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Abstract

Transcranial ultrasound stimulation (TUS) is an emerging non-invasive neuromodulation
technique, offering a potential alternative to pharmacological treatments for psychiatric
and neurological disorders. While functional analysis has been instