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Diversity in biological, social, and environmental factors plays a central role in shaping brain health and disease.
Distinct brain disorders frequently exhibit overlapping clinical phenotypes, despite arising from heterogeneous
biological and contextual mechanisms. This convergence challenges conventional, population-averaged ap-
proaches, which often fail to capture interindividual variability and lead to limited reproducibility, weak
translational potential, and inadequate tools for individual-level characterization. To address these gaps, we
propose an integrative computational approach that unites normative models of brain aging (“brain clocks™),
high-order interactions, and whole-brain modeling. Brain clocks estimate individualized brain health scores by
comparing observed brain features to normative age-based trajectories. Brain high-order interactions capture
functional dependencies beyond pairwise connectivity, offering sensitive biomarkers that reflect system-level
diversity in aging and neurodegeneration. Whole-brain modeling uses theory-based simulations of individual
brain dynamics, supporting the inference of latent mechanisms and the evaluation of targeted perturbations in
silico. Together, they form a synergistic approach: normative models provide personalized baselines, high-order
interactions enhance sensitivity to complex alterations, and whole-brain simulations enable causal insight and
guide potential interventions. By embedding inter-individual variability and contextual diversity into each
computational layer, this framework moves the field toward precision neuroscience, where assessment, under-
standing, and treatment are tailored to the individuals’ unique biological and social profiles.

Introduction

environmental exposomes (McGlinchey et al., 2024; Baez et al., 2023),
that are known to impact brain development and aging (Legaz et al.,

Diverse genetic backgrounds and socio-environmental exposomes,
spanning income inequality, chronic stress, nutritional deficits, and
exposure to violence, shape brain development and aging worldwide
(Legaz et al., 2024; Baez et al., 2024; Santamaria-Garcia et al., 2023).
This influence is particularly pronounced in the Global South, where
health systems are under-resourced and research participation remains
low (Parra et al., 2018; Baez et al., 2023). These regions are character-
ized by high levels of genetic diversity and distinct social and

2024; Baez et al., 2024; Santamaria-Garcia et al., 2023). Neuropsychi-
atric and other brain disorders are major contributors to global disability
and disease burden, particularly in aging populations (Santamaria-
Garcia et al., 2023; Ibanez et al., 2024b). Among brain disorders, de-
mentias alone already afflict over 55 million people globally, with
projections surpassing 139 million by 2050, and impose an even greater
burden in low- and middle-income regions, worsening disparities in care
and outcomes. Existing frameworks, however, lack integrative,
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mechanistic insight, yielding results that are often irreproducible and
poorly generalize across populations (Marek et al., 2022; Greene et al.,
2022). In response, integrative, multimodal computational approaches
offer a promising route: by combining advanced analysis of multimodal
large-scale neuroimaging data with statistical and biophysical model-
ling, such methods can more faithfully characterize healthy aging tra-
jectories, reveal context-specific deviations, and provide underlying
biological mechanisms (Marek and Laumann, 2024; Lewandowsky and
Oberauer, 2020).

There are significant barriers to implementing computational ap-
proaches in personalized medicine. Brain-derived data are often noisy,
short in duration, and collected using heterogeneous protocols, limiting
reproducibility and generalizability (Fan et al., 2014; Frohlich et al.,
2018). These issues are especially pronounced in under-resourced re-
gions, where access to advanced equipment and standardized methods is
limited (Yusuf et al., 2014; Archibong et al., 2025). However, beyond
data limitations, meaningful clinical applications require frameworks
that capture population-specific variability. Indeed, normative models,
used to identify deviations from typical brain development or aging
(Verdi et al., 2021), often fail to generalize when tested in diverse or
underrepresented populations (Greene et al., 2022). Their lack of
sensitivity to biological and environmental factors limits their applica-
tion in global health. Computational neuroscience offers powerful tools
to address these gaps. Advanced tools from network science, dynamical
systems, information theory, machine learning, and modeling tech-
niques can identify population-sensitive biomarkers and elucidate un-
derlying mechanisms of brain dysfunction (Baez et al., 2024; Hernandez
et al., 2024; Moguilner et al., 2024b; Santamaria-Garcia et al., 2023;
Moguilner et al., 2021). These approaches not only enable the detection
of disease-relevant deviations but also provide a window into the
mechanistic processes shaped by genetics and the exposome (Moguilner
et al., 2024b; Sanz Perl et al., 2023; Coronel-Oliveros et al., 2024; Ste-
fanovski et al., 2019; Ranasinghe et al., 2022), offering an integrative
approach that can account for diverse populations. These methods can
be remotely deployed and scaled across cohorts, supporting cost-
efficient, personalized, context-sensitive brain health modeling.

