characterised by heavy-tailed degree distributions and core-
periphery connectivity, emerges from highly asymmetric global trade flows. While the degree distribution and assortativity reveal 
some common structural features across the commodity sub-networks, the maps highlight that the geographical distribution of trade 
activity differs markedly by commodity. For industry stakeholders, recognising both these structural and spatial imbalances is crucial 
for understanding supply chain vulnerability and planning efficient routing strategies.

Spatial maps reveal overall trade imbalances but cannot fully capture the network’s core-periphery structure or clustering pat-
terns. To address this limitation, we apply component analysis to evaluate the extent of reciprocal connectivity that underpins trade 
resilience. We then use small-world metrics to assess the efficiency of these connections.

Component analysis. To clarify connectivity beyond aggregate statistics, we analyse the component structure of the dry bulk network 
and its commodity specific sub-networks (Table 1), which is a crucial factor in understanding directed network connectivity (Kiss 
et al., 2006). In all cases, the network forms a single weakly connected component (WCC), meaning every port is accessible when 
ignoring directionality. The presence of the WCC indicates complete reachability and reduced logistical barriers for international 
trade.

In contrast, the giant strongly connected component (GSCC), which captures ports linked by bi-directional, reciprocal flows, is 
much smaller: it includes 35% of coal ports, 34% of grain, 18% of iron ore, and 75% in the full dry bulk network. Ports in the GSCC 
typically support both import and export activity, enabling flexible, efficient routing and facilitating multi-directional exchanges of 
commodities. Most peripheral ports, however, act exclusively as either importers or exporters. This structural asymmetry means that 
these ports primarily serve a single function, either receiving shipments or sending out exports, which reinforces the global pattern 
whereby trade flows are dominated by a small number of gateway hubs, while the majority of ports are limited to one-way trade.

The notably smaller GSCC in iron ore reflects the extreme concentration and one-way nature of global iron ore trade. Most iron 
ore ports serve exclusively as exporters or importers, with few reciprocal flows between ports, in contrast to the more diversified, 
multi-directional exchanges seen in coal and grain. This highlights the distinctive structure of iron ore shipping, dominated by a 
handful of major supply and demand nodes.

When all cargo types are included, the GSCC for the full dry bulk network becomes more condensed, with higher average degrees, 
a larger GSCC, and shorter path lengths. This configuration promotes higher vessel utilisation by enabling charterers to move multiple 
commodities efficiently across the network. As visualised in Fig. 2a, overlapping node colours indicate a substantial number of ports 
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Fig. 2. Global dry bulk trade flow networks. The maps illustrate the trade flow networks for (a) the full dry bulk network, and its sub-networks: 
(b) coal, (c) grain, and (d) iron ore. The size of each node reflects the highest of its normalised in-degree or out-degree centralities. The nodes in 
red are discharge ports reflecting the out-degrees and nodes in blue are load ports reflecting in-degrees. When ports have both load and discharge 
activities, the two colours overlap, with the highest centrality dominating. For Map (a), we reduce line width and opacity to improve comprehension. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

with both in- and out-degree, reflecting widespread bilateral trade flows, a contrast to the more unidirectional structures seen in the 
coal, grain, and iron ore sub-networks.

Network metrics reinforce this distinction: the GSCC consistently has a shorter diameter, indicating more efficient internal con-
nectivity within the core. Practically, the size and structure of the GSCC are relevant because ports within it facilitate reciprocal 
trade and help minimise empty return (ballast) legs. Larger GSCCs may therefore be associated with greater potential for efficient 
trade, while ports outside the GSCC, relying more on single-directional flows, could be more vulnerable to disruption and operational 
inefficiencies, such as increased ballast activity or under-utilised vessel capacity. As noted by Brancaccio et al. (2020), while ballast 
legs often raise costs, assessing GSCC structures more clearly distinguishes effective bi-lateral trades and highlights network segments 
that may be prone to such inefficiencies. Nevertheless, establishing a direct empirical link between network topology and shipping 
costs requires further research.

