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We introduce group-based compartmental modeling (GBCM), a mean-field framework for irreversible con-
tagion in higher-order networks that captures structural heterogeneity and correlations across group sizes. Val-
idated through numerical simulations, GBCM analytically disentangles the role of each interaction order to
the global epidemic dynamics, revealing how heterogeneity and inter-order correlations jointly shape the onset
of outbreaks and the emergence of explosive dynamics. Crucially, we show that inter-order correlations drive
the system along distinct pathways to explosive contagion—emerging universally across both irreversible and
reversible spreading processes.

The propagation of contagions and behaviors in complex
systems is often driven by interactions that involve groups of
more than two individuals [1–3]. Such higher-order mech-
anisms can generate striking collective phenomena, includ-
ing explosive transitions and multistability across diverse sys-
tems [4–6]. The organization of group interactions—through
both degree distributions and their microscopic arrange-
ment—plays a decisive role in shaping system behavior [7–
12], with hubs in higher-order structures exerting a significant
influence on epidemic onset and evolution [13, 14]. Yet, de-
veloping analytically tractable models that capture both struc-
tural correlations and degree heterogeneity remains a funda-
mental challenge.

In this Letter, we develop a group-based mean-field frame-
work for the Susceptible–Infected–Recovered (SIR) dynamics
on higher-order networks. Our model captures two key struc-
tural features: heterogeneity in hyperdegree distributions and
the inter-order hyperedge overlap [15], which quantifies cor-
relations across interaction orders. By deriving the epidemic
threshold and disentangling the roles of two- and three-body
interactions, we show how these features jointly shape epi-
demic onset. We find that strong heterogeneity can trigger
explosive contagion, while overlap modulates the early-stage
activation of higher-order spreading pathways. These predic-
tions, validated by Gillespie simulations on synthetic and em-
pirical hypergraphs, also extend to SIS dynamics. Altogether,
our results reveal the structural and dynamical mechanisms
underlying abrupt contagion transitions and provide a unify-
ing framework for spreading processes in complex systems.

Modeling higher-order interactions.—We model a system
with higher-order interactions as a hypergraph H = (N , E),
where N is the set of N = |N | nodes and E the set of E = |E|
hyperedges (groups of nodes). Each hyperedge e ∈ E , a sub-
set of N , has order m = |e| − 1, with m = 1 for pairwise
links, m = 2 for three-body interactions, etc. We denote by
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Em the set of m-hyperedges, and by km the generalized de-
gree (or k-hyperdegree), i.e., the number of m-hyperedges at-
tached to a node [16]. Let P (km) denote the m-hyperdegree
distribution, with first two moments ⟨km⟩ and ⟨k2m⟩ captur-
ing mean connectivity and heterogeneity. These distributions,
however, do not capture the microscopic arrangement of hy-
peredges or correlations across orders. To quantify such cor-
relations we compare a structure to the inclusion property of
simplicial complexes [17]. Let F(En) denote the set of m-
cliques contained in n-hyperedges. For two orders m < n,
the inter-order hyperedge overlap is [15]

αm,n =

∣∣Em ∩ F(En)
∣∣∣∣F(En)

∣∣ , (1)

where the numerator counts m-cliques in n-hyperedges that
are also m-hyperedges, normalized by the total number of
such cliques. Thus αm,n ∈ [0, 1], with αm,n = 0 for no over-
lap and αm,n = 1 when all m-cliques in n-hyperedges are
also m-hyperedges. By definition, αm,n = 0 for m > n. Em-
pirical higher-order networks display a broad range of αm,n

values, as shown in Sec.I of the Supplemental Material (SM)
[18].

