
Perspective

An integrated computational approach for diversity-sensitive 
personalized medicine

Carlos Coronel-Oliveros a,b,c,d,1,* , Marilyn Gatica e,f,1, Rubén Herzog a,g,1 ,  
Matteo Neri h,1

a Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago de Chile, Chile
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A B S T R A C T

Diversity in biological, social, and environmental factors plays a central role in shaping brain health and disease. 
Distinct brain disorders frequently exhibit overlapping clinical phenotypes, despite arising from heterogeneous 
biological and contextual mechanisms. This convergence challenges conventional, population-averaged ap
proaches, which often fail to capture interindividual variability and lead to limited reproducibility, weak 
translational potential, and inadequate tools for individual-level characterization. To address these gaps, we 
propose an integrative computational approach that unites normative models of brain aging (“brain clocks”), 
high-order interactions, and whole-brain modeling. Brain clocks estimate individualized brain health scores by 
comparing observed brain features to normative age-based trajectories. Brain high-order interactions capture 
functional dependencies beyond pairwise connectivity, offering sensitive biomarkers that reflect system-level 
diversity in aging and neurodegeneration. Whole-brain modeling uses theory-based simulations of individual 
brain dynamics, supporting the inference of latent mechanisms and the evaluation of targeted perturbations in 
silico. Together, they form a synergistic approach: normative models provide personalized baselines, high-order 
interactions enhance sensitivity to complex alterations, and whole-brain simulations enable causal insight and 
guide potential interventions. By embedding inter-individual variability and contextual diversity into each 
computational layer, this framework moves the field toward precision neuroscience, where assessment, under
standing, and treatment are tailored to the individuals’ unique biological and social profiles.

Introduction

Diverse genetic backgrounds and socio-environmental exposomes, 
spanning income inequality, chronic stress, nutritional deficits, and 
exposure to violence, shape brain development and aging worldwide 
(Legaz et al., 2024; Baez et al., 2024; Santamaria-Garcia et al., 2023). 
This influence is particularly pronounced in the Global South, where 
health systems are under-resourced and research participation remains 
low (Parra et al., 2018; Baez et al., 2023). These regions are character
ized by high levels of genetic diversity and distinct social and 

environmental exposomes (McGlinchey et al., 2024; Baez et al., 2023), 
that are known to impact brain development and aging (Legaz et al., 
2024; Baez et al., 2024; Santamaria-Garcia et al., 2023). Neuropsychi
atric and other brain disorders are major contributors to global disability 
and disease burden, particularly in aging populations (Santamaria- 
Garcia et al., 2023; Ibanez et al., 2024b). Among brain disorders, de
mentias alone already afflict over 55 million people globally, with 
projections surpassing 139 million by 2050, and impose an even greater 
burden in low- and middle-income regions, worsening disparities in care 
and outcomes. Existing frameworks, however, lack integrative, 
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mechanistic insight, yielding results that are often irreproducible and 
poorly generalize across populations (Marek et al., 2022; Greene et al., 
2022). In response, integrative, multimodal computational approaches 
offer a promising route: by combining advanced analysis of multimodal 
large-scale neuroimaging data with statistical and biophysical model
ling, such methods can more faithfully characterize healthy aging tra
jectories, reveal context-specific deviations, and provide underlying 
biological mechanisms (Marek and Laumann, 2024; Lewandowsky and 
Oberauer, 2020).

There are significant barriers to implementing computational ap
proaches in personalized medicine. Brain-derived data are often noisy, 
short in duration, and collected using heterogeneous protocols, limiting 
reproducibility and generalizability (Fan et al., 2014; Fröhlich et al., 
2018). These issues are especially pronounced in under-resourced re
gions, where access to advanced equipment and standardized methods is 
limited (Yusuf et al., 2014; Archibong et al., 2025). However, beyond 
data limitations, meaningful clinical applications require frameworks 
that capture population-specific variability. Indeed, normative models, 
used to identify deviations from typical brain development or aging 
(Verdi et al., 2021), often fail to generalize when tested in diverse or 
underrepresented populations (Greene et al., 2022). Their lack of 
sensitivity to biological and environmental factors limits their applica
tion in global health. Computational neuroscience offers powerful tools 
to address these gaps. Advanced tools from network science, dynamical 
systems, information theory, machine learning, and modeling tech
niques can identify population-sensitive biomarkers and elucidate un
derlying mechanisms of brain dysfunction (Baez et al., 2024; Hernandez 
et al., 2024; Moguilner et al., 2024b; Santamaria-Garcia et al., 2023; 
Moguilner et al., 2021). These approaches not only enable the detection 
of disease-relevant deviations but also provide a window into the 
mechanistic processes shaped by genetics and the exposome (Moguilner 
et al., 2024b; Sanz Perl et al., 2023; Coronel-Oliveros et al., 2024; Ste
fanovski et al., 2019; Ranasinghe et al., 2022), offering an integrative 
approach that can account for diverse populations. These methods can 
be remotely deployed and scaled across cohorts, supporting cost- 
efficient, personalized, context-sensitive brain health modeling.