Small-world property. Having identified a mutually accessible core through GSCC analysis, we next assess how rapidly trade and 
information can travel across the network by testing for small-world properties. We compare each observed network with simulated 
random and lattice models using the 𝜎 and 𝜔 metrics (see Methods and Table 3). The full dry bulk network demonstrates small-world 
features: average path length (2.50) is close to that of a random network (2.36), clustering coefficient (𝐶 = 0.23) is slightly higher 
than random (𝐶𝑟𝑎𝑛𝑑 = 0.22), and both 𝜎 ≈ 1 and 𝜔 are near zero. This suggests that, at the aggregate level, the network is efficiently 
navigable and well-integrated.

However, commodity sub-networks for coal, grain, and iron ore show more random-like structure, with lower clustering (𝐶 =
0.04-0.05) and 𝜎 and 𝜔 values only weakly indicative of small-world tendencies. This likely reflects the dominance of unidirectional 
flows and the sparse connectivity highlighted in our component analysis.

To clarify whether this pattern was driven by network core-periphery structure, we simulated small-world metrics for the GSCCs 
of each sub-network. The results are shown in Table 4. These cores display higher density and clustering (𝑐 = 0.36-0.50) and short 
path lengths, consistent with genuine small-world organisation. This contrast indicates that small-world characteristics are found only 
among those ports with dense, reciprocal trading relationships (i.e., within the GSCCs), and not across all ports in the commodity 
sub-networks.

The full network’s clustering coefficient (0.23) is lower than in previous studies that include ballast legs (e.g., 0.43 in Kaluza 
et al., 2010), reflecting our focus on laden flows and reduced clique formation. As shown in Fig. 8, this highlights the impact of data 
definitions on network metrics. However, despite these differences, our results support the same conclusion as Kaluza et al. (2010) 
that the full dry bulk shipping network displays small-world characteristics.
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Table 3 
Network statistics of dry bulk sub-networks L denotes the observed network average path length, 𝐿rand is the average path 
length of the rewired random graph, C is the clustering coefficient of the observed network, 𝐶rand and 𝐶latt represent the 
clustering coefficient of the rewired random graph and simulated lattice network respectively, 𝜔 and 𝜎 are the small-world 
measures defined by Telesford et al. (2011), Humphries and Gurney (2008).

Network L L_rand C* C_rand C_latt 𝝎 𝝈

1 Dry bulk 2.504 2.355 0.231 0.223 0.744 0.631 0.971
2 Grain 3.146 3.298 0.040 0.146 0.724 0.993 0.287
3 Coal 3.654 3.241 0.049 0.153 0.717 0.819 0.282
4 Iron Ore 4.120 3.581 0.049 0.150 0.682 0.797 0.285

Table 4 
GSCC network statistics of real dry bulk sub-networks and simulated networks. The 
centrality measures of each network include: network density 𝜙; number of unique edges 
e; number of ports n; the number of strongly-connected components (SCCs) 𝑛𝑠; degree 
assortativity a; the average shortest path length l, and clustering coefficient c.

 Dry bulk  Grain  Coal  Iron Ore
 GSCC  obs  sim.  obs  sim.  obs  sim.  obs  sim.
𝝓  0.04  0.04  0.05  0.05  0.04  0.04  0.06  0.06
e  164,110  164,110  10,985  10,985  10,968  10,968  1712  1712
n  2062  2062  489  489  541  541  164  164
ns  1  1  1  1  1  1  1  1
a −0.09 −0.19 −0.07 −0.31 −0.11 −0.27 −0.16 −0.21
l  2.50  2.36  3.15  3.32  3.65  3.33  4.12  4.54
c  0.50  0.36  0.36  0.31  0.47  0.32  0.50  0.32

Furthermore, these findings indicate that the small-world properties of the GSCC facilitate efficient, multi-directional trade among 
ports that both import and export, supporting the circulation of raw materials, processed, and intermediate commodities within 
this set of reciprocally linked ports. For traders and shippers whose strategies depend on flexibility across multiple cargo types and 
destinations, participating in the GSCC provides access to more interconnected markets and the option to re-route vessels dynamically. 
In contrast, for operators focused on single-direction trade, such as iron ore exporters shipping to major importers like China, where 
processing is concentrated at the destination, the most operationally relevant connections are the direct, reliable export routes, even 
if these fall outside the GSCC.

