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Abstract

Hypnosis is a state of consciousness spontaneously occurring or induced through various techniques. Its occurrence is more likely in individuals with high scores of hypnotizability (highs) than in low hypnotizables (lows). The study aimed to assess the topological homogeneity within highs and lows during neutral hypnosis (NH), and the EEG topological characteristics of highs and lows before and after hypnotic induction experienced as an altered state of consciousness only by highs. Sixteen highs and 16 lows were enrolled, informed that they would be submitted to hypnotic induction and studied across a session including open and closed eyes waking rest, hypnotic induction, NH, and post-hypnosis open eyes rest. EEG was monitored throughout the session. Network analysis showed greater identifiability (less homogeneity) among lows than among highs. It revealed a similar pattern of changes in functional connectivity and topological properties - homological persistence and persistent entropy, which describe multiscale integration patterns- in the two groups across the session. Findings suggest that NH represents a modulation of the ordinary consciousness within its physiological variability rather than a distinct physiological state. Neither network nor topological differences account for the different subjective experiences of highs and lows.
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	Introduction
Hypnosis is the subjective experience of an altered state of consciousness characterized by focused attention, reduced contact with the environment, and increased proneness to accept suggestions, i.e., instructions to imagine individual/environmental conditions different from the actual in the sensorimotor, autonomic, and cognitive domains. The individuals reported experience consists of actual perceptual - cognitive alterations, and involuntariness in action (Elkins et al., 2015). 
Hypnosis can occur spontaneously or be induced through various procedures that can start, or not start, with instructions for relaxation (Bányai, 2018), and can be standardized or personalized (Lynn et al., 2017). They end with a state of “neutral hypnosis” (NH), if no further specific suggestion is administered. However, the activity of the Default Mode Network decreases after hypnotic induction (Deeley et al., 2012), indicating a difference between neutral hypnosis and simple relaxation. The changes in the functional connections between the Default Mode, Salience, and Executive networks can account for the reported focused attention, enhanced somatic and emotional control, and lack of self-consciousness (Jiang et al., 2017).
Several theories have been proposed to account for the experience of hypnosis. They attribute different roles to individual characteristics (bio-pscho-social model) and induction-related effects, i. e., reality monitoring with suppression of its access to consciousness (Zahedi et al., 2024). Most of them, however, consider hypnotizability as one of the main components of the hypnotic response.      Hypnotizability is a psychophysiological trait measured by scales classifying high (highs), medium (mediums), and low (lows) hypnotizable persons (Elkins et al., 2015; Santarcangelo and Scattina, 2016). They differ in a few brain morpho-functional characteristics consisting of  highs’ smaller grey matter volume of the insula and left cerebellum, and stronger functional connectivity between the executive and salience network (Landry et al., 2017; Picerni et al, 2019). Moreover, hypnotizability levels are associated with physiological features - highs’ less close postural and visuomotor control, greater excitability of the motor cortex (Spina et al., 2020; Cesari et al., 2021), stronger functional equivalence between actual and imagined perception/action (Ibanez- Marcelo et al., 2019 a, b) -, and behavioral characteristics, i.e. highs’ reduced interoceptive accuracy (Giusti et al., 2024) and more adaptive interoceptive sensibility (Diolaiuti et al., 2020).
The hypnotic state has been characterized through questionnaires investigating various experiential dimensions, i.e., the perception of agency, memory, volitional control, attention, arousal, positive/negative affect, self-awareness, rationality, and imagination (Pekala and Nagler, 1989). In contrast, the described neural correlates of hypnosis are often inconsistent with each other and/or not disentangled from those of the specific suggestions administered during/after the hypnotic induction (De Pascalis, 2024). Recent EEG findings based on the EEG Recurrence Plot (RP) obtained before, during, and after NH  did not reveal significant group differences and condition-related changes in both highs and lows, although the Determinism extracted from RP – i.e. the repeatability of the EEG signal - positively correlated with hypnotizability only after hypnotic induction (Callara et al., 2020) that might have changed the information processing in highs. Nonetheless, expecting hypnosis or naming a situation as hypnosis enhances the subjective experience of being hypnotized more than the hypnotic induction and high hypnotizability themselves (Kirsch, 1997; Lynn et al., 2015). Thus, the definition of hypnosis as a physiological state is still under debate. 
Functional connectivity and Topological Data Analysis (TDA) tools have been successfully employed to characterize cognitive states (Basset and Sporns, 2017), including psychedelic experiences (Petri et al., 2014), and the cortical activity of not hypnotized highs and lows’ during baseline, actual and imagined sensorimotor conditions (Ibanez-Marcelo et al., 2019 a). By highlighting distributed and nested information processing in highs and lows, respectively, TDA suggested that spectral analysis may not capture the actual hypnotizability-related EEG differences (Ibanez-Marcelo et al., 2019b). TDA describes the shape and connectivity of spaces of a given dimension (Munkres, 2000; Patania et al., 2017) and allows the encoding of information about different time and space resolutions into higher-order interactions (Hilton and Wylie, 1967; Petri et al., 2014). Specifically, it allows determining the amount of multiscale coordination patterns among active brain regions in terms of their correlational structure, named “total homological persistence”, and their complexity, named “persistent entropy”, which measures the distribution and lifetime variability of topological features. Higher values of both measures have been associated with enhanced multiscale information integration. 
Since current evidence reports inconsistent findings about the nature of NH, the primary aim of the present study was to re-analyse the EEG signals earlier studied through spectral and recurrence quantification analysis (Callara et al., 2023) to characterize the highs and lows’ EEG during NH topologically. State effects could be indicated by an interaction between hypnotizability and experimental conditions, with highs exhibiting not only quantitative changes during neutral hypnosis compared to lows. A preliminary assessment aimed to state whether the highs’ greater topological homogeneity observed in the ordinary state of consciousness (Ibanez-Marcelo et al., 2019a) also characterizes them during NH. 