Here, we outline an integrated computational approach to improve 
brain health research across diverse populations. This proposal includes: 
(i) brain higher-order interactions (HOI) (Rosas et al., 2019; Herzog 
et al., 2022; Gatica et al., 2022; Gatica et al., 2021; Battiston et al., 
2021), which capture complex multivariate dependencies in neural 
systems beyond pairwise functional connectivity; (ii) brain clocks, 
which operationalize normative brain aging and estimate deviations at 
the individual level (Moguilner et al., 2024a; Tian et al., 2023); and (iii) 
biophysical whole-brain models (WBM) (Coronel-Oliveros et al., 2024; 
Lynn and Bassett, 2019; Deco and Kringelbach, 2014), which test 
possible mechanisms underlying brain dynamics. By leveraging these 
complementary approaches, we propose a methodological roadmap to 
identify context-sensitive markers of brain health, aging, and disease, 
and to inform mechanistic brain function models responsive to popu
lation diversity. This synergy may lay the groundwork for a more 
precision-oriented neuroscience, with broad implications for personal
ized medicine.

Disentangling brain complexity through higher-order 
interactions

Phenomena such as brain aging and dementia involve a complex 
interplay of factors and are rarely due to dysfunction within isolated 
brain regions (van den Heuvel and Sporns, 2019; Damoiseaux, 2017; 
Betzel et al., 2014; Andrews-Hanna et al., 2007). Over the past two 
decades, research has shifted from focusing on individual structures to 
integrative approaches that examine the architecture of interactions 
among brain regions and neurons (Barabási, 2012). For the computation 
of BAG, for instance, it is often employed the functional connectivity, i.e. 
the connectivity between couples of brain regions is estimated as the 

correlation between their activities. The study of the brain as a network 
has improved our ability to distinguish between cognitive and patho
logical states and to identify the features of network organization that 
support specific cognitive functions or contribute to disease (Greicius, 
2008). However, traditionally, these strategies focused mainly on the 
study of pairwise interactions, such as synapses between two neurons or 
correlation between two brain areas. While pairwise interactions remain 
central to studying brain dynamics, growing evidence supports that HOI, 
involving three or more neurons or brain regions simultaneously, offers 
deeper insights (Neri et al., 2025; Moguilner et al., 2024a; Gatica et al., 
2022).

HOI can be characterized from different angles. The two main ap
proaches are based on topological data analysis and on information 
theory, respectively (Fig. 1A) (Pope et al., 2025; Santoro et al., 2023; 
Santoro et al., 2024; Patania et al., 2017). Topological data analysis 
provides a framework to explore the higher-order architecture of brain 
data by identifying geometrical shapes and patterns of in
terdependencies with specific mathematical properties of interest 
(Patania et al., 2017). One widely used tool in topological data analysis 
is persistent homology, which focuses on topological features like cycles 
(e.g., recurring pathways of functional connectivity) or voids (gaps in 
network structure). This allows researchers to detect robust, multiscale 
features that traditional pairwise analyses often overlook. Insights from 
persistent homology can be used to build representations like the ho
mological scaffold, that is, a network where the strength of each 
connection reflects its involvement in high-order topological structures, 
rather than just direct correlations between regions (Wasserman, 2018; 
Giusti et al., 2016; Zomorodian and Carlsson, 2004).

Persistent homology has been applied to investigate a broad range of 
cognitive and pathological conditions (Wang et al., 2023; Zhang et al., 
2022). The study of specific topological features, such as one- 
dimensional cycles, which represent loops of interconnected brain re
gions, has garnered particular interest in neuroscience (Neri et al., 
2024). They enable the characterization and prediction of functional 
alterations associated with psychiatric and neurobiological conditions 
such as schizophrenia (Stolz et al., 2021), epilepsy (Wang et al., 2023), 
attention-deficit/hyperactivity disorder and autism spectrum disorder 
(Lee et al., 2011), as well as to describe structural networks in healthy 
individuals (Sizemore et al., 2018; Petri et al., 2014). Further, persistent 
homology showed greater sensitivity in characterizing altered states of 
consciousness than the traditional pairwise approaches (Petri et al., 
2014). Finally, recent research has begun to explore the dynamical 
properties of homological scaffolds, demonstrating that they can 
improve subject identifiability beyond pairwise approaches, high
lighting their potential relevance for personalized medicine (Santoro 
et al., 2024).

On the side of information theory, HOI are captured via measuring 
the strength and quality of the statistical interaction (i.e., information 
sharing modes) among groups of brain regions from their activity re
cordings (e.g., fMRI or EEG) (Rosas et al., 2019). Moreover, different 
modes of shared information can be distinguished, specifically, redun
dancy (information shared across the group of variables) and synergy 
(information available only when considering the joint state of the 
whole group of variables) (Williams and Beer, 2010). Multiple metrics 
and computational pipelines have been introduced to quantify redun
dancy and synergy (Luppi et al., 2024; Neri et al., 2024; Timme et al., 
2011), and recent work introduced time-resolved extensions (Pope et al., 
2025; Luppi et al., 2022b), allowing for their temporal tracking and 
revealing dynamic changes in brain coordination that static analyses 
may miss.