For fleet owners and operators managing a variety of dry bulk commodities, maintaining access to the larger GSCC of the combined 
network enables optimised vessel deployment, higher utilisation rates, and more efficient switching between cargoes. In contrast, 
operating only within individual commodity sub-networks may limit routing flexibility and expose operators to greater vulnerability 
from trade disruptions. In addition, for supply chain management, it is essential to align operational strategies with the network 
structure for either reciprocal connectivity or direct commodity-specific trade routes.

5.2.  Temporal analysis of networks

Building on the static analysis, this section examines how the global dry-bulk network and its main commodity sub-networks 
responded to major disruptions. Quarterly network reconstructions reveal the timing of structural breaks and the reorganisation of 
trade communities during events such as COVID-19 and the war in Ukraine.

5.2.1.  Network structural change
To identify the timing of these breaks, we construct distance matrices measuring dissimilarity between quarterly network structures 

for coal, grain, iron ore, and the overall dry-bulk system. Fig. 10 in Supplementary Material A presents the resulting heatmaps, where 
darker shades denote greater structural change.

A clear divergence emerges among the commodities. The coal network (Fig. 10b) shows a pronounced structural shift in 2020, 
with a rapid transition to higher dissimilarity values, corresponding to the onset of the COVID-19 pandemic. Grain (Fig. 10c) is 
the most volatile, with persistent darker colours reflecting frequent structural changes and a particularly sharp break in early 2021, 
which coincides with the escalation of geopolitical tensions and the run-up to the war in Ukraine. In contrast, iron ore (Fig. 10d) 
displays mostly lighter, more stable patterns, with only one significant break, which occurs in 2019 (pre-pandemic), suggesting greater 
resilience in the face of subsequent global shocks.

The distance matrix for the full dry bulk network aggregates these patterns, showing a key structural shift in Q1 2020. Hierarchical 
clustering of the distance matrices (Fig. 12, Supplementary Material) reveals that, for coal and the full network, the most significant 
breaks align with the initial pandemic impact (Q1 2020), while for iron ore, the structural change precedes the pandemic (Q2 2019), 
and for grain, the break comes in Q1 2021, just before the war in Ukraine. This commodity-specific timing underlines that external 
shocks affected each market differently, with some responses lagging or preceding headline events.
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Fig. 3. Transitions in Coal Trading Communities Before and After the Pandemic: Each node (represented as rectangular blocks on either side of 
the diagram) corresponds to a community, with its height proportional to the community size (measured by the number of ports). Nodes are colour-
coded to reflect their dominant geographical region, which is determined by counting the number of ports from each region within the community 
and selecting the region with the highest representation. The colour scheme matches the world maps shown below. Links between nodes represent 
the transitions of ports from one community to another, with the width of each link indicating the number of ports transitioning. The network prior 
to Q1 2020 consisted of six communities, while the post-Q1 2020 network comprises five communities. Significant changes in community structure 
include: (1) Communities dominated by Continent, Japan, and US East Coast remain largely unchanged. (2) Smaller communities, such as those 
dominated by Arabian Gulf ports and Far East Russian ports, merged with larger groups after Q1 2020. (3) The largest pre-Q1 2020 community, 
dominated by Far East ports, splits into two distinct communities: one dominated by China and another by Southeast Asia.

Further clustering uncovers additional transitions: for coal, a third structural cluster appears after 2022, coinciding with China’s 
bans on Australian exports (Reuters, 2024) and increased reliance on Russian coal (Drewry, 2024) (see also Wang and Ducruet, 2014 
for analysis of China’s coal corridor concentration). For iron ore, a new phase emerges post-2021, coinciding with the war in Ukraine 
and the re-routing of major export flows. These observations demonstrate how both policy shifts and geopolitical events reshape the 
network structure on a quarterly basis.