	2.Methods
The same participants' EEG signals had been analyzed in a different study aimed at the physiological description of the hypnotic state through spectral analysis and Recurrence Quantification Analysis (Callara et al., 2023). The study had been conducted according to the Declaration of Helsinki after the approval of the Bioethics Committee of the University of Pisa (n.17/2021). 

2.1. Subjects
The participants signed an informed consent to participate in the study and underwent hypnotic assessment through the Italian version of the Stanford Hypnotic Susceptibility Scale, form A (Weitzenhoffer and Hilgard, 1959). They were 15 healthy, right-handed (Edinburgh Handedness Inventory, Oldfield 1971) high hypnotizable subjects (highs, SHSS score (mean + sd): 10.18 + 1.19; 9 females, age: 25.14 + 3.82 years) and 15 healthy right-handed low hypnotizables (lows, SHSS score: 0.20 + 0.56; 7 females, age: 26.47 + 4.82 years). Medium hypnotizable individuals were not enrolled, although they represent the largest part of the population (De Pascalis et al., 2000), based on the evidence that highs and lows exhibit the extreme abilities - highest and lowest, respectively- to enter hypnosis, which was the main object of the study. 

2.2. Experimental procedure
The experimental sessions were scheduled in the early afternoon. Participants were comfortably seated in an armchair, were invited to relax, and informed that, after a few minutes, they would listen to a pre-recorded hypnotic induction (SHSS: A induction modified by inviting them explicitly to close their eyes). EEG was recorded during consecutive 3-minute conditions: open (ROE) and closed eyes relaxation (RCE), hypnotic induction divided in two successive periods (IND1, IND2, total 6 minutes), neutral hypnosis (NH), and post hypnosis (POST). At the end of the session, the highs reported significantly greater change in their state of consciousness than the lows. For details, see Callara and colleagues (2023).