Group-based compartmental modeling.—To understand
how correlations between different orders of interactions af-
fect the onset and outcome of outbreaks, we propose a math-
ematical framework that explicitly includes the inter-order
overlap of Eq. (1) as a free parameter. Building on the
edge-based compartmental modeling approach for SIR on net-
worked systems [19–22], we generalize it to capture infection
within groups of arbitrary order m = 1, 2, . . . ,M . Each order
m has infection rate βm, describing the rate at which a suscep-
tible node is infected through a “contagious” m-hyperedge,
i.e., one where all other m nodes are infectious. The recov-
ery rate is µ, and recovered nodes cannot be reinfected. We
refer to this framework as group-based compartmental mod-
eling (GBCM). It relies on two key quantities for a test node
u: θm(t), the probability that u has not been infected by a
random infectious m-hyperedge at time t; and Φ

(s,i)
m (t), the
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FIG. 1. Group-based compartmental modeling. (a) Graphical rep-
resentation of the model for M = 2. A test node u is connected
to four infectious (red) and two susceptible (blue) nodes via two 1-
hyperedges and two 2-hyperedges. Arrows show the different chan-
nels of infection through the rate parameters in Eq. (4). (b) Motifs
representing three values of inter-order hyperedge overlap α: 0, 0.5,
and 1. (c) Final epidemic size (R∞) as a function of infectivity λ1,
with λ2 = 3. Model results (lines) are compared with Gillespie
simulations (markers) on Scale-Free and an Erdős-Rényi simplicial
complexes, respectively with 2,000 and 10,000 nodes (see charac-
teristics in Table I).

probability that u is susceptible and part of an m-hyperedge
with s susceptible and i infected nodes. With these, θm(t) =∑

(s,i)∈Ω Φ
(s,i)
m (t), where Ω = {(s, i) | 0 ≤ s+ i ≤ m}. The

Φ
(s,i)
m describe epidemic progression within m-hyperedges,

from fully susceptible to fully infected, and their dynamics
depend on αm,n, which couples contagion across orders. For
simplicity we omit time dependence henceforth. The evolu-
tion of θm follows θ̇m = −βmΦ

(0,m)
m . To account for the

distribution of m-hyperedges around a node, we use probabil-
ity generating functions (PGFs) [23, 24]. The PGF of order m
is

Gm(θm) =

∞∑
km=0

P (km)θkm
m . (2)

Assuming independence among orders, the fraction of sus-
ceptibles is ⟨S⟩ =

∏M
m=1 Gm(θm). This formalism naturally

suits SIR, where irreversibility permits a mapping to bond per-
colation [23, 25]. Unlike classical dyadic SIR, it disentangles
the contribution of each order. By differentiating ⟨S⟩, separat-
ing the contributions by order of interaction, and incorporating
a recovery term, we obtain

˙⟨Im⟩ = −G′
m(θm)θ̇m

∏
n ̸=m

Gn(θn)− µ⟨Im⟩. (3)

Finally, the total densities of infected and recovered popu-
lations at time t are, respectively, ⟨I⟩ =

∑M
m=1⟨Im⟩ and

⟨R⟩ = 1− ⟨S⟩ − ⟨I⟩. To fully appreciate and explicitly show
the components of the GBCM, we restrict our analysis to in-
teractions up to order m ≤ 2 (see Appendix for the general
formulation up to any M ). In this case, the inter-order hyper-
edge overlap reduces to α1,2 ≡ α, which quantifies the extent

to which 2-body interactions are contained within 3-body in-
teractions. The formalism thus captures both the independent
contributions of different orders and their interplay through
α, as illustrated in Fig. 1(a). In addition, Fig.1(b) illustrates
three simple scenario corresponding to different values of the
inter-order hyperedge overlap α. To further simplify the no-
tation, we define G(θ1) ≡ G1(θ1), H(θ2) ≡ G2(θ2), and
similarly ϕS ≡ Φ

(1,0)
1 , ϕI ≡ Φ

(0,1)
1 , ϕSI ≡ Φ

(1,1)
2 , and

ϕII ≡ Φ
(0,2)
2 . Under these assumptions, the resulting sys-

tem of coupled equations for the GBCM with M = 2 is given
by

θ̇1 = −β1ϕI ; θ̇2 = −β2ϕII ,

ϕ̇I = B1ϕS − (β1 + µ)ϕI − 2αβ1ϕII ,
˙ϕSI = 2B2ϕSS − (B2 + µ)ϕSI − 2αβ1ϕSI ,
˙ϕII = B2ϕSI − (β2 + 2µ)ϕII + αβ1(ϕSI − 2ϕII),