A unique feature is observed in the grain network, where the distance matrix shows a periodic pattern of change, alternating strips 
of colour along the diagonal, which reflects the seasonality and cyclicality of global agricultural production. This pattern is not seen 
in coal or iron ore, highlighting the importance of accounting for inherent market cycles in shipping planning and risk assessment. 
We note that a detailed examination of agricultural seasonality is beyond the scope of this paper, but our results suggest it is an 
important avenue for future research.

Overall, this temporal analysis demonstrates that the dry bulk shipping network structure is highly sensitive to external shocks, 
but the timing and scale of these responses are sharply commodity-specific. For shipping and trade stakeholders, understanding when 
and how these breaks occur is vital for anticipating volatility, reallocating resources, and ensuring supply chain resilience in the face 
of both short-term disruptions and longer-term structural change.

5.2.2.  Spatial distribution and evolution of community
The spatial evolution of network communities reveals how connections between major exporters and importers reorganise across 

periods of disruption, and reshape trade geography. Consistent with previous research (Kaluza et al., 2010; Pan et al., 2019), our 
results confirm that ports within the same community tend to be densely interconnected, while links between communities are sparse 
and often serve as critical bottlenecks. Understanding how these groupings change in response to shocks is essential for shipping 
companies and port authorities seeking to manage risk and optimise strategy.

Static analysis of the dry bulk network shows that community patterns largely reflect the underlying supply and demand for 
each commodity market. However, these patterns can shift rapidly in response to geopolitical events and market disruptions, high-
lighting the importance of dynamic community analysis. Here, we focus on the coal and grain networks, where such changes are 
especially pronounced, applying quarterly community detection with the Louvain algorithm. The resulting shifts in community struc-
ture are visualised through Sankey diagrams, which show the merging and splitting of communities over time, and world maps that 
geographically situate these transitions.

Coal sub-network. In the coal sub-network, where a structural break is identified in Q1 2020, we compare the detected communities 
before and after the break. As shown in Figs. 3 and 4, the network consisted of six communities before Q1 2020, and five afterward. 
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Fig. 4. Coal handling ports and shipping routes before and after Q1 2020. Ports are grouped into communities, with distinct colours repre-
senting the dominant geographical region in each community. Dominance is determined by the region with the highest number of ports within 
the community. Changes in community structure are visualised through these region-specific colours, comparing the network before and after the 
COVID-19 pandemic (Q1 2020). The size of each node reflects the highest of its normalised in-degree or out-degree centrality. The primary structural 
change observable on the maps occurs in Asia (green), where ports previously grouped together split into two distinct communities: one dominated 
by China (green) and the other by Southeast Asia (purple). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

The six communities identified prior to Q1 2020 are as follows: (1) the largest community, consisting of 536 ports, includes ports in 
Europe, North Africa, and Central America, spanning the Atlantic, Mediterranean, and Black Sea regions; (2) a community dominated 
by Far East ports, comprising 428 ports in total; (3) a community of 197 ports centered around Japan, East Coast Australia, and 
West Coast North America across the Pacific; (4) a smaller community with 52 ports, primarily located along the US East Coast; (5) 
a community of 69 ports concentrated in the Arabian Gulf; and (6) the smallest community, consisting of 38 ports from the Russian 
Far East region, spanning 17 geographical regions.
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Fig. 5. Transitions in Grain Trading Communities Before and After the War in Ukraine: Each node (represented as rectangular blocks on either 
side of the diagram) corresponds to a community, with its height proportional to the community size (measured by the number of ports). Nodes 
are color-coded to reflect their dominant geographical region, determined by counting the number of ports from each region within a community 
and selecting the region with the highest representation. The colours used match the world maps shown below. Links between nodes represent 
the transitions of ports from one community to another, with each link’s width indicating the number of ports undergoing that transition. The 
network prior to Q1 2021 consisted of five communities, while the post-Q1 2021 network comprises seven communities. Significant changes in 
community structure include: (1) ports in the Far East splitting into three distinct communities: one dominated by China, one by Japan, and another 
by Southeast Asia (2) a large community dominated by the European Continent splitting into an Eastern Mediterranean group and a remaining group 
still dominated by the European Continent (3) the community dominated by the US East Coast merging with the Continent-dominated community 
(4) most ports in the community dominated by East Coast South America transitioning to other communities, with a small proportion remaining 
unchanged. Finally, the community dominated by the US Gulf exhibits minimal variation.