Information theory-based HOI have been largely used to characterize 
development and lifespan changes in the brain of healthy populations, 
characterizing these phenomena in terms of synergy and redundancy. 
For example, in infants, a recent study identified a developmental tra
jectory in brain networks characterized by a shift from redundancy- to 
synergy-dominated neural interactions (Varley et al., 2025), modulated 
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by environmental enrichment, particularly through the mother-infant 
connection. Across the lifespan, healthy aging is characterized by 
increased redundancy and loss of network/brain specialization 
(Camino-Pontes et al., 2018; Gatica et al., 2021). In neurodegeneration, 
HOI have been used to provide an accurate multimodal (EEG and fMRI) 
characterization of two forms of dementia: frontotemporal dementia 
and Alzheimer’s disease (Herzog et al., 2022). On both modalities, de
mentia was associated with both high-order hyper and hypo
connectivity, but dominated by the former, consistent with pairwise- 
based analysis pointing towards dysconnectivity in dementia (van den 
Heuvel and Sporns, 2019). Moreover, HOI revealed specific patterns for 
different dementia subtypes, providing higher sensitivity compared to 
classical pairwise analyses (Herzog et al., 2022).

Finally, HOI can be employed to characterize the effects of non- 
invasive neuromodulation. For example, HOI have been used to assess 
the effects of low-intensity transcranial ultrasound stimulation, an 
emerging technique able to target cortical and deep brain structures, on 
brain dynamics (Darmani et al., 2022). Although the effects of neuro
modulation remain unknown, HOI has proven effective in detecting 
stimulation-induced perturbations that extend beyond the targeted re
gions through functional networks in both macaques (Gatica et al., 
2024) and humans (Gatica et al., 2025). These effects are target-specific 
and point to the potential of HOI for individualized assessment, moving 
beyond pairwise group-level analyses to enhance the precision and 
clinical relevance of neuromodulation at a single subject level. 
Encouragingly, public perception of such non-invasive approaches is 
generally positive (Atkinson-Clement et al., 2025), supporting their 
future clinical adoption.

Altogether, HOI provides a novel dimension for analyzing brain 
functional and structural data, enabling a more refined characterization 
of individual subjects as well as inter-group differences across various 
cognitive states and health conditions. Recent literature has emphasized 
the potential of HOI to enhance our ability to interpret complex brain 
data (Fig. 1B). In this context, HOI can be integrated with brain age 

prediction models, such as brain clocks, to improve the assessment of 
BAG (Moguilner et al., 2024a). Furthermore, the study of HOI, if com
bined with WBM, offers a powerful framework for exploring the effects 
of specific mechanisms at multiple interaction levels.

Diversity-sensitive brain clocks as normative models of brain 
aging

Brain clocks are computational models that estimate an individual’s 
brain age from neuroimaging data, providing a normative score of brain 
health (Verdi et al., 2021; Moguilner et al., 2024a; Tian et al., 2023) 
(Fig. 2). Brain clocks start using machine learning or deep learning al
gorithms, such as support vector regression, Gaussian processes, or 
graph-based neural networks, trained on large functional magnetic 
resonance imaging (fMRI), electroencephalography (EEG), or MRI 
datasets to predict chronological age (Baecker et al., 2021a; Alber et al., 
2019; Al Zoubi et al., 2018) (Fig. 2A). These models typically rely on 
preprocessed features like connectivity matrices or HOI derived from 
parcellated time series (Fig. 2B). After hyperparameter tuning and cross- 
validation, they can be used to predict age from brain-derived data. 
These models yield a brain age prediction (Baecker et al., 2021b), with 
the brain age gap (BAG) calculated as the difference between predicted 
and actual age (Moguilner et al., 2024a; Tian et al., 2023) (Fig. 2C).

The key output of these models is the BAG (Moguilner et al., 2024a; 
Smith et al., 2019; Tian et al., 2023). A positive BAG indicates acceler
ated brain aging, while a negative BAG reflects delayed aging relative to 
the normative reference (Moguilner et al., 2024a; Smith et al., 2019; 
Tian et al., 2023). These individualized scores allow for quantifying 
deviations from expected brain aging trajectories and have emerged as 
useful biomarkers for assessing brain health across diverse populations 
(Moguilner et al., 2024a). Because brain clocks are grounded in 
normative modeling, they support comparative analyses between in
dividuals and groups, offering insight into how genetic, clinical, and 
environmental factors shape brain aging across the lifespan (Tian et al., 

Fig2.tiff

Fig. 1. Topological, information-theoretic, and temporal representation of high-order interdependencies. The topological and high-order axes represent 
distinct analytical perspectives, while the third axis captures their time-resolved dynamics. The intersections between these axes illustrate the integrated inter
pretation. (A) Conceptual overview of the three representational domains. (B) Brain-related applications in fMRI or EEG data of healthy individuals and various 
neurological conditions (e.g., aging, altered consciousness, Alzheimer’s disease) across the three axes.
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2023; Verdi et al., 2021). When paired with multimodal neuroimaging 
and electrophysiological data, brain clocks represent a scalable, simple, 
and practical framework for studying brain health in global settings, 
including basic and clinical research.