Here, we outline an integrated computational approach to improve
brain health research across diverse populations. This proposal includes:
(i) brain higher-order interactions (HOI) (Rosas et al., 2019; Herzog
et al., 2022; Gatica et al., 2022; Gatica et al., 2021; Battiston et al.,
2021), which capture complex multivariate dependencies in neural
systems beyond pairwise functional connectivity; (ii) brain clocks,
which operationalize normative brain aging and estimate deviations at
the individual level (Moguilner et al., 2024a; Tian et al., 2023); and (iii)
biophysical whole-brain models (WBM) (Coronel-Oliveros et al., 2024;
Lynn and Bassett, 2019; Deco and Kringelbach, 2014), which test
possible mechanisms underlying brain dynamics. By leveraging these
complementary approaches, we propose a methodological roadmap to
identify context-sensitive markers of brain health, aging, and disease,
and to inform mechanistic brain function models responsive to popu-
lation diversity. This synergy may lay the groundwork for a more
precision-oriented neuroscience, with broad implications for personal-
ized medicine.

Disentangling brain complexity through higher-order
interactions

Phenomena such as brain aging and dementia involve a complex
interplay of factors and are rarely due to dysfunction within isolated
brain regions (van den Heuvel and Sporns, 2019; Damoiseaux, 2017;
Betzel et al., 2014; Andrews-Hanna et al., 2007). Over the past two
decades, research has shifted from focusing on individual structures to
integrative approaches that examine the architecture of interactions
among brain regions and neurons (Barabasi, 2012). For the computation
of BAG, for instance, it is often employed the functional connectivity, i.e.
the connectivity between couples of brain regions is estimated as the
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correlation between their activities. The study of the brain as a network
has improved our ability to distinguish between cognitive and patho-
logical states and to identify the features of network organization that
support specific cognitive functions or contribute to disease (Greicius,
2008). However, traditionally, these strategies focused mainly on the
study of pairwise interactions, such as synapses between two neurons or
correlation between two brain areas. While pairwise interactions remain
central to studying brain dynamics, growing evidence supports that HOI,
involving three or more neurons or brain regions simultaneously, offers
deeper insights (Neri et al., 2025; Moguilner et al., 2024a; Gatica et al.,
2022).

HOI can be characterized from different angles. The two main ap-
proaches are based on topological data analysis and on information
theory, respectively (Fig. 1A) (Pope et al., 2025; Santoro et al., 2023;
Santoro et al., 2024; Patania et al., 2017). Topological data analysis
provides a framework to explore the higher-order architecture of brain
data by identifying geometrical shapes and patterns of in-
terdependencies with specific mathematical properties of interest
(Patania et al., 2017). One widely used tool in topological data analysis
is persistent homology, which focuses on topological features like cycles
(e.g., recurring pathways of functional connectivity) or voids (gaps in
network structure). This allows researchers to detect robust, multiscale
features that traditional pairwise analyses often overlook. Insights from
persistent homology can be used to build representations like the ho-
mological scaffold, that is, a network where the strength of each
connection reflects its involvement in high-order topological structures,
rather than just direct correlations between regions (Wasserman, 2018;
Giusti et al., 2016; Zomorodian and Carlsson, 2004).

Persistent homology has been applied to investigate a broad range of
cognitive and pathological conditions (Wang et al., 2023; Zhang et al.,
2022). The study of specific topological features, such as one-
dimensional cycles, which represent loops of interconnected brain re-
gions, has garnered particular interest in neuroscience (Neri et al.,
2024). They enable the characterization and prediction of functional
alterations associated with psychiatric and neurobiological conditions
such as schizophrenia (Stolz et al., 2021), epilepsy (Wang et al., 2023),
attention-deficit/hyperactivity disorder and autism spectrum disorder
(Lee et al., 2011), as well as to describe structural networks in healthy
individuals (Sizemore et al., 2018; Petri et al., 2014). Further, persistent
homology showed greater sensitivity in characterizing altered states of
consciousness than the traditional pairwise approaches (Petri et al.,
2014). Finally, recent research has begun to explore the dynamical
properties of homological scaffolds, demonstrating that they can
improve subject identifiability beyond pairwise approaches, high-
lighting their potential relevance for personalized medicine (Santoro
et al., 2024).

On the side of information theory, HOI are captured via measuring
the strength and quality of the statistical interaction (i.e., information
sharing modes) among groups of brain regions from their activity re-
cordings (e.g., fMRI or EEG) (Rosas et al., 2019). Moreover, different
modes of shared information can be distinguished, specifically, redun-
dancy (information shared across the group of variables) and synergy
(information available only when considering the joint state of the
whole group of variables) (Williams and Beer, 2010). Multiple metrics
and computational pipelines have been introduced to quantify redun-
dancy and synergy (Luppi et al., 2024; Neri et al., 2024; Timme et al.,
2011), and recent work introduced time-resolved extensions (Pope et al.,
2025; Luppi et al., 2022b), allowing for their temporal tracking and
revealing dynamic changes in brain coordination that static analyses
may miss.

Information theory-based HOI have been largely used to characterize
development and lifespan changes in the brain of healthy populations,
characterizing these phenomena in terms of synergy and redundancy.
For example, in infants, a recent study identified a developmental tra-
jectory in brain networks characterized by a shift from redundancy- to
synergy-dominated neural interactions (Varley et al., 2025), modulated
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Fig. 1. Topological, information-theoretic, and temporal representation of high-order interdependencies. The topological and high-order axes represent
distinct analytical perspectives, while the third axis captures their time-resolved dynamics. The intersections between these axes illustrate the integrated inter-
pretation. (A) Conceptual overview of the three representational domains. (B) Brain-related applications in fMRI or EEG data of healthy individuals and various
neurological conditions (e.g., aging, altered consciousness, Alzheimer’s disease) across the three axes.

by environmental enrichment, particularly through the mother-infant
connection. Across the lifespan, healthy aging is characterized by
increased redundancy and loss of network/brain specialization
(Camino-Pontes et al., 2018; Gatica et al., 2021). In neurodegeneration,
HOI have been used to provide an accurate multimodal (EEG and fMRI)
characterization of two forms of dementia: frontotemporal dementia
and Alzheimer’s disease (Herzog et al., 2022). On both modalities, de-
mentia was associated with both high-order hyper and hypo-
connectivity, but dominated by the former, consistent with pairwise-
based analysis pointing towards dysconnectivity in dementia (van den
Heuvel and Sporns, 2019). Moreover, HOI revealed specific patterns for
different dementia subtypes, providing higher sensitivity compared to
classical pairwise analyses (Herzog et al., 2022).

Finally, HOI can be employed to characterize the effects of non-
invasive neuromodulation. For example, HOI have been used to assess
the effects of low-intensity transcranial ultrasound stimulation, an
emerging technique able to target cortical and deep brain structures, on
brain dynamics (Darmani et al., 2022). Although the effects of neuro-
modulation remain unknown, HOI has proven effective in detecting
stimulation-induced perturbations that extend beyond the targeted re-
gions through functional networks in both macaques (Gatica et al.,
2024) and humans (Gatica et al., 2025). These effects are target-specific
and point to the potential of HOI for individualized assessment, moving
beyond pairwise group-level analyses to enhance the precision and
clinical relevance of neuromodulation at a single subject level.
Encouragingly, public perception of such non-invasive approaches is
generally positive (Atkinson-Clement et al., 2025), supporting their
future clinical adoption.