(4)

where ϕS = G′(θ1)H(θ2)/⟨k1⟩ and ϕSS =
(G(θ1)H

′(θ2)/⟨k2⟩)2 (see Appendix for their detailed
derivation), with ⟨km⟩ =

∑
km

kmP (km), corresponding
to the first derivative of the PGF, defined in Eq. (2), when
θm(t) = 1. Moreover, B1 and B2 in Eq. (4) represent the rate
of infection from external 1- and 2-hyperedges, respectively
(see Appendix for their detailed expressions). Notice how α
appears explicitly in the equations for the evolution of ϕI ,
ϕSI and ϕII . In particular, the term −2αβ1ϕSI accounts for
the potential infections coming from pairwise interactions
nested within 2-hyperedges—with similar arguments for
the other terms involving α. This formulation allows us to
incorporate dynamical correlations arising from the embed-
ding of 1- within 2-hyperedges, without system closures
tailored to specific microscopic configurations. Henceforth,
we use the rescaled infectivity parameters λ1 = ⟨k1⟩β1/µ
and λ2 = ⟨k2⟩β2/µ [5]. We validate our approach by
comparing the final epidemic size (R∞) predicted by the
GBCM with averages from 500 Gillespie simulations over
different higher-order networks with α = 1 (i.e., simplicial
complexes), see Fig. 1(c). The structures used to run simu-
lations exhibit Scale-Free (SF) and Erdős-Rényi-like (ER)
hyperdegree distributions at both orders m = 1 and m = 2,
with their characteristics summarized in Table I. The ER
and SF simplicial complexes were generated following [5]
and [26], respectively. In both cases, the GBCM predictions
closely match the simulations, demonstrating the model’s
ability to capture the dynamics of higher-order systems.

The role of inter-order hyperedge overlap.— Here, we

Higher-order networks ⟨k1⟩ ⟨k2
1⟩ ⟨k2⟩ ⟨k2

2⟩
Regular 6.00 42.00 1.00 2.00
Erdős-Rényi 11.83 169.51 2.90 14.30
Scale-Free 11.98 649.76 9.00 610.10

TABLE I. Characteristics of different higher-order networks consid-
ered in the study, where ⟨k1⟩ and ⟨k2⟩ denote the mean hyperdegree
for pairwise and higher-order interactions, respectively, while ⟨k2

1⟩
and ⟨k2

2⟩ are the second moments of the hyperdegree distributions.
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FIG. 2. The role of inter-order hyperedge overlap. Epidemic
thresholds in the (λ1, λ2) plane predicted by the GBCM, Eq. (15):
(a) for simplicial complexes (α = 1) in Table I; (b) for Erdős-Rényi
hypergraphs with different α values. (c) Epidemic threshold λ∗

1 as
a function of α (fixed λ2 = 3) for the three classes of hypergraphs.
(d-f) Comparison of the final epidemic size R∞ from the GBCM
model (lines) and simulations (markers) on ER hypergraphs with
N = 10,000 nodes, for different α. In (d) we show R∞ against λ1

for different overlap values. In (e) and (f), we consider the extreme
cases α = 0 and α = 1 and show R∞ disaggregated by contribu-
tions from 1- and 2-hyperedges. In all cases, µ = 1.

study the stability of the disease-free state of Eqs. (4) by eval-
uating the Jacobian at (θ1, θ2, ϕI , ϕSI , ϕII) = (1, 1, 0, 0, 0).
Despite the model’s complexity, we find an analytical ex-
pression for the epidemic threshold, revealing its explicit
dependence on the interplay between structural overlap and
hyperdegree heterogeneity. This maps the critical relationship
between λ1 and λ2 at the epidemic threshold (see Appendix
for details). Figure 2(a) shows the epidemic threshold in the
(λ1, λ2) plane for simplicial complexes (α = 1) with three
heterogeneity levels (Table I). Dashed lines indicate λ1 = λc

1

where λ2 → ∞, showing no outbreak is possible if λ1 ≤ λc
1

regardless of λ2; thus pairwise transmission dominates. Fig.
2(b) shows ER hypergraphs with varying overlap, where
increasing α consistently lowers the epidemic threshold. To
explore the threshold’s α-dependency, we rearrange it as a
third-order polynomial in λ1. Its solution λ∗