Brain clocks have been applied to characterize brain aging in the 
context of neurological and psychiatric disorders (Tian et al., 2023; Cole 
et al., 2017; Moguilner et al., 2024a; Baecker et al., 2021b; Coronel- 
Oliveros et al., 2025b). They have shown consistent evidence of accel
erated brain aging across conditions such as schizophrenia, major 
depression, epilepsy, and dementia-related syndromes (Tian et al., 2023; 

Cole et al., 2017; Baecker et al., 2021b; Coronel-Oliveros et al., 2025b). 
A possible way to extend brain clocks is by incorporating functional HOI 
into models, improving their sensitivity to subtle and distributed alter
ations in brain dynamics (Moguilner et al., 2024a). This has proven 
especially valuable in characterizing aging deviations across the de
mentia continuum, including mild cognitive impairment, Alzheimer’s 
disease, and frontotemporal dementia, where increased BAG were 
observed, consistent with disease progression (Moguilner et al., 2024a). 
These models based on HOI have also revealed marked differences be
tween populations from the Global North and South, detecting 

Fig1.tiff

Fig. 2. Functional brain clocks’ architecture. (A) Brain age models are trained using neuroimaging data (e.g., EEG, MEG, fMRI) from large cohorts of healthy 
individuals. The trained models can predict the brain age of patients with brain-related conditions and individuals exposed to varying social determinants or in
terventions. (B) Data preprocessing involves signal cleaning, normalization, and transformation into a common brain space (e.g., source projection and anatomical 
parcellation) to extract regional time series. These features capture functional dynamics across brain networks. Non-functional data, for example, gray matter volume 
and white matter hyperintensities, can be used to train brain clocks or can be mixed with functional data as well. (C) Functional connectivity matrices or graph 
representations are derived from the time series and used to train machine learning models (e.g., support vector machines, graph neural networks) to predict brain 
age. The difference between predicted and chronological age, known as the brain age gap (BAG), serves as an individualized index of brain aging. Positive BAG 
suggest accelerated brain aging, while negative BAG indicate delayed or preserved aging trajectories.
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accelerated brain aging in Latinos versus the Global North participants, 
which was modulated by biological sex, even after controlling for 
technical and demographic confounds (Moguilner et al., 2024a; 
Coronel-Oliveros et al., 2025b). Importantly, the robustness of these 
brain clock models has been supported by harmonization pipelines 
(Prado et al., 2023b, Prado et al., 2023a; Prado et al., 2022; Parra- 
Rodriguez et al., 2022) that reduce variability arising from different 
recording devices, acquisition protocols, and signal quality (Prado et al., 
2023b; Prado et al., 2023a; Prado et al., 2022; Parra-Rodriguez et al., 
2022).

Beyond disease classification, brain clocks can be applied to assess 
the influence of lifestyle and interventions on brain aging (Tian et al., 
2023; Matziorinis et al., 2023, Rogenmoser et al., 2018, Baecker et al., 
2021b, Le et al., 2018, Richard et al., 2020, Pardoe et al., 2017). BAG 
have been linked to modifiable risk factors such as alcohol consumption, 
physical activity, and dietary patterns (Tian et al., 2023). For example, 
individuals engaged in creative activities, such as playing musical in
struments, dancing, visual arts, or strategy-based video games, exhibit 
delayed brain aging across several domains (Coronel-Oliveros et al., 
2025a), through mechanisms related to neural plasticity (Sampaio- 
Baptista and Johansen-Berg, 2017; Fields, 2015; Coronel-Oliveros et al., 
2024; Kowalczyk et al., 2018). Furthermore, using a pre/post-learning 
design, brain clocks can detect short-term brain changes in response to 
non-pharmacological interventions (Coronel-Oliveros et al., 2025a), 
offering a framework to monitor the direct impact of experiential and 
cognitive stimulation on brain health. In individuals with schizophrenia, 
brain clocks have also been used to assess the effects of physical training, 
revealing delayed brain aging following intervention, with BAG re
ductions correlating with improvements in clinical symptoms (Yilmaz 
et al., 2025). In this way, brain clocks can provide robust and clear 
metrics about the effects of modifiable factors and pharmacological 
therapies on brain health, contributing to delivering more precise in
formation about preventive and tailored strategies for public health 
policies.

Emerging directions in brain clock research aim to bridge these 
models with other biological clocks, such as epigenetic, metabolomic, 
and organ-specific clocks (Jia et al., 2024; Argentieri et al., 2025; Tian 
et al., 2023) to build more integrative assessments of biological aging. 
The integration of brain clock models with HOI biomarkers holds sig
nificant potential for advancing our ability to characterize the neural 
mechanisms underlying aging (Moguilner et al., 2024a; Gatica et al., 
2022; Gatica et al., 2021). This approach may facilitate earlier detection 
and enable more personalized monitoring of individuals at elevated risk 
for age-related cognitive decline. Moreover, advances in low-cost and 
scalable technologies, such as portable EEG systems, enable the 
deployment of brain clock models in resource-limited settings, 
expanding their accessibility, especially in low and middle-income 
countries. These portable devices, integrated with brain clocks, can 
lead to the development of real-life health monitoring tools. Another 
promising avenue is the development of region or network-specific brain 
clocks that track aging within distinct functional or structural brain 
systems (Leake, 2024). These mesoscopic-level models can reveal 
disease-specific patterns of accelerated aging and may improve the 
specificity and interpretability of brain health assessments across 
neurological and psychiatric conditions.

Whole-brain modeling as a clinical test bench for interventions

Statistical and machine learning approaches offer powerful predic
tive capabilities but remain as “black boxes”, limiting mechanistic in
sights into brain dynamics and function. WBM provide a complementary 
alternative and enable a mechanistic understanding of brain health, 
disorders, accelerated aging, and population-level diversity (Deco and 
Kringelbach, 2014). They provide a principled approach to link brain 
structure and function, and have recently been called “an essential tool 
for understanding brain dynamics” (Patow et al., 2024). To simulate 

brain activity, WBM leverage multimodal brain data by incorporating 
neuroimaging and biophysical priors, such as brain anatomical (struc
tural) connectivity, gene and protein expression maps, or atrophy maps. 
The typical WBM framework involves using the model to reproduce 
some empirical features of brain dynamics by optimizing free parame
ters with a biological interpretation (Patow et al., 2024, Deco and 
Kringelbach, 2014). In this way, it is possible to provide interpretability 
and a causal framework where empirical patterns of healthy and path
ological brain dynamics can be linked to specific neural mechanisms. 
The goal would be to develop the so-called ‘digital twins’, specifically for 
the brain (i.e. personalized virtual brains) (Wang et al., 2024, Lau
benbacher et al., 2024). Digital brain twins are not replicas of the brain 
per se, but models able to reproduce brain dynamics and allow testing 
mechanistic hypotheses can be tested in silico (Wang et al., 2024). They 
provide a means to identify, beforehand, subject-specific vulnerabilities 
and potential treatment targets, which can then be tested in real 
experimental settings.

WBM are typically built by integrating three key components 
(Fig. 3A) (Lynn and Bassett, 2019, Deco and Kringelbach, 2014): (i) 
empirical priors, (ii) local dynamics, and (iii) an objective function. 
First, empirical priors serve as the anatomical and physiological scaffold 
of the model. These include subject-specific or population-derived data 
such as structural connectivity (from diffusion MRI), functional parcel
lations, gene expression gradients, neurotransmitter receptor densities 
(obtained from positron emission tomography; PET), or disease-specific 
atrophy maps (Deco et al., 2018, Moguilner et al., 2024c, Luppi et al., 
2022a, Coronel-Oliveros et al., 2023, Shen et al., 2012). Second, local 
dynamics are defined by mathematical models that generate the activity 
of each brain region. These may range from pure phenomenological 
models (Ponce-Alvarez and Deco, 2024, Cabral et al., 2014, Sampaio 
Filho et al., 2024) to biophysical models (Deco et al., 2014, Jansen and 
Rit, 1995), covering the whole range of neural activity from the neuron 
level to large-scale brain dynamics (Lynn and Bassett, 2019). Finally, the 
model is calibrated to match empirical brain activity by tuning a set of 
biologically meaningful parameters, such as global coupling, local 
excitation/inhibition balance, or average firing rates across regions. This 
process aims to reproduce key brain features, including functional 
connectivity, power spectra, and dynamic patterns. To guide this fitting, 
an objective function is used, typically based on similarity measures, for 
example, the correlation between empirical and simulated functional 
connectivity.

Crucially, personalized models can act as mechanistic classifiers 
(Fig. 3B), offering insights that go beyond symptom-based categoriza
tion. By projecting empirical data onto a constrained space of neurobi
ological mechanisms, they enable patient stratification based on 
physiological parameters such as regional excitability, inhibition, or 
disrupted anatomical connectivity. For example, when informed by 
empirical priors, these models can capture how neurodegenerative 
processes interact with biological sex, disease progression, and regional 
vulnerability (Moguilner et al., 2024c). Simulations based on resting- 
state EEG and fMRI have revealed regionally imbalanced excitation- 
inhibition dynamics in dementia, with modulatory effects linked to 
sex and sociodemographic context, underscoring how structural in
equalities may shape brain health trajectories (Moguilner et al., 2024c, 
Coronel-Oliveros et al., 2025b (manuscript accepted), Coronel-Oliveros 
et al., 2025a, Coronel-Oliveros et al., 2025b). Dynamical models have 
also been used to simulate transitions between pathological and healthy 
brain states, identifying control targets that could guide neuro
modulation (Sanz Perl et al., 2023). These frameworks are being 
extended to simulate pharmacological interventions in silico, integrating 
PET-based receptor maps to explore how neuromodulatory systems can 
move the dynamics in patients with disorders of consciousness closer to 
healthy brain dynamics (Mindlin et al., 2024). Together, these ap
proaches illustrate how WBM can bridge neural mechanisms with 
contextual diversity, supporting personalized assessments and inter
vention strategies (Fig. 3C).
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Recent works have included HOI in whole-brain modelling pipelines. 
These models have successfully been used to characterize the effects of 
non-invasive neuromodulation (Gatica et al., 2025), and the alterations 
of brain dynamics in healthy aging (Gatica et al., 2021). In this way, 
WBM revealed that, in aging, the increase in brain redundancy (see 
previous section) can be explained by a process of connectome degen
eration (Gatica et al., 2022). Similar mechanisms have been proposed in 
neurodegeneration (Coronel-Oliveros et al., 2024; Amato et al., 2024). 
WBM have been used to reproduce HOI in dementia (Coronel-Oliveros 
et al., 2024; Arbabyazd et al., 2023). These models suggest that brain 
dynamics in Alzheimer’s disease and frontotemporal dementia emerge 
from a combination of two different mechanisms. One mechanism 
consisted of connectome degeneration, that is, the weakening of white 
matter tracts. The other one corresponds to neural hypoexcitability, 
producing a frustrated or “viscous” brain dynamics. As a limitation, 
works in the field of WMB reproduce high-order behavior without high- 
order mechanisms (Robiglio et al., 2025, Rosas et al., 2022). A prom
ising direction is to embed these mechanisms in WBM, e.g., by reducing 
the pairwise structural connectivity matrix to a small set of high-order 

structural connections.
Finally, brain disorders often present with overlapping clinical 

phenotypes despite arising from diverse biological, social, and cultural 
influences (Verdi et al., 2021). This phenotypic convergence shows the 
limitations of one-size-fits-all explanations (Ibanez et al., 2024c, Ibanez 
et al., 2024a). Rather than searching for universal mechanisms, it be
comes necessary to account for the multiple, interacting pathways that 
can give rise to similar outcomes. This recognition points out the need 
for individualized frameworks that can identify person-specific targets 
and disease trajectories. WBM may tackle this challenge by offering a 
computational platform that integrates multimodal data to simulate 
brain activity at the individual level. By grounding in mechanistic 
principles and adapting to diverse priors, WBM enable hypothesis 
testing, inference of hidden parameters, and virtual interventions 
tailored to each participant’s brain (Wang et al., 2024, Coronel-Oliveros 
et al., 2024, Deco et al., 2019, Sanz Perl et al., 2023), moving neuro
science toward a more precise, context-sensitive understanding of brain 
health and disease.

Fig3.tiff

Fig. 3. A framework for diversity-sensitive whole-brain modelling. (A) The general pipeline for building whole brain models. Note that the local heterogeneities 
and the structural connectivity matrix are empirical priors, while the local dynamics depends on the level of realisms to be explained. (B) Once whole-brain models 
are optimized to individual subjects or specific population, the inferred mechanisms can be used to classify different disorders. (C) Using the diversity-sensitive 
whole-brain models, specific treatments can be evaluated “in silico”, accelerating the discovery of personalized treatments.
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A synergistic computational proposal for personalized medicine

Diversity, reflected in genetics, education, socioeconomic status, and 
environmental exposures, shapes brain health across the lifespan. 
Instead of filtering it out, we need approaches that remain sensitive to 
such variability without losing meaningfulness. By combining empirical 
characterization with novel computational architectures, we can move 
beyond population averages and identify individual-level deviations 
that reflect both biological and contextual factors. This allows us to 
address diversity not as a limitation, but as a necessary dimension of 
precision neuroscience.

Our synergistic proposal consisted of combining all the methods 
presented here into a diversity-sensitive integrative computational 
approach. HOI provide a powerful way to detect subtle and distributed 
alterations in brain networks, offering sensitive biomarkers even for 
preclinical manifestations of brain diseases (Haghayegh et al., 2025), 
though this requires further exploration and validation. This sensitivity 
makes HOI valuable for understanding dementia progression, tracking 
healthy aging, and assessing neuromodulatory interventions (Gatica 
et al., 2025). By integrating HOI into normative modeling frameworks, 
such as brain clocks, we can derive biologically grounded, network- 
specific BAG that quantify deviations from healthy aging at the indi
vidual level. Then, WBM can take these deviations as input, simulating 
the underlying biophysical dynamics and inferring causal mechanisms 
to better classify the different trajectories associated with individual 

healthy or pathological ageing. Finally, these models enable “in silico” 
testing of which perturbations (stimulation targets or pharmacological 
manipulations) most effectively reduce BAG. This synergy transforms 
descriptive biomarkers into actionable mechanisms, creating a test
bench for identifying potential therapeutic interventions. This syner
gistic loop of HOI to clocks, clocks to WBM, WBM to interventions, 
constitutes a computational approach with the full potential of trans
forming brain health and personalized medicine (Fig. 4).