3. Signal acquisition and pre-processing.
As reported in Callara and colleagues (2023), ECG and EEG signals were recorded by a telemetric Nautilus EEG system (g.tec, Schiedlberg). Sixteen Ag/AgCl electrodes mounted in a cap were placed according to the International 10-20 System in F3, F7, C3, T7, P3, PO3, F4, F8, C4, T8, P4, PO4, Fz, Cz, Pz, Oz, according to the International 10–20 System.  Further, 2 electrodes were placed on the left eye lateral canthus and on the left orbital ridge to detect eye movements. All impedances were kept below 5 kΩ.  The signals were referred to Cz, and downsampled to a sampling frequency of 125 Hz after applying a low-pass anti-aliasing filter. Afterwards, we applied a high-pass filter at the cutoff frequency of 0.1 Hz to remove slow drifts in the signal. Bad channels - those channels whose correlation with their neighbors was below a threshold, here set at the value of 0.8 (Mullen et al., 2013) were discarded. We recovered them through spherical spline interpolation (Delorme and Makeig, 1995). EEG signals were then average-referenced and decomposed through Independent Component Analysis (Makeig et al., 1995). The obtained components corresponded to active brain sources (Delorme et al., 2012). Then, we reconstructed the signals with the sole contribution of the independent components (ICs) associated with brain activity (Urigüen e Garcia-Zapirain 2015), which allows for the interpretation of brain activity-related components in terms of brain sources in low-density recording systems (Callara et al. 2020).

2.4 Signal analysis
2.4.1 Functional Connectivity (FC)       
FC is a measure of the correlation between the brain activity of different brain regions. For each subject in each condition, we had a multivariate time series with 16 EEG channels. For one time series, we obtained the corresponding functional connectivity by computing the correlation between each pair of univariate (single channel) time series. The results can be represented as a weighted graph (or network), in which each node represents one of the 16 electrodes, and weights on the edges between nodes are the correlation coefficients.  
2.4.2 Identifiability Measure (IDiff )
We investigated how identifiable subjects or conditions were based on the differences between their observables, e.g. their functional connectivity, or their persistent homology. By identifiable, we mean that the observables are significantly more similar (or “more homogeneous”) within a subject (or condition) than between different subjects (or conditions). We focus here on the identifiability of subjects based on their functional connectivity (FC). 
Let us start with the case of condition identifiability. For each subject and each condition, we divided the recording of the condition into two parts of equal length, to which we refer as “test” and “re-test”. We then built for each subject a 6x6 (condition x condition) correlation matrix: each entry ij of this matrix represents the similarity between the subject’s test recording FC for condition i and its re-test recording FC for condition j: corr(FCtest(i),FC retest(j)). Note that the resulting matrix is not symmetric in general, because in principle, cor r(FCtest(i), FC retest(j)) can be different from corr(FCtest(j),FC retest(i)). Large values on the diagonal indicate self-similarity of the conditions with themselves, while small values off-diagonal indicate large differences between conditions. Combined, these two elements indicate that the conditions can be distinguished from one another. Formally, for a given condition, self-similarity is quantified as the corresponding diagonal value 

ISelf(i) = corr(FCtest(i), FCretest(i)),

while similarity of condition i with other conditions j,k,l… is captured by the average of the corresponding symmetrized off-diagonal values


where N is the total number of conditions. 

Finally, the “identifiability” of a condition is the mean across subjects of the difference between ISelf(i) can be summarized as  
IDiff =<ConditionISelf(i)-ConditionIOthers(i)>_subjects