1, the critical λ1

for epidemic onset, can be approximated using an asymptotic
expansion for small α (see Sec.II of the SM for details),
yielding

λ∗
1 ≈ ⟨k1⟩2

∆1
− αλ2

2⟨k1⟩5⟨k2⟩
∆3

1 (2⟨k2⟩+ λ2)
, (5)

where ∆m = Πm − ⟨km⟩ and Πm = ⟨k2m⟩ − ⟨km⟩ =∑
km

km(km − 1)P (km). The latter expression represents
the second derivative of the PGF evaluated at θm(t) = 1. It
is worth noting that ∆m represents the difference between the
second and first derivatives of the PGF at θm(t) = 1. This re-
sult highlights that stronger inter-order correlations (α > 0)
increase the system’s susceptibility to outbreaks. Further-
more, when α ̸= 0, λ∗

1 depends on the strength of higher-order
interactions (λ2), in line with with recent findings [27, 28].
Additionally, Eq. (5) demonstrates that greater heterogeneity
in the pairwise degree distribution (via ∆1) reduces the in-
fluence of higher-order interactions on λ∗

1. Fig. 2(c) shows
the dependence of the exact epidemic threshold λ∗

1 on α, nu-

merically evaluated from the Jacobian matrix of the system in
Eq.(4), with λ2 = 3; the dashed-dotted line denotes the α = 0
baseline.

We next examine the final epidemic size. Figure 2(d-f)
compares GBCM predictions with averages from 500 simu-
lations on ER hypergraphs with varying α. To generate a
continuous spectrum of higher-order networks with overlap
α ∈ [0, 1], we rewire the 1-hyperedge layer of the ER simpli-
cial complex while preserving its 1-hyperdegree distribution
and 2-hyperedge structure (see Sec. IV of the SM for details).
Figure 2(d) confirms that the GBCM accurately predicts the
epidemic threshold, which depends on inter-order overlap: in-
creasing α anticipates epidemic onset. Figures 2(e)-(f) dis-
entangle pairwise and higher-order contagion contributions
to final epidemic size for α = 0 and α = 1, respectively.
For α = 0, three-body transmission requires infected node
buildup to activate. For α = 1, both contagion modes activate
simultaneously at λ∗

1, as predicted by Eq. (15).
High heterogeneity of group interactions leads to explosive

phenomena.—We systematically analyze how heterogeneity
in hyperdegree distributions affects epidemic dynamics, ex-
amining both final epidemic size and temporal evolution. We
consider three synthetic hypergraphs (N = 10,000 nodes)
with uncorrelated negative binomial hyperdegree distribu-
tions [29], independently tuning 2-hyperdegree variance while
fixing mean degrees. The mean pairwise degree is ⟨k1⟩ ≈ 12
with ⟨k21⟩ = 327. For three-body interactions, ⟨k2⟩ ≈ 9 with
heterogeneity levels ∆2 ≈ [100, 250, 600], measuring the dif-
ference between second and first PGF derivatives at θ2(t) = 1
(see Sec.V of the SM). All cases have zero inter-order overlap
(α = 0). Figure 3(a) shows final epidemic size versus λ1 for
λ2 = 6 (β2 ≈ 0.66) across three heterogeneity levels. GBCM
predictions match averages over 500 simulations across all
levels. Increasing ∆2 produces more abrupt epidemic tran-
sitions. Figures 3(b)-(c) decompose 1- and 2-hyperedge con-
tributions to final epidemic size for ∆2 ≈ 250 and ∆2 ≈ 600,
respectively. Both show double transitions due to α = 0. At
λ∗
1 (epidemic threshold from Eq. (15)), the system exhibits

continuous transitions driven by 1-hyperedges. Figure 3(b)
shows a secondary increase at λ̂1, marking higher-order con-
tagion onset. At higher heterogeneity (∆2 ≈ 600), Fig. 3(c)
reveals hybrid transitions dominated by abrupt 2-hyperedge
contributions. Figure 3(d) confirms that increasing ∆2 sharp-
ens transitions, driving explosive phenomena without inter-
order overlap. In Sec.VI of the SM we provide additional
evidence of explosive dynamics in empirical higher-order net-
works.