Limitations and future work

To conclude we acknowledge few critical points of the proposed 
pipeline that might limit the impact of the proposed pipeline. First, a key 
technical limitation in BAG analyses relies on age bias; the BAG can be 
biased by age-related regression to the mean (Beheshti et al., 2019, 
Treder et al., 2021). To solve this issue, one can employ correction 
methods like residualization or age-matched designs, though these may 
artificially inflate model performance if not applied cautiously (Butler 
et al., 2021). Second, BAG might capture, beyond disease, the accu
mulative burden of the environmental, socioeconomical and political 
exposomes (Hernandez et al., 2025, Moguilner et al., 2024a), fact that 
may constitute a challenge when comparing accelerated aging across 
different generations, countries and cultures.

A key limitation in investigating HOI through information theory 
and topological data analysis lies in the substantial computational cost, 

Fig4.tiff

Fig. 4. A synergistic computational framework for diversity sensitive personalized medicine. The figure illustrates a synergistic loop in which three com
plementary computational approaches (brain clocks, WBM, and HOI) synergize to enable a personalized characterization of brain health and disease, uncover 
underlying mechanisms, and inform targeted therapeutic interventions. Within this framework, brain data are first characterized using HOI analysis, providing rich, 
multi-scale descriptors of brain function. These descriptors can improve the estimation of biological brain age via brain clock models and the derivation of brain age 
gaps. Subsequently, whole-brain models provide mechanistic insights into how interventions, including pharmacological treatments, may positively influence brain 
health. Hypotheses generated through WBM are then validated experimentally, requiring new data collection, closing the cycle.
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which increases exponentially with the order of interactions considered. 
This challenge also extends to WBM, where exploring the parameter 
space becomes increasingly demanding as the number of parameters 
grows. While these computational demands must be carefully accounted 
for when applying our proposed framework, recent advances in algo
rithmic and computational tools have significantly improved our ca
pacity to manage such complexity, paving the way for future 
developments (Neri et al., 2024, Herzog et al., 2024b, Belloli et al., 
2025).

Another limitation concerns data availability and quality. Although 
our pipeline is designed to operate with currently available brain and 
behavioral datasets, integrating them into a closed-loop fashion without 
requiring major new infrastructure, its performance may be hindered by 
missing or low-quality data. This concern is particularly relevant for 
applications in low- and middle-income countries. Therefore, a critical 
direction for future work involves the development of novel data 
collection strategies and supporting infrastructures aimed at improving 
data quality and accessibility in these contexts. For these computational 
advances to have a real-world impact, they must be translated into tools 
suitable for clinical and community settings. Emerging technologies 
such as portable EEG (Barbey et al., 2022), low-field MRI (Arnold et al., 
2023), and wearable sensors (Byrom et al., 2018) offer unprecedented 
access to brain data outside of research laboratories. With these acqui
sitions setups combined with robust computational methods, even low- 
cost signals can be transformed into powerful indicators of individual 
brain health. For instance, EEG-based HOI has been proven to be sen
sitive enough to track the brain and subjective alterations under the 
effect of pharmacological interventions (Herzog et al., 2024a). This 
approach is promising for under-resourced settings, where access to 
high-end neuroimaging is limited.

Conclusion and final remarks

In summary, we have reviewed the core concepts underlying three 
distinct lines of research and proposed a strategy that integrates them 
into a unified pipeline. This approach aims to support personalized 
models and precision medicine. By combining our proposal with inno
vative data collection strategies, we envision the development of a 
closed-loop framework in which data acquisition, model-based infer
ence, and adaptive intervention are tightly integrated.

Software

All figures were generated using Python 3.12.3, MATLAB R2023a, 
and AI-assisted design tools. We employed the Matplotlib 3.8.4 and 
Seaborn 0.13.2 libraries. Brains with connections were created in using 
BrainNet Viewer (Xia et al., 2013). Figures were further refined using 
Inkscape.

CRediT authorship contribution statement

Carlos Coronel-Oliveros: Writing – review & editing, Writing – 
original draft, Visualization, Validation, Supervision, Methodology, 
Investigation, Formal analysis, Conceptualization. Marilyn Gatica: 
Writing – review & editing, Writing – original draft, Visualization, 
Validation, Supervision, Methodology, Investigation, Formal analysis. 
Rubén Herzog: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Supervision, Methodology, Investigation, 
Formal analysis. Matteo Neri: Writing – review & editing, Writing – 
original draft, Visualization, Validation, Supervision, Methodology, 
Investigation, Formal analysis, Conceptualization.