Altogether, HOI provides a novel dimension for analyzing brain
functional and structural data, enabling a more refined characterization
of individual subjects as well as inter-group differences across various
cognitive states and health conditions. Recent literature has emphasized
the potential of HOI to enhance our ability to interpret complex brain
data (Fig. 1B). In this context, HOI can be integrated with brain age

prediction models, such as brain clocks, to improve the assessment of
BAG (Moguilner et al., 2024a). Furthermore, the study of HOI, if com-
bined with WBM, offers a powerful framework for exploring the effects
of specific mechanisms at multiple interaction levels.

Diversity-sensitive brain clocks as normative models of brain
aging

Brain clocks are computational models that estimate an individual’s
brain age from neuroimaging data, providing a normative score of brain
health (Verdi et al., 2021; Moguilner et al., 2024a; Tian et al., 2023)
(Fig. 2). Brain clocks start using machine learning or deep learning al-
gorithms, such as support vector regression, Gaussian processes, or
graph-based neural networks, trained on large functional magnetic
resonance imaging (fMRI), electroencephalography (EEG), or MRI
datasets to predict chronological age (Baecker et al., 2021a; Alber et al.,
2019; Al Zoubi et al., 2018) (Fig. 2A). These models typically rely on
preprocessed features like connectivity matrices or HOI derived from
parcellated time series (Fig. 2B). After hyperparameter tuning and cross-
validation, they can be used to predict age from brain-derived data.
These models yield a brain age prediction (Baecker et al., 2021b), with
the brain age gap (BAG) calculated as the difference between predicted
and actual age (Moguilner et al., 2024a; Tian et al., 2023) (Fig. 2C).

The key output of these models is the BAG (Moguilner et al., 2024a;
Smith et al., 2019; Tian et al., 2023). A positive BAG indicates acceler-
ated brain aging, while a negative BAG reflects delayed aging relative to
the normative reference (Moguilner et al., 2024a; Smith et al., 2019;
Tian et al., 2023). These individualized scores allow for quantifying
deviations from expected brain aging trajectories and have emerged as
useful biomarkers for assessing brain health across diverse populations
(Moguilner et al., 2024a). Because brain clocks are grounded in
normative modeling, they support comparative analyses between in-
dividuals and groups, offering insight into how genetic, clinical, and
environmental factors shape brain aging across the lifespan (Tian et al.,
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Fig. 2. Functional brain clocks’ architecture. (A) Brain age models are trained using neuroimaging data (e.g., EEG, MEG, fMRI) from large cohorts of healthy
individuals. The trained models can predict the brain age of patients with brain-related conditions and individuals exposed to varying social determinants or in-
terventions. (B) Data preprocessing involves signal cleaning, normalization, and transformation into a common brain space (e.g., source projection and anatomical
parcellation) to extract regional time series. These features capture functional dynamics across brain networks. Non-functional data, for example, gray matter volume
and white matter hyperintensities, can be used to train brain clocks or can be mixed with functional data as well. (C) Functional connectivity matrices or graph
representations are derived from the time series and used to train machine learning models (e.g., support vector machines, graph neural networks) to predict brain
age. The difference between predicted and chronological age, known as the brain age gap (BAG), serves as an individualized index of brain aging. Positive BAG
suggest accelerated brain aging, while negative BAG indicate delayed or preserved aging trajectories.

2023; Verdi et al., 2021). When paired with multimodal neuroimaging Cole et al., 2017; Baecker et al., 2021b; Coronel-Oliveros et al., 2025b).

and electrophysiological data, brain clocks represent a scalable, simple, A possible way to extend brain clocks is by incorporating functional HOI
and practical framework for studying brain health in global settings, into models, improving their sensitivity to subtle and distributed alter-
including basic and clinical research. ations in brain dynamics (Moguilner et al., 2024a). This has proven

Brain clocks have been applied to characterize brain aging in the especially valuable in characterizing aging deviations across the de-
context of neurological and psychiatric disorders (Tian et al., 2023; Cole mentia continuum, including mild cognitive impairment, Alzheimer’s
et al., 2017; Moguilner et al., 2024a; Baecker et al., 2021b; Coronel- disease, and frontotemporal dementia, where increased BAG were
Oliveros et al., 2025b). They have shown consistent evidence of accel- observed, consistent with disease progression (Moguilner et al., 2024a).
erated brain aging across conditions such as schizophrenia, major These models based on HOI have also revealed marked differences be-
depression, epilepsy, and dementia-related syndromes (Tian et al., 202.3; tween populations from the Global North and South, detecting
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accelerated brain aging in Latinos versus the Global North participants,
which was modulated by biological sex, even after controlling for
technical and demographic confounds (Moguilner et al., 2024a;
Coronel-Oliveros et al., 2025b). Importantly, the robustness of these
brain clock models has been supported by harmonization pipelines
(Prado et al., 2023b, Prado et al., 2023a; Prado et al., 2022; Parra-
Rodriguez et al., 2022) that reduce variability arising from different
recording devices, acquisition protocols, and signal quality (Prado et al.,
2023b; Prado et al., 2023a; Prado et al., 2022; Parra-Rodriguez et al.,
2022).

Beyond disease classification, brain clocks can be applied to assess
the influence of lifestyle and interventions on brain aging (Tian et al.,
2023; Matziorinis et al., 2023, Rogenmoser et al., 2018, Baecker et al.,
2021b, Le et al., 2018, Richard et al., 2020, Pardoe et al., 2017). BAG
have been linked to modifiable risk factors such as alcohol consumption,
physical activity, and dietary patterns (Tian et al., 2023). For example,
individuals engaged in creative activities, such as playing musical in-
struments, dancing, visual arts, or strategy-based video games, exhibit
delayed brain aging across several domains (Coronel-Oliveros et al.,
2025a), through mechanisms related to neural plasticity (Sampaio-
Baptista and Johansen-Berg, 2017; Fields, 2015; Coronel-Oliveros et al.,
2024; Kowalczyk et al., 2018). Furthermore, using a pre/post-learning
design, brain clocks can detect short-term brain changes in response to
non-pharmacological interventions (Coronel-Oliveros et al., 2025a),
offering a framework to monitor the direct impact of experiential and
cognitive stimulation on brain health. In individuals with schizophrenia,
brain clocks have also been used to assess the effects of physical training,
revealing delayed brain aging following intervention, with BAG re-
ductions correlating with improvements in clinical symptoms (Yilmaz
et al., 2025). In this way, brain clocks can provide robust and clear
metrics about the effects of modifiable factors and pharmacological
therapies on brain health, contributing to delivering more precise in-
formation about preventive and tailored strategies for public health
policies.

Emerging directions in brain clock research aim to bridge these
models with other biological clocks, such as epigenetic, metabolomic,
and organ-specific clocks (Jia et al., 2024; Argentieri et al., 2025; Tian
et al., 2023) to build more integrative assessments of biological aging.
The integration of brain clock models with HOI biomarkers holds sig-
nificant potential for advancing our ability to characterize the neural
mechanisms underlying aging (Moguilner et al., 2024a; Gatica et al.,
2022; Gatica et al., 2021). This approach may facilitate earlier detection
and enable more personalized monitoring of individuals at elevated risk
for age-related cognitive decline. Moreover, advances in low-cost and
scalable technologies, such as portable EEG systems, enable the
deployment of brain clock models in resource-limited settings,
expanding their accessibility, especially in low and middle-income
countries. These portable devices, integrated with brain clocks, can
lead to the development of real-life health monitoring tools. Another
promising avenue is the development of region or network-specific brain
clocks that track aging within distinct functional or structural brain
systems (Leake, 2024). These mesoscopic-level models can reveal
disease-specific patterns of accelerated aging and may improve the
specificity and interpretability of brain health assessments across
neurological and psychiatric conditions.