To better understand the mechanism leading to explosive
contagion, we examine the temporal evolution of the epi-
demic. Fixing the pairwise infectivity at λ1 = 1 and vary-
ing λ2, we track the prevalence ρ over time, again decom-
posing the contributions to the infection from different or-
ders via the GBCM. Figure 3(e-h) show that for low het-
erogeneity (∆2 ≈ 100), infections via 2-hyperedges are de-
layed until parwise interactions generate a critical mass of in-
fectious nodes. For high heterogeneity (∆2 ≈ 600), shown



4

(a)

(c)

(b)

(d)

(e) (i)

(f) (j)

(g) (k)

(h) (l)

FIG. 3. High heterogeneity of group interactions leads to ex-
plosive phenomena. (a) Final epidemic size (R∞) from GBCM
predictions (solid lines) and Gillespie simulations (circles), show-
ing excellent agreement. (b-d) Illustration of the double-transition
process: (b-c) compare R∞ for different heterogeneity levels in 2-
hyperedges, where (c) highlights continuous transitions at λ∗

1 (pair-
wise interactions) and abrupt jumps at λ̂1 (high heterogeneity). (d)
Contribution of 2-hyperedges to R∞ for increasing ∆2, revealing
sharper transitions with increasing heterogeneity. (e-l) Temporal evo-
lution of the total prevalence ρ (orange) and contributions from pair-
wise (blue, 1-HE) and three-body (red, 2-HE) interactions with vary-
ing λ2. Curves are obtained via the GBCM for hypergraphs featuring
negative binomial hyperdegree distributions (α = 0) with ∆2 ≈ 100
(e-h) and ∆2 ≈ 600 (i-l).

in Fig. 3(i-l), higher-order contagion rapidly amplifies epi-
demics, with 2-hyperedges driving the explosive growth once
pairwise spreading passes a threshold.

An intuitive explanation for explosive contagion can be
gained by considering the density of infected individuals
through 2-hyperedges, given by ˙⟨I2⟩ = −G(θ1)H

′(θ2)θ̇2 −
µ⟨I2⟩. Since explosive behavior occurs when ˙⟨I2⟩ → ∞ at
some time t̂ > 0, the condition for the critical value λ̂2 reads

λ̂2 ≈ 2⟨k2⟩2 (⟨k1⟩+ αλ1)

⟨k1⟩
(
∆2ϕ̂SI + ⟨k2⟩(ϕ̂SI − 1)

) , (6)

where ϕ̂SI represents the critical density of ϕSI required
to activate contagion via 2-hyperedges, constrained by ϵ ≤
ϕ̂SI ≤ 1 (see Sec.IV of the SM for the full derivation). This
result shows that higher values of ∆2 reduce the critical λ̂2,
making explosive behavior more likely, whereas lower ∆2

suppress such phenomena by increasing λ̂2. Despite the lack
of an exact analytical expression for ϕ̂SI , Eq. (6) provides
an important explanation of the role of heterogeneity in the
three-body interactions, both from a structural and dynamical
viewpoint.

Inter-order hyperedge overlap modulates early-stage con-
tributions to explosive contagion.—Having shown how hy-
perdegree heterogeneity triggers abrupt epidemic surges, we
investigate how inter-order hyperedge overlap shapes early-
stage dynamics leading to explosive behavior. We exam-
ine SF and ER hypergraphs in Table I, exploring the full
range of α under two heterogeneity levels. Figures 4(a)-
(b) and (d)-(e) show GBCM-predicted temporal evolution
of infected densities for SF and ER cases at α = 0 and
α = 1. As expected, high heterogeneity of SF produces