Acknowledgments

CCO is supported by a postdoctoral grant from BrainLat. MG ac
knowledges the funding support of the Institute for Advanced Study 

(IAS, Amsterdam), which provided not only financial support but also a 
stimulating intellectual environment that contributed significantly to 
the development of this work. MN has received funding from the French 
government under the ‘France 2030’ investment plan managed by the 
French National Research Agency (Agence Nationale de la Recherche; 
reference: ANR-16- CONV000X/ANR-17-EURE- 0029) and from the 
Excellence Initiative of Aix-Marseille University—A*MIDEX (AMX-19- 
IET- 004). RH was supported by the Ramón y Cajal Fellowship 
(RYC2022-035106-I) from FSE/Agencia Estatal de Investigación (AEI), 
Spanish Ministry of Science and Innovation, and the María de Maeztu 
Program for units of Excellence in R&D, grant CEX2021-001164-M/ 
10.13039/501100011033.

References

Al Zoubi, O., Ki Wong, C., Kuplicki, R.T., Yeh, H.-W., Mayeli, A., Refai, H., Paulus, M., 
Bodurka, J., 2018. Predicting age from brain EEG signals—a machine learning 
approach. Front. Aging Neurosci. 10.

Alber, M., Buganza Tepole, A., Cannon, W.R., De, S., Dura-Bernal, S., Garikipati, K., 
Karniadakis, G., Lytton, W.W., Perdikaris, P., Petzold, L., Kuhl, E., 2019. Integrating 
machine learning and multiscale modeling—perspectives, challenges, and 
opportunities in the biological, biomedical, and behavioral sciences. NPJ Dig. Med. 
2, 115.

Amato, L.G., Vergani, A.A., Lassi, M., Fabbiani, C., Mazzeo, S., Burali, R., Nacmias, B., 
Sorbi, S., Mannella, R., Grippo, A., 2024. Personalized modeling of Alzheimer’s 
disease progression estimates neurodegeneration severity from EEG recordings. 
Alzheim. Demen.: Diagn. Assess. Disease Monitor. 16.

Andrews-Hanna, J.R., Snyder, A.Z., Vincent, J.L., Lustig, C., Head, D., Raichle, M.E., 
Buckner, R.L., 2007. Disruption of large-scale brain systems in advanced aging. 
Neuron 56, 924–935.

Arbabyazd, L., Petkoski, S., Breakspear, M., Solodkin, A., Battaglia, D., Jirsa, V., 2023. 
State-switching and high-order spatiotemporal organization of dynamic functional 
connectivity are disrupted by Alzheimer’s disease. Network Neurosci. 1–32.

Archibong, V., Samson, O., Akeem, O., Abdullahi, M., Akaninyene, I., Micheal, I.U., 
Gashegu, J., 2025. Promoting Neuroscience Research and Education in Limited- 
resource Settings: Neuroscience-in-view at the University of Rwanda.

Argentieri, M.A., Amin, N., Nevado-Holgado, A.J., Sproviero, W., Collister, J.A., 
Keestra, S.M., Kuilman, M.M., Ginos, B.N., Ghanbari, M., Doherty, A., 2025. 
Integrating the environmental and genetic architectures of aging and mortality. Nat. 
Med. 1–10.

Arnold, T.C., Freeman, C.W., Litt, B., Stein, J.M., 2023. Low-field MRI: clinical promise 
and challenges. J. Magn. Reson. Imag. 57, 25–44.

Atkinson-Clement, C., Junor, A., Kaiser, M., 2025. Neuromodulation perception by the 
general public. Sci. Rep. 15, 5584.

Baecker, L., Dafflon, J., da Costa, P.F., Garcia-Dias, R., Vieira, S., Scarpazza, C., 
Calhoun, V.D., Sato, J.R., Mechelli, A., Pinaya, W.H.L., 2021a. Brain age prediction: 
a comparison between machine learning models using region- and voxel-based 
morphometric data. Hum. Brain Mapp. 42, 2332–2346.

Baecker, L., Garcia-Dias, R., Vieira, S., Scarpazza, C., Mechelli, A., 2021b. Machine 
learning for brain age prediction: introduction to methods and clinical applications. 
EBioMedicine 72.

Baez, S., Alladi, S., Ibanez, A., 2023. Global South research is critical for understanding 
brain health, ageing and dementia. Clin. Transl. Med. 13.

Baez, S., Hernandez, H., Moguilner, S., Cuadros, J., Santamaria-Garcia, H., Medel, V., 
Migeot, J., Cruzat, J., Valdes-Sosa, P.A., Lopera, F., González-Hernández, A., Bonilla- 
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garcía, H., González-hernández, A., Bonilla-santos, J., Güntekin, B., Babiloni, C., 
Abasolo, D., Di caterina, G., Yener, G.G., Escudero, J., Ochoa gómez, J.F., Soto- 
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