Groups and conditions characterized by high IDiff values are less homogeneous than groups and conditions showing low IDiff. Note that all three metrics above are invariant under permutation of the “test” and “rest” labels – this is ensured in the case of Iothers because the off-diagonal terms are symmetrized. 
2.4.3 Persistent homology
Persistent homology is a standard method from topological data analysis (TDA) that captures the multiscale topological structure of data (Phinyomark et al., 2018; Carlson, 2020). In our context, it provides a way to describe and quantify the shape of brain connectivity patterns derived from EEG recordings. 
We applied persistent homology to functional connectivity (FC) matrices computed from Pearson correlations between EEG channels in a given multivariate time series. For each subject and condition, the corresponding time series was divided into 18 equal time windows and the corresponding FC matrices were treated as repeated measures. To make these matrices suitable for topological analysis, we transformed them into distance matrices by taking , where r ∈ [–1, 1] is the Pearson correlation coefficient. In this transformation, strongly correlated pairs (high |r|) yield small values (interpreted as short distances), and weakly correlated pairs yield larger values. The square root is taken to ensure that it is a proper distance, which 1 – r itself is not—as it does not satisfy the triangle inequality (Chung et al., 2017).
For each of these distance matrices, we constructed a Vietoris–Rips filtration (Bauer, 2021): a sequence of simplicial complexes built by connecting all points (i.e., EEG channels) whose pairwise distance is below a threshold ε. The overlaps between ε -neighborhoods define edges between points, and higher-order simplices are obtained by taking the clique complex of the induced graph. Each simplicial complex in the filtration corresponds to a value of ε, and the number of these simplices increases with ε.

Persistent homology tracks how topological features—such as connected components (dimension 0, H0) and cycles (dimension 1, H1)—emerge and disappear across this filtration, i.e as ε increases. The result is summarized in persistence diagrams (or equivalently, barcode plots), where each topological feature is represented by a pair (ε_birth, ε_death) indicating the distance at which it appears and disappears. The difference ε_death - ε_birth of a feature is called its persistence, or lifetime. These diagrams offer a compact summary of the topological “shape” of the data.

We extracted two standard summary statistics from each diagram:
· Total persistence, which quantifies the total amount of topological information in the functional connectivity (summing the lifetimes of all features), and
· Persistence entropy, which captures the diversity in feature lifetimes and can be seen as a measure of complexity of the system.
These quantities were computed for both homology dimensions 0 (H0) and 1 (H1), using the Python library Ripser (Tralie et al., 2018). Each subject’s brain connectivity was summarized by a vector consisting of these two TDA-based metrics. Finally, to compare between subjects and conditions, we computed Euclidean distances between these vectors.

2.5 Statistical analysis
We applied a mixed-effects permutation ANOVA (analysis of variance) to test the influence of hypnotizability and experimental condition on the metrics considered. The factor Group (high vs. low hypnotizable individuals) was modeled as a between-subjects fixed effect, while Condition (six levels: ROE, RCE, IND1, IND2, NH, POST) was modeled as a within-subjects fixed effect. Each subject contributed values per condition, computed across non-overlapping time windows from their original signal. These repeated measures were treated as nested within each subject and condition, allowing us to account for intra-subject correlations due to multiple windows.
To account for the non-Gaussianity of the distributions of the metrics considered, we used a permutation-based ANOVA which relaxes normality assumptions. Specifically, we used the aovp() function from the lmPerm package in R (Wheeler et al., 2025), which performs permutation ANOVA with 5000 permutations. The model was specified as:
Aovp (Data ~ Group * Condition + Error (Subject / Condition))
where Group is the between-subject factor, Condition is the within-subject factor, and Subject is a random effect. This model tested the main effects of Group and Condition, as well as their interaction, while accounting for repeated measures within subjects.
Effect sizes were estimated using Cohen’s d, computed as: d = (M_high – M_low) / s_pooled,
where M_high and M_low are the group means and s_pooled is the pooled standard deviation. We report Cohen’s d for the main effects of Group and Condition, as well as for the Group × Condition interaction.
There were no missing data. Because our analysis used permutations, we did not perform parametric model diagnostics (e.g., normality of residuals), as these assumptions are not required in this framework.