FIG. 4. Inter-order hyperedge overlap modulates early-stage
contributions to explosive contagion. Temporal evolution of preva-
lence from GBCM for Scale-Free (a-b) and Erdős-Rényi (d-e) hyper-
graphs (see Table I), for λ2 = 15, with α = 0 and α = 1. Values of
λ1 are chosen to yield R∞ = 0.8 in each case. Vertical lines mark
the time t† at which the total ρ(t†) = 0.01. (c) early-stage contribu-
tions η1 (blue) and η2 (red) evaluated at t† across the (λ1, α) space
for SF hypergraphs. The same in (f) as a function of α for SF (solid
lines, λ1 = 0.4) and ER (dashed lines, λ1 = 1.6), both at λ2 = 15.

explosive dynamics. However, overlap effects are clear: for
α = 0, 2-hyperedge contagion activation requires critical
pairwise infection density to trigger group transmission. For
α = 1, pairwise and higher-order components emerge si-
multaneously, suggesting overlap catalyzes early higher-order
contagion activation. This behavior links to the divergence
˙⟨I2⟩ → ∞ at t = t̂, marking explosive higher-order-driven

onset. For t < t̂, spread is pairwise-driven; at t ≥ t̂, conta-
gion becomes higher-order dominated. To quantify this tip-
ping point empirically, we define early-stage contributions
ηm = ρ̄m(t†)/

∑
m ρ̄m(t†), where ρ̄m(t) denotes cumu-

lative infection density via m-hyperedges (ignoring recov-
ery), evolving as ˙̄ρm = −G′

m(θm)θ̇m
∏

n̸=m Gn(θn). We
set t† when total prevalence reaches ρ(t†) = 0.01, repre-
senting macroscopic contagion onset. Though t† does not
coincide with the singularity at t̂, ηm provides a practical
model-grounded proxy for the interaction order seeding out-
breaks. Figure 4(c) shows early-stage contributions η1 (blue)
and η2 (red) across the (λ1, α) plane for SF hypergraphs
(λ2 = 15). While pairwise infections dominate most re-
gions, three-body interactions contribute significantly—even
dominating—at high overlap and low λ1 (near threshold).
Importantly, all regimes exhibit explosive transitions regard-
less of activation mechanism; overlap reshapes but does not
suppress explosive contagion emergence. Figure 4(f) sum-
marizes η1 and η2 versus α for SF (solid) and ER (dashed)
structures. In low-heterogeneity ER, increasing α directly en-
hances early 2-hyperedge infections given large λ2. In SF,
overlap influence is nuanced: at high α, 1- and 2-hyperedges
contribute comparably; at low α, pairwise infections domi-
nate initially with group transmission igniting later. These
findings clarify hyperedge overlap’s distinct role in shaping
microscopic spreading routes by regulating higher-order con-
tagion activation timing and its contribution to explosive con-
tagion. In Secs.VII and VIII of the SM we extend this anal-
ysis across broader parameter space and confirm the effects
through Gillespie simulations, including SIS dynamics.
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Conclusions.—In this Letter, we introduced a group-based
mean-field framework for irreversible contagion on higher-
order networks, incorporating both hyperdegree heterogeneity
and inter-order correlations. Applied to two- and three-body
interactions, it predicts epidemic thresholds, disentangles the
contributions of each order, and explains explosive transitions
arising from strong higher-order infectivity and group hetero-
geneity. Analytical results and Gillespie simulations show that
inter-order overlap modulates the onset of higher-order conta-
gion, shaping the microscopic pathways to explosive spread-
ing. Although we focused on SIR dynamics for analytical
tractability, the findings extend to reversible SIS processes,
highlighting their generality. Extending the GBCM formalism
to fully reversible dynamics remains an open challenge, as the
breakdown of the percolation mapping may require approxi-
mations that compromise accuracy. Overall, our framework
underscores the importance of higher-order features in conta-
gion dynamics and provides a basis for more advanced models
that incorporate structural, adaptive [30], or temporal [31, 32]
effects, as well as the interplay of multiple interacting pro-
cesses [33–35].
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END MATTER

Appendix A: Group-based approximation modeling up to
order M .— We consider a Susceptible-Infected-Recovered
(SIR) process with higher-order interactions of size m =
1, . . . ,M . Each order m has an associated infection rate
βm, which represents the rate at which a susceptible node be-
comes infected when connected to an m-hyperedge where all
m neighbors are infected. The recovery rate is given by µ.