Whole-brain modeling as a clinical test bench for interventions

Statistical and machine learning approaches offer powerful predic-
tive capabilities but remain as “black boxes”, limiting mechanistic in-
sights into brain dynamics and function. WBM provide a complementary
alternative and enable a mechanistic understanding of brain health,
disorders, accelerated aging, and population-level diversity (Deco and
Kringelbach, 2014). They provide a principled approach to link brain
structure and function, and have recently been called “an essential tool
for understanding brain dynamics” (Patow et al., 2024). To simulate
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brain activity, WBM leverage multimodal brain data by incorporating
neuroimaging and biophysical priors, such as brain anatomical (struc-
tural) connectivity, gene and protein expression maps, or atrophy maps.
The typical WBM framework involves using the model to reproduce
some empirical features of brain dynamics by optimizing free parame-
ters with a biological interpretation (Patow et al., 2024, Deco and
Kringelbach, 2014). In this way, it is possible to provide interpretability
and a causal framework where empirical patterns of healthy and path-
ological brain dynamics can be linked to specific neural mechanisms.
The goal would be to develop the so-called ‘digital twins’, specifically for
the brain (i.e. personalized virtual brains) (Wang et al., 2024, Lau-
benbacher et al., 2024). Digital brain twins are not replicas of the brain
per se, but models able to reproduce brain dynamics and allow testing
mechanistic hypotheses can be tested in silico (Wang et al., 2024). They
provide a means to identify, beforehand, subject-specific vulnerabilities
and potential treatment targets, which can then be tested in real
experimental settings.

WBM are typically built by integrating three key components
(Fig. 3A) (Lynn and Bassett, 2019, Deco and Kringelbach, 2014): (i)
empirical priors, (ii) local dynamics, and (iii) an objective function.
First, empirical priors serve as the anatomical and physiological scaffold
of the model. These include subject-specific or population-derived data
such as structural connectivity (from diffusion MRI), functional parcel-
lations, gene expression gradients, neurotransmitter receptor densities
(obtained from positron emission tomography; PET), or disease-specific
atrophy maps (Deco et al., 2018, Moguilner et al., 2024c, Luppi et al.,
2022a, Coronel-Oliveros et al., 2023, Shen et al., 2012). Second, local
dynamics are defined by mathematical models that generate the activity
of each brain region. These may range from pure phenomenological
models (Ponce-Alvarez and Deco, 2024, Cabral et al., 2014, Sampaio
Filho et al., 2024) to biophysical models (Deco et al., 2014, Jansen and
Rit, 1995), covering the whole range of neural activity from the neuron
level to large-scale brain dynamics (Lynn and Bassett, 2019). Finally, the
model is calibrated to match empirical brain activity by tuning a set of
biologically meaningful parameters, such as global coupling, local
excitation/inhibition balance, or average firing rates across regions. This
process aims to reproduce key brain features, including functional
connectivity, power spectra, and dynamic patterns. To guide this fitting,
an objective function is used, typically based on similarity measures, for
example, the correlation between empirical and simulated functional
connectivity.