	3. Results
As earlier reported for these participants, the experience of altered consciousness was significantly deeper in highs than in lows (Callara et al., 2023). Nonetheless, both traditional functional connectivity analyses and topological observables revealed only quantitative differences between highs and lows during NH compared to the pre-induction time interval. 
Our EEG findings replicated, in hypnotic conditions, the highs’ greater topological homogeneity observed in the ordinary state of consciousness during rest and sensorimotor actual and imagined alteration (Ibanez-Marcelo et al., 2019).
 
 	3.1 Lows are more different (less homogeneous) from each other than highs 
First, we aimed to characterize the patterns of homogeneity or heterogeneity among subjects at the group level. To achieve this, we looked at subjects’ FC identifiability within and between groups by condition. That is, for each condition, we computed the ISelf and IDiff for highs, lows, and between the two groups. As detailed in the Methods, this is done by dividing each condition of each subject in two windows (“test” and “retest”) and computing an FC matrix per window. We then computed the identifiability matrix between subjects per group and per condition. This is the matrix in which each entry ij is the correlation between the FC of the subject i’s test recording with the FC of subject j’s re-test recording, with subjects i and j belonging to the same group. Large values on the diagonal indicate self-similarity of the subjects, and small values off-diagonal indicate large differences between subjects. Combining these two, we can compute the Idiff metric: 
 
IDiff =meaniSubjISelf(i)-meaniSubjIOthers(i)

which describes how distinguishable subjects are from each other within a group and for a given condition. We observed that subjects were more identifiable (larger IDiff) among lows than among highs (Group effect, p<2e-16) (Fig. 1). Conversely, this greater individual identifiability implies that highs display more similar functional connectivity patterns as a group compared to lows. We also found that this result held independently of: (i) condition, which did not differ between each other (p=.99), and (ii) interaction with groups (p=.87). This result accords with previous results, based on topological data analysis tools on the presence of larger homogeneity among highs than lows (Ibanez-Marcelo et al., 2019). 

3.2 Larger Transitions Between Conditions in highs than in lows
The results on group heterogeneity focus on how variable the encodings of different conditions are between subjects, but do not provide any information on the difference between functional patterns of the conditions themselves. 
To investigate this, for each subject we computed the correlation distance between the FC in all pairs of windows (18 windows per condition). We then reduced this matrix to a 6x6 matrix per subject by averaging over windows belonging to the same condition. This is done to provide a measure of the self-similarity of a condition in a subject across time.
Finally, we averaged subject-specific matrices over highs and lows, obtaining two 6x6 matrices describing the typical difference) between conditions (in terms of correlation distance) within a group (Fig. 2a). 
As a first observation, we found that the change in functional connectivity between conditions is larger in highs than in lows (Fig. 2a). This is supported by Permutation ANOVA tests showing main effects for Group (highs > lows) and Condition and a significant Group x Condition interaction (all, p< 1e-15). To further illustrate and support this result, we show that the effect sizes of highs minus lows for the FC changes are positive for each pair of conditions, again supporting a larger FC reorganization across conditions in highs compared to lows (Fig 2b). We show this by providing the matrix of Cohen’s d values, as a measure of effect size, obtained by comparing for each condition pair the distributions of similarity values for the lows with those of the highs. 
Interestingly, while the extent of the changes is consistently larger in highs, we found a common temporal pattern in the two groups in terms of FC change between temporally consecutive conditions, with both groups showing larger changes in FC at the beginning and end of the experiment, and with similar time courses of transitions, except for the absence of significant difference between the transition IND1/IND2 and IND2 /NH in highs, and between NH/POST and ROE/POST in lows (Fig. 2c). More importantly, in both groups, the FC differences in the transition NH/ROE and NH/POST were larger than any of the other transition from NH (Fig. 2d). 