To describe the infection dynamics in a general form,
we define θm(t) as the probability that, at time t, a test
node u has not been infected through a randomly chosen
m-hyperedge from those it belongs to. If the test node u
is connected to km distinct m-hyperedges, then the proba-
bility that u has not been infected through any of them by
time t is given by θm(t)km . Using the probability generat-
ing function (PGF) Gm(x) of the m-hyperedge degree dis-
tribution, the probability that a randomly chosen node has
not received the disease via any m-hyperedge is given by
Gm(θm(t)) =

∑∞
km=0 P (km)θm(t)km . The probability of

a node being susceptible at time t is the product of these prob-
abilities across all orders of interaction, which corresponds to
the average susceptible population:

⟨S(t)⟩ =
M∏

m=1

Gm(θm(t)) =

M∏
m=1

∞∑
km=0

Pm(km)θm(t)km .

(7)
If a test node u is in an m-hyperedge containing s suscepti-

ble, i infected, and m− (s+ i) recovered neighbors, the prob-
ability that u remains uninfected through this m-hyperedge is
defined as Φ(s,i)

m (t). Thus, θm(t) can be decomposed as:

θm(t) =
∑

(s,i)∈Ω

Φ(s,i)
m (t), (8)

where Ω = {(s, i) | 0 ≤ s+ i ≤ m}. For example, Φ(1,3)
5 (t)

represents the probability that a test node is in a 5-hyperedge
with 1 susceptible, 3 infected, and 1 recovered neighbor, and
has not been infected up to time t.

The temporal evolution of θm(t) is governed by:

θ̇m(t) = −βmΦ(0,m)
m (t), (9)

since infections through an m-hyperedge occur only when all
its m neighbors are infected. The evolution of Φ(0,m)

m (t) de-
pends on transitions between all Φ(s,i)

m (t) states in Ω. These
transitions are influenced by external infections, internal in-
fections, and recoveries, leading to recursive dependencies.
The recursive dependencies lead to the variable Φ

(m,0)
m , rep-

resenting the probability that a test node u has not been in-
fected via an m-hyperedge because all its members remain
susceptible. To compute Φ

(m,0)
m , consider a neighbor v of

node u within an m-hyperedge. The degree of v follows
the excess distribution Qm(km) = kmP (km)/⟨km⟩. The
probability that node v has not been infected via any of its
other m-hyperedges is θkm−1

m , and that it remains suscepti-
ble through interactions of any other order n is θkn

n , where
Qn(kn) = Pn(kn). Combining these factors, the probability
that all m nodes in an m-hyperedge to which u belongs are
susceptible is:

Φ(m,0)
m =

G′
m(θm)

⟨km⟩
∏
n ̸=m

Gn(θn)

m

. (10)

At the start of the epidemic, θm(t) ≈ Φ
(m,0)
m (t) ≈ 1 for

any m. Transitions from Φ
(m,0)
m to Φ

(m−1,1)
m occur due to ex-

ternal infections, where a susceptible neighbor of u becomes
infected through another group. The rate of external infections
for an m-hyperedge, denoted Bm, can be expressed as:

Bm = −
G′′

m(θm)
∏

n ̸=m Gn(θn)θ̇m +
∑

n ̸=m G′
m(θm)G′

n(θn)
∏

p ̸=m,n Gp(θp)θ̇n

G′
m(θm)

∏
n ̸=m Gn(θn)

. (11)

The probabilities Φ(s,i)
m (t) are treated as compartments, and

the transitions between them are described by a set of dif-
ferential equations. The rate of change Φ̇

(s,i)
m accounts for

eight terms: five decreasing (external infection of suscepti-
ble neighbors, internal infection of susceptible neighbors from

lower orders and higher orders, internal infection of test node
and recovery) and three increasing (infection of a susceptible
neighbor or the test node itself, and recovery of an infected
neighbor).