Crucially, personalized models can act as mechanistic classifiers
(Fig. 3B), offering insights that go beyond symptom-based categoriza-
tion. By projecting empirical data onto a constrained space of neurobi-
ological mechanisms, they enable patient stratification based on
physiological parameters such as regional excitability, inhibition, or
disrupted anatomical connectivity. For example, when informed by
empirical priors, these models can capture how neurodegenerative
processes interact with biological sex, disease progression, and regional
vulnerability (Moguilner et al., 2024c). Simulations based on resting-
state EEG and fMRI have revealed regionally imbalanced excitation-
inhibition dynamics in dementia, with modulatory effects linked to
sex and sociodemographic context, underscoring how structural in-
equalities may shape brain health trajectories (Moguilner et al., 2024c,
Coronel-Oliveros et al., 2025b (manuscript accepted), Coronel-Oliveros
et al., 2025a, Coronel-Oliveros et al., 2025b). Dynamical models have
also been used to simulate transitions between pathological and healthy
brain states, identifying control targets that could guide neuro-
modulation (Sanz Perl et al., 2023). These frameworks are being
extended to simulate pharmacological interventions in silico, integrating
PET-based receptor maps to explore how neuromodulatory systems can
move the dynamics in patients with disorders of consciousness closer to
healthy brain dynamics (Mindlin et al., 2024). Together, these ap-
proaches illustrate how WBM can bridge neural mechanisms with
contextual diversity, supporting personalized assessments and inter-
vention strategies (Fig. 3C).
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Recent works have included HOI in whole-brain modelling pipelines.
These models have successfully been used to characterize the effects of
non-invasive neuromodulation (Gatica et al., 2025), and the alterations
of brain dynamics in healthy aging (Gatica et al., 2021). In this way,
WBM revealed that, in aging, the increase in brain redundancy (see
previous section) can be explained by a process of connectome degen-
eration (Gatica et al., 2022). Similar mechanisms have been proposed in
neurodegeneration (Coronel-Oliveros et al., 2024; Amato et al., 2024).
WBM have been used to reproduce HOI in dementia (Coronel-Oliveros
et al., 2024; Arbabyazd et al., 2023). These models suggest that brain
dynamics in Alzheimer’s disease and frontotemporal dementia emerge
from a combination of two different mechanisms. One mechanism
consisted of connectome degeneration, that is, the weakening of white
matter tracts. The other one corresponds to neural hypoexcitability,
producing a frustrated or “viscous” brain dynamics. As a limitation,
works in the field of WMB reproduce high-order behavior without high-
order mechanisms (Robiglio et al., 2025, Rosas et al., 2022). A prom-
ising direction is to embed these mechanisms in WBM, e.g., by reducing
the pairwise structural connectivity matrix to a small set of high-order
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structural connections.

Finally, brain disorders often present with overlapping clinical
phenotypes despite arising from diverse biological, social, and cultural
influences (Verdi et al., 2021). This phenotypic convergence shows the
limitations of one-size-fits-all explanations (Ibanez et al., 2024c, Ibanez
et al., 2024a). Rather than searching for universal mechanisms, it be-
comes necessary to account for the multiple, interacting pathways that
can give rise to similar outcomes. This recognition points out the need
for individualized frameworks that can identify person-specific targets
and disease trajectories. WBM may tackle this challenge by offering a
computational platform that integrates multimodal data to simulate
brain activity at the individual level. By grounding in mechanistic
principles and adapting to diverse priors, WBM enable hypothesis
testing, inference of hidden parameters, and virtual interventions
tailored to each participant’s brain (Wang et al., 2024, Coronel-Oliveros
et al., 2024, Deco et al., 2019, Sanz Perl et al., 2023), moving neuro-
science toward a more precise, context-sensitive understanding of brain
health and disease.
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A synergistic computational proposal for personalized medicine

Diversity, reflected in genetics, education, socioeconomic status, and
environmental exposures, shapes brain health across the lifespan.
Instead of filtering it out, we need approaches that remain sensitive to
such variability without losing meaningfulness. By combining empirical
characterization with novel computational architectures, we can move
beyond population averages and identify individual-level deviations
that reflect both biological and contextual factors. This allows us to
address diversity not as a limitation, but as a necessary dimension of
precision neuroscience.

Our synergistic proposal consisted of combining all the methods
presented here into a diversity-sensitive integrative computational
approach. HOI provide a powerful way to detect subtle and distributed
alterations in brain networks, offering sensitive biomarkers even for
preclinical manifestations of brain diseases (Haghayegh et al., 2025),
though this requires further exploration and validation. This sensitivity
makes HOI valuable for understanding dementia progression, tracking
healthy aging, and assessing neuromodulatory interventions (Gatica
et al., 2025). By integrating HOI into normative modeling frameworks,
such as brain clocks, we can derive biologically grounded, network-
specific BAG that quantify deviations from healthy aging at the indi-
vidual level. Then, WBM can take these deviations as input, simulating
the underlying biophysical dynamics and inferring causal mechanisms
to better classify the different trajectories associated with individual
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healthy or pathological ageing. Finally, these models enable “in silico”
testing of which perturbations (stimulation targets or pharmacological
manipulations) most effectively reduce BAG. This synergy transforms
descriptive biomarkers into actionable mechanisms, creating a test-
bench for identifying potential therapeutic interventions. This syner-
gistic loop of HOI to clocks, clocks to WBM, WBM to interventions,
constitutes a computational approach with the full potential of trans-
forming brain health and personalized medicine (Fig. 4).