	3.3 Group-level topological differences underlie alterations in functional patterns 
To investigate whether homological structures underlying functional connectivity (FC) constitute key differentiators of hypnotizability, we computed the persistent homology of FCs across groups and conditions associated with each window (18 windows per condition) and then extracted two common topological metrics: (i) total persistence, corresponding to the total amount of topological information in the system; and (ii) persistence entropy, which instead quantifies the heterogeneity of topological features across the filtration. Permutation ANOVA revealed only a significant Group effect (highs > lows) for both total persistence and persistence entropy (Fig. 3a, b) for H0 and H1 (both, p < 2e-16), that is, for topological structures of two different dimensions. At the group level, highs exhibit greater total persistence and persistence entropy in 0-dimensional (H0) topological features, compared to lows (lows). This suggests that highs display a larger segregation of functional modules and higher complexity in the coordination of the latter, possibly supporting their heightened absorption abilities. Interestingly, when comparing conditions, the observed differences for H0 topological features closely align with FC-based group differences (Pearson correlation with effect size matrix in Fig 2b, r=0.79, p<1e-7), e.g. by displaying a clearer difference between the first condition compared to all others. Thus, the H0 persistence captures foundational topological elements tied to connectivity strength and stability (Fig 3c left, Fig. 2b). In contrast to H0, the changes across conditions in H1 are consistently larger for highs, revealing a more profound restructuring of their higher-dimensional topological patterns, highlighting a more complex topological reorganization across conditions compared to lows (Pearson correlation with effect size matrix in Fig 2b not significant, p=0.28). This higher-dimensional reorganization suggests that highs not only maintain more stable connections but also undergo a more extensive remodeling of network structures during state transitions. 

	Discussion 
The EEG topological features of resting awake conditions, hypnotic induction, and neutral hypnosis differ between highs and lows, with the former exhibiting larger changes in functional connectivity and larger homological complexity than the latter. The greater changes in the state of consciousness reported by highs after hypnotic induction (Callara et al., 2023) might be the correlates of these differences.  On the other hand, the sequence of changes across the experimental session- leading to neutral hypnosis in highs, but not in lows- is the same in the two groups.  The difference between highs and lows during neutral hypnosis does not indicate different cognitive processing, but just smaller or larger changes in the same variables not indicating a different cognitive elaboration of the induction and hypnotic state. Thus, the present findings do not allow us to define neutral hypnosis as a physiological state different from wakefulness despite its different subjective experience.

4.1 Highs are more homogeneous between each other than lows 
The greater functional and topological homogeneity observed among highs than lows out of hypnosis (Ibanez-Marcelo et al., 2019) has been replicated in the present study session, which included neutral hypnosis. 
The lows’ lower homogeneity in FC and topological features is an intriguing finding as different types of highs, not of lows, have been previously identified through behavioral/experiential methods that classified highs as more prone to motor inhibition, hallucination, or dissociation (Terhune and Cardeña, 2015). In contrast, nothing has been reported regarding lows in this respect. An old debate, however, regards what our scales measure (Kirsch, 1997), and this question is still waiting for a response. The highs' greater homogeneity seems to be in line with their scarcely segregated mode of information processing contrasting with the lows’ networked mode (Ibanez-Marcelo et al., 2019a, b). Based on our network- and topology-based results, we suggest that the behavioral differences between different types of highs may develop at higher integration levels compared to those investigated in the present study. Also, topological heterogeneity might appear during cognitive and emotional tasks not studied here. The next challenges should be (i) identifying the integration level at which highs become less homogeneous between each other, and (ii) characterizing the lows’ diversity. Interestingly, the lowest difference in the identifiability of highs and lows occurs both during neutral hypnosis and immediately after it. This emphasizes the possible role played by the instructions of relaxation administered during hypnotic induction in the cortical changes associated with hypnotic induction and further challenges the hypothesis of neutral hypnosis as a distinct physiological state. 