Considering these transitions, the differential equation for
Φ̇

(s,i)
m is:



8

Φ̇(s,i)
m =− sBmΦ(s,i)

m (t)− δ∗i,0

i∑
j=1

s

(
i

j

)
αj,mβjΦ

(s,i)
m (t)− δ∗i,0

i∑
j=1

δ∗j,m

(
i

j

)
αj,mβjΦ

(s,i)
m (t)− δi,mβmΦ(s,i)

m

− δi,mδ∗M,m

M∑
k=m+1

k−1∑
j=1

(
k

j

)
αj,kβjΦ

(0,k)
k − µiΦ(s,i)

m (t) + δ∗s,m(s+ 1)BmΦ(s+1,i−1)
m

+ δ∗s+i,mµ(i+ 1)Φ(s,i+1)
m + δ∗i−1,0δ

∗
i,0

i−1∑
j=1

(s+ 1)

(
i− 1

j

)
αjmβjΦ

(s+1,i−1)
m ,

(12)

where αi,j is the inter-order overlap between i- and j-
hyperedges, δi,j represents the Kronecker delta and δ∗i,j =
(1−δi,j). By leveraging αi,j , we are able to to incorporate dy-
namical correlations arising from the embedding of i- within
j-hyperedges, without system closures tailored to specific mi-
croscopic configurations.

The system is solved numerically using the following equa-
tions:

Θ̇ = −βΦI ,

Φ̇1 = f(β,B,Φ1,Φ2...ΦM ),

...

Φ̇M = f(β,B,Φ1,Φ2...ΦM ),

(13)

where we used the following notations β = {β1, β2...βM},
B = {B1, B2...BM}, Θ = {θ1, θ2...θM},ΦI =

{Φ(0,1)
1 ,Φ

(0,2)
2 ...Φ

(0,M)
M } and Φm represents the set of

Φ
(s,i)
m (t) such that (s, i) ∈ Ω.
Appendix B: Epidemic threshold for M = 2.— To derive

the epidemic threshold for the GBCM in the case of M = 2,
we consider the system in Eqs.(4). Here, B1 and B2 represent
the rates of infection to a susceptible node connected to the
test node u through 1-hyperedges and 2-hyperedges, respec-
tively. From Eq. (11), they are defined as:

B1 = −G′′(θ1)H(θ2)θ̇1 +H ′(θ2)G
′(θ1)θ̇2

G′(θ1)H(θ2)
,

B2 = −G′(θ1)H
′(θ2)θ̇1 +G(θ1)H

′′(θ2)θ̇2
G(θ1)H ′(θ2)

.

(14)

Furthermore, given the definition in Eq.(10), we obtain
Φ

(1,0)
1 = ϕS = G′(θ1)H(θ2)/⟨k1⟩ and Φ

(2,0)
2 = ϕSS =

(G(θ1)H
′(θ2)/⟨k2⟩)2. Given that, to assess the stability of

the system, we substitute the equations for θ̇1 and θ̇2 given
by Eqs. (4) and evaluate the Jacobian matrix of the system
around the disease-free equilibrium (θ1, θ2, ϕI , ϕSI , ϕII) =
(1, 1, 0, 0, 0). By considering the free term in the characteris-
tic polynomial of the Jacobian matrix, we derive the epidemic
threshold as

λ2 =
2⟨k2⟩2

[
(⟨k1⟩+ αλ1) (⟨k1⟩+ 2αλ1)

(
⟨k1⟩2 − λ1∆1

)
−Π1(⟨k1⟩ − 1)⟨k1⟩2λ1 + 2α2⟨k1⟩4λ3

1

]
⟨k1⟩ [⟨k1⟩3⟨k2⟩ − ⟨k1⟩⟨k2⟩∆1λ1 − 2⟨k1⟩2∆2αλ1 + 2 [Ω1,2 − 2 (⟨k1⟩Π2 + ⟨k2⟩Π1)]αλ2

1]
, (15)

where Πm = ⟨k2m⟩−⟨km⟩ =
∑

km
km(km−1)P (km) repre-

sents the second derivative of the PGF evaluated at θm(t) = 1.
Additionally, ∆m = Πm − ⟨km⟩ captures the difference be-

tween the second and first derivatives of the PGF at θm(t) =
1, and Ωm,n = ⟨k2m⟩⟨k2n⟩ − ⟨km⟩2⟨kn⟩2 [18]. The detailed
calculations are provided in [18].
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