Limitations and future work

To conclude we acknowledge few critical points of the proposed
pipeline that might limit the impact of the proposed pipeline. First, a key
technical limitation in BAG analyses relies on age bias; the BAG can be
biased by age-related regression to the mean (Beheshti et al., 2019,
Treder et al., 2021). To solve this issue, one can employ correction
methods like residualization or age-matched designs, though these may
artificially inflate model performance if not applied cautiously (Butler
et al.,, 2021). Second, BAG might capture, beyond disease, the accu-
mulative burden of the environmental, socioeconomical and political
exposomes (Hernandez et al., 2025, Moguilner et al., 2024a), fact that
may constitute a challenge when comparing accelerated aging across
different generations, countries and cultures.

A key limitation in investigating HOI through information theory
and topological data analysis lies in the substantial computational cost,
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Fig. 4. A synergistic computational framework for diversity sensitive personalized medicine. The figure illustrates a synergistic loop in which three com-
plementary computational approaches (brain clocks, WBM, and HOI) synergize to enable a personalized characterization of brain health and disease, uncover
underlying mechanisms, and inform targeted therapeutic interventions. Within this framework, brain data are first characterized using HOI analysis, providing rich,
multi-scale descriptors of brain function. These descriptors can improve the estimation of biological brain age via brain clock models and the derivation of brain age
gaps. Subsequently, whole-brain models provide mechanistic insights into how interventions, including pharmacological treatments, may positively influence brain
health. Hypotheses generated through WBM are then validated experimentally, requiring new data collection, closing the cycle.

133



C. Coronel-Oliveros et al.

which increases exponentially with the order of interactions considered.
This challenge also extends to WBM, where exploring the parameter
space becomes increasingly demanding as the number of parameters
grows. While these computational demands must be carefully accounted
for when applying our proposed framework, recent advances in algo-
rithmic and computational tools have significantly improved our ca-
pacity to manage such complexity, paving the way for future
developments (Neri et al., 2024, Herzog et al., 2024b, Belloli et al.,
2025).

Another limitation concerns data availability and quality. Although
our pipeline is designed to operate with currently available brain and
behavioral datasets, integrating them into a closed-loop fashion without
requiring major new infrastructure, its performance may be hindered by
missing or low-quality data. This concern is particularly relevant for
applications in low- and middle-income countries. Therefore, a critical
direction for future work involves the development of novel data
collection strategies and supporting infrastructures aimed at improving
data quality and accessibility in these contexts. For these computational
advances to have a real-world impact, they must be translated into tools
suitable for clinical and community settings. Emerging technologies
such as portable EEG (Barbey et al., 2022), low-field MRI (Arnold et al.,
2023), and wearable sensors (Byrom et al., 2018) offer unprecedented
access to brain data outside of research laboratories. With these acqui-
sitions setups combined with robust computational methods, even low-
cost signals can be transformed into powerful indicators of individual
brain health. For instance, EEG-based HOI has been proven to be sen-
sitive enough to track the brain and subjective alterations under the
effect of pharmacological interventions (Herzog et al., 2024a). This
approach is promising for under-resourced settings, where access to
high-end neuroimaging is limited.

Conclusion and final remarks

In summary, we have reviewed the core concepts underlying three
distinct lines of research and proposed a strategy that integrates them
into a unified pipeline. This approach aims to support personalized
models and precision medicine. By combining our proposal with inno-
vative data collection strategies, we envision the development of a
closed-loop framework in which data acquisition, model-based infer-
ence, and adaptive intervention are tightly integrated.

Software

All figures were generated using Python 3.12.3, MATLAB R2023a,
and Al-assisted design tools. We employed the Matplotlib 3.8.4 and
Seaborn 0.13.2 libraries. Brains with connections were created in using
BrainNet Viewer (Xia et al., 2013). Figures were further refined using
Inkscape.
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