Fig. 3 visualises the transitions in coal trading communities before and after the pandemic. Each node corresponds to a community, 
with its height proportional to community size and colour-coded by its dominant region. The links represent ports transitioning 
between communities. Prior to Q1 2020, there were six communities, while post-Q1 2020, the network comprises five communities. 
Significant changes include: (1) communities dominated by European Continent, Japan, and US East Coast remain largely unchanged; 
(2) smaller communities, such as those dominated by Arabian Gulf ports and Far East Russian ports, merged with larger groups after 
Q1 2020; (3) the largest pre-Q1 2020 community, dominated by Far East ports, splits into two distinct communities: one dominated 
by China and another by Southeast Asia.

As shown in Fig. 4, after Q1 2020, the network reconfigures into five communities. Three communities remain substantially the 
same as pre-Q1 2020, dominated by ports in the same regions. However, significant changes in routes across Far East Asia and the 
Indian Ocean after Q1 2020 lead to differences in community structure. The most notable change occurs in Asia, where a previously 
tightly connected group splits into two: one community is now dominated by China, while another is centred on Southeast Asian 
ports. Additionally, ports in the Arabian Gulf, which were previously linked to Africa, now form stronger connections with Europe and 
the Southeast Asia community, leaving Africa more closely aligned with Europe. Furthermore, Russian ports in Northeast Asia, which 
previously formed a small, distinct community with other ports, are now integrated into the same community as China, reflecting 
strengthened trade ties since the COVID-19 pandemic and the onset of the war in Ukraine (Drewry, 2024).

Grain sub-network. In comparison to coal, the grain shipping network exhibits a more diverse evolution in community structure.2 As 
shown in Fig. 5, prior to the structural break detected in Q1 2021, the Louvain community detection algorithm identifies five com-
munities: (1) the largest community, dominated by continental Europe, with 418 ports; (2) the second-largest community, dominated 
by the Far East, with 396 ports; (3) a trans-Atlantic community dominated by the U.S. East Coast, with 201 ports; (4) a community 
dominated by U.S. Gulf ports, with 182 ports; (5) a community dominated by East Coast South American ports, with 141 ports.

Following the structural break in Q1 2021, these five communities merge, reorganise, and ultimately form seven groups, reflecting 
a new grain cargo network structure. The changes can be broadly grouped into two categories: those arising in Europe from trans-

2 Using the Louvain community detection method, we identify six communities in the pre-Q1 2021 network and eight in the post-Q1 2021 network. 
However, in both networks, there is a small community of fewer than five nodes, each having degree 1. In addition to the small size, since most of 
these nodes within the community do not appear in both networks, we exclude them from the community structure analysis in this section.
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Fig. 6. Grain handling ports and shipping routes before and after Q1 2021. Ports are grouped into communities, with distinct colours repre-
senting the dominant geographical region in each community. The community structure is visualised based on these region-specific colours before 
and after Q1 2021. The size of each node reflects the highest of its normalised in-degree or out-degree centrality. Significant changes in commu-
nity structure include: (1) ports in the Far East splitting into three distinct communities: one dominated by China, one by Japan, and another by 
Southeast Asia; (2) a large community dominated by the European Continent splitting into an Eastern Mediterranean group and a remaining group 
dominated by Europe Continent; (3) the community dominated by the US East Coast merging with the Continent dominated community; (4) the US 
Gulf dominated community remains largely unchanged; (5) the East Coast South America dominated community becomes significantly smaller, as 
some ports transit to others. In total the number of communities increases from five to seven.

portation challenges linked to rising geopolitical tensions and the eventual outbreak of the war in Ukraine, and those arising in Asia 
from rising tensions between China and Australia.

For instance, the community encompassing continental Europe and North Africa is split, with ports in the Eastern Mediterranean 
forming a distinct group, while the former U.S. East Coast community merges into the remaining continental Europe group. Mean-
while, the smaller East Coast South American community fragments into multiple new communities, leaving only a small proportion 
of ports intact. The Far East community splits into three, as illustrated in Fig. 6: there are increased trade flows between Chinese ports 
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Fig. 7. Ukraine grain export volume change year on year. This figure illustrates the annual changes in grain export volumes from Ukraine from 
2016 to 2023 across regions. Regions are denoted by shorthand names: AG (Arabian Gulf), EASTAFRICA (East Africa), FAREAST (Far East), REDSEA 
(Red Sea), USEC (East Coast US), WCSA (West Coast South America), BALTIC (Baltic), EASTMED (East Mediterranean), NCSA (North Coast South 
America), SEA (Southeast Asia), USG (US Gulf), WESTMED (West Mediterranean), BLACKSEA (Black Sea), ECINDIA (East Coast India), NWAFRICA 
(Northwest Africa), SOUTHERNAFRICA (Southern Africa), WCINDIA (West Coast India), CONT (Continent), and ECSA (East Coast South America). 
The volume changes are expressed as a percent change compared to the previous year. The line chart represents the total percentage change in 
grain exports (right y-axis), showing the aggregated impact of all regions for each year. The contribution of each region’s annual change to the 
overall trend can be calculated by dividing the change in export volume for each year by the total change over the entire period (left y-axis). Region 
short names are labeled on the bars when their annual contribution exceeds 10% in absolute value, highlighting significant regional impacts on the 
overall export trend.

and East Coast South America; 18 Japanese ports form a small community on their own, whereas other Asian ports form a single 
community led by Southeast Asia.

After Q1 2021, the network’s modularity increases from 0.27 to 0.29. This is because the network becomes smaller and less dense, 
with fewer nodes, edges, and a reduced average degree (as shown in Table 16 in the Supplementary Materials). In a sparser network, 
community boundaries become more defined, as nodes cluster more distinctly.

In addition to structural changes, Fig. 7 presents year-on-year changes in Ukraine’s grain export volumes. In 2021, we observe 
reductions in exports to the Far East and several smaller importing regions, alongside a modest recovery in shipments to the Eastern 
Mediterranean and North West Africa. Following the onset of the full-scale war in early 2022, Ukraine’s total export volumes fell 
sharply, by nearly 60% across all regions. This downward trend continued into 2023, with a further 30% reduction in volumes. Fig. 
11 in the Supplementary Material shows that global grain cargo volumes began a sustained decline starting in 2021, consistent with 
the timing of the observed structural break.

Although the network structure changed significantly following the identified disruptions, the countries with the highest trade 
volumes, measured by node strength, remained largely the same in both the grain and coal sub-networks. As shown in Table 14 in 
the Supplementary Materials, the composition of the top exporters and importers persisted, even as their rankings shifted slightly. In 
contrast, rankings based on normalised degree centrality highlight variation in the breadth of trading relationships, reflecting changes 
in how widely countries were connected, rather than in the absolute volume of trade.

Our findings on the structural break in the grain trade network in Q1 2021 are consistent with the analysis of Cremaschini et al. 
(2024). They characterise the year 2021 primarily as a pre-disruption phase, marked by gradual declines in port connectivity within 
Ukraine. However, their analysis focuses mainly on the impacts at the port level and the implications for Ukraine’s domestic economy. 
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Moreover, the use of vessel movement data limits their ability to analyse commodity-specific trade patterns in detail. In contrast, 
our study provides new insights by identifying a structural break in Q1 2021 through quarterly network reconstructions based on 
micro-level trade flow data. We not only detect the timing of the transition but also trace how network topology and community 
composition evolved in response to emerging geopolitical tensions. By focusing on specific commodity trade networks (grain, coal, 
and iron ore) we are able to clearly observe how each sector responded differently to the external shock of the war in Ukraine.

6.  Conclusion

This study contributes to shipping network research by integrating micro-level trade flow data with advanced network analysis 
to examine the organisation, resilience, and disruption of global dry bulk shipping. By analysing key commodity sub-networks (coal, 
grain, and iron ore), we show that these sectors differ markedly in structural properties and in their responses to external shocks.

While individual commodity networks often lack small-world features, their Giant Strongly Connected Components (GSCCs) con-
sistently demonstrate efficient, reciprocal trade routes. These GSCCs, subsets of ports with mutual reachability, link flows of both raw 
and processed commodities, underpinning supply chain integration. When aggregated, the unified dry bulk network exhibits pro-
nounced small-world and scale-free characteristics, with a relatively large GSCC indicating dense, bidirectional connectivity across 
regions and cargo types. Access to this extensive GSCC core enhances routing flexibility and operational efficiency, allowing fleet 
owners to optimise vessel deployment and repositioning within a highly connected global system.

In contrast, smaller GSCCs in individual sub-networks indicate more fragmented, uni-directional trade structures. Such asymmetry 
can increase ballast legs and reduce vessel utilisation, with non-GSCC components relying heavily on single-directional flows. Although 
this suggests higher operational costs, establishing direct links between network topology and freight economics requires further 
empirical analysis integrating shipping and freight data.

The results also show that dry bulk shipping networks are highly concentrated: a few hub ports handle most flows, while peripheral 
ports maintain limited connections. This core-periphery structure fosters efficiency but also dependency, heightening the vulnerability 
of smaller ports to hub disruptions. Disassortative patterns reinforce this, as smaller ports tend to connect to major hubs, deepening 
existing trade hierarchies and limiting diversification.

While static analysis reveals the stable geography of commodity flows, temporal analysis, using distance matrices, highlights 
the transformative effects of shocks. The COVID-19 pandemic triggered significant restructuring in the coal and overall dry bulk 
networks, whereas the grain and iron ore sectors proved more resilient. Community detection further shows how global events 
reshaped network topology, including closer clustering of China and Russia in the coal network. Conversely, the war in Ukraine drove 
dramatic realignments in the grain network, with community structures reorganised as trade routes shifted away from the Black Sea 
region. China’s grain trade increasingly clustered with South American exporters, while Southeast Asia and Australia remained more 
tightly connected within the wider Asian region. The fragmentation of European and North African grain trade communities further 
altered connectivity, with immediate implications for trade routes and market resilience.

Beyond the impacts of global shocks, the grain sub-network exhibits a periodic pattern of structural change reflecting the season-
ality of global agricultural production. This cyclical reorganisation, visible in the distance-matrix analysis, highlights the influence of 
recurring market cycles on trade network dynamics and the need to account for them in resilience assessments and fleet planning.

By systematically analysing static network snapshots over time, this study offers insights for commodity traders, ship owners, 
and logistics professionals. Recognising shifts in community structure and network topology enables adaptive routing, targeted risk 
mitigation, and informed strategic planning. The methodological framework developed here is generalisable, supporting context-
specific analysis across other dry bulk markets and supply chains.

Future research should extend this analysis in several ways. Integrating freight rates, voyage-level cost data, and contract struc-
tures with network topology would allow a more direct assessment of how structural features influence efficiency, profitability, and 
market risk. Additionally, exploring multilayer network models may yield new insights into resilience, cascading failures, and the sys-
temic effects of targeted disruptions. The seasonality observed in grain trade networks also merits further investigation, as a deeper 
understanding of its drivers could clarify important implications for shipping operations and supply chain risk. Methodologically, 
combining network analysis with causal inference approaches, such as event studies or econometric modeling, could help to more 
precisely quantify the effects of shocks, including policy interventions or conflicts, on trade flows and market structure. Finally, 
expanding both the temporal and geographic scope of analysis to encompass additional bulk segments or emerging trade corridors 
would offer a broader perspective on how global supply chains adapt to evolving economic and geopolitical conditions.
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