4.2 Functional connectivity changes are larger in highs than in lows. 
The highs’ brain activity relies on stronger functional connectivity than the lows’, in line with other authors’ observations obtained through different EEG methods of analysis (Isotani et al., 2001; Kirenskaya et al., 2011; Bagdadi and Nasrabadi, 2012). Group differences are present in both the strength of functional connectivity and its topology, but only the former shows clear differences in the transitions between conditions. We hypothesize that the highs’ greater absorption abilities (Tellegen and Atkinson, 1974) are sustained by their larger overall topological complexity, while the ability to reorganize their functional connectivity reflects arousal, which decreases in highs more than in lows throughout the session, as part of the change in their state of consciousness (Callara et al., 2023)
As earlier observed (Fingelkurts et al., 2007; Bagdadi and Nasrabadi, 2012; Cardeña et al., 2013), the cognitive processes leading to experience hypnosis by highs, but not by lows, consist of qualitatively similar FC alterations in both groups, although to a different extent. The highs’ changes in FC during neutral hypnosis could indicate low attentional effort, compared to lows’, as the latter are less prone than highs to maintain the focus of attention (Tellegen and Atkinson, 1974). This accords with the increased connectivity observed in cognitively fatigued participants (Zhang et al., 2022) and in conditions of decreased attention (Zhang et al., 2022). Moreover, the highs decrease in FC during neutral hypnosis compared to the waking, closed eyes condition agrees with the observed networks segregation (Panda et al.,2021) and reduced activation of the executive and salience network (Landry et al., 2017) observed during hypnosis. In lows, the decreased functional connectivity could be attributed to disengagement from the hypnotic induction with consequent relaxation and increased activation of the Default Mode Network.
The highs’ greater total topological persistence points to more stable functional connections than in lows independently from conditions. It could be sustained by the amount and distribution of the neurotransmitters implicated in the cognitive-behavioral difference between highs and lows (Acunzo et al., 2018). There may be a role for dopamine in the highs’ greater attentional stability, which is largely distributed in the cerebral cortex and may favor the experience of trance. Also, oxytocin which increases in lows more than in highs in a dual context like hypnotic sessions, (Kasos et al., 2018) could account for the scarce difference in the functional connectivity time course observed across the experimental session between highs and lows (Callara et al., 2023; present study). Theoretically, a major role in the stronger functional connectivity could be played by a gaseous mediator - nitric oxide (NO) – as it is ubiquitous, is released by neurons and endothelial cells, and is involved in neuroplasticity through induction of BDNF release. Also, NO derived by endothelial cells and neurons in the near spaces can induce long range effects (Biojone, 2015).

4.3 Persistent homological features are more prominent in highs than in lows. 
FC total persistence and persistent entropy are larger in highs than in lows all over the session at both the observation/integration levels H0 and H1. Greater total persistence suggests richer patterns of connections among brain nodes and could be responsible for the smaller topological changes observed in highs during cognitive and sensorimotor tasks compared to basal conditions (Ibanez-Marcelo et al., 2019 a,b). Greater persistent entropy, indicating greater complexity of the system, could be due to the heterogeneity across the connections contributing to the activity of each node. Complexity is considered an index of the state of consciousness, as it increases during focused meditation compared to closed eyes baseline conditions (Walter and Hinterberger, 2022) and during perception of Gestalt images (Liu et al., 2021), is lower in persons with mild cognitive impairment (Kim et al., 2023) and schizophrenic patients (Guo et al., 2022) compared to healthy controls, as previously reported in studies applying topological data analysis to resting-state fMRI (Chung et al., 2020).
The highs’ EEG complexity differs from lows independently from hypnotic induction, which might accord with the highs’ EEG greater content of “connectional” spectral components of EEG, i.e. theta and gamma bands (von Stein et al., 2000; Kirenskaya et al., 2011; Farahzadi et al., 2024), with their stronger functional connectivity between the anterior cingulate and dorsolateral prefrontal cortex and between the inferior parietal lobule and the executive network as well as with the larger volume of the anterior part of the corpus callosum (Landry et al., 2017). Our findings suggest that different conscious experiences may occur owing to different integration modes, as observed for highs and lows, who receive the same amount of information. Thus, our findings propose qualitative features possibly specifying the Integrated Information Theory that interprets consciousness as a merely quantitative amount of integration relatively to the amount of information (Tononi and Edelmann,1998)
The highs’ decreased activation of the Default Mode Network during neutral hypnosis (Landry et al., 2017) could sustain their larger difference between hypnosis and waking conditions compared to lows. The responsibility for the decrease in functional connectivity, total persistence, and persistent entropy observed during neutral hypnosis in highs (who do experience hypnosis), may be searched in the reduced activity of the salience and executive networks (Landry et al., 2017; Jiang et al., 2017). In lows, it can be due to possible disengagement from the hypnotic induction activating the DMN and thus reducing arousal and attention.

4.4 Limitations and Conclusions
A limitation of the study is that the scarce difference observed between highs and lows during neutral hypnosis could be due to the instructions for relaxation included in the hypnotic induction, which may have hindered other cognitive differences. A possible control study should compare highs and lows after active-alert induction (Banjai, 2018). Also, the interpretation of the reported TDA findings based on other authors’ EEG and imaging findings is mostly speculative as they have not been obtained in the same participants. Above all, those studies do not analyze actual neutral hypnosis (not associated with specific suggestions, as occurs for studies performed during the administration of hypnotizability scales. Also, separate analyses of different brain regions might allow us to go deeper into the state-non-state theories of hypnosis from a physiological perspective (De Pascalis, 2024). Finally, most of our interpretations, i.e., the association of high absorption with high topological complexity, the different levels of integration at the basis of different homogeneity within highs and lows, the role of nitric oxide in the hypnotizability-related differences in distributed or networked information processing, should be tested by further experimental studies. 
In conclusion, the present findings demonstrate higher functional connectivity and persistent homology in highs than in lows independently of the studied experimental conditions, which stands for more stable functional connections among brain nodes and greater complexity of the EEG signals in highs than in lows. Despite the highs’ larger changes across conditions, the changes direction was the same in highs and lows. Thus, in line with most of the earlier reports (De Pascalis, 2024), the present findings do not support the view of neutral hypnosis as a distinct physiological state. 
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Figure legend

Figure 1. Identifiability of Functional Connectivity (FC) in High and Low Hypnotizable Groups.
We show the identifiability measure (iDiff) for functional connectivity (mean and confidence intervals) in high (highs) and low (lows) hypnotizable participants across conditions. Higher iDiff values indicate greater individual distinctiveness in FC patterns within the group. Lows exhibit significantly higher iDiff values than highs (p < 2e-16), suggesting that lows have more heterogeneous FC patterns, whereas highs display more homogeneous functional connectivity across subjects.

Figure 2. FC differences between conditions in highs and lows. (a) The two 6x6 matrices show correlation distances between FC in each condition averaged over subjects within a group (highs left, and lows right).  Values on the diagonal represent the distance between FC within the same condition and off-diagonal values between values between conditions. Small values on the diagonal and large off-diagonal would indicate that different conditions are distinguishable based on FC. It is easy to (i) that FC changes between conditions are larger in highs than lows, and (ii) the presence of a stark change from between ROE/POST and the other conditions, although all distances between conditions are significantly different from zero.  (b) Effect sizes (measured using Cohen’s d) of the differences between highs and lows of the FC change between pairs of conditions. All effect sizes are positive, supporting larger FC changes between conditions in highs. (c) Time-course of transitions between temporally consecutive transitions for the two groups (highs left, lows right). (d) FC changes from NH to all other conditions for the two groups (highs left, lows right). For all statistical labels, group effect, and effect size. ***, p <.0001; **, p< .001. 

Figure 3. Topological structure underlying differences between conditions. (a) Group-level distributions of topological total persistence and persistent entropy for H0; (b) same for H1. (c) Effect sizes for the comparison of joint topological descriptors (total persistence and persistent entropy) for H0 (left) and H1 (right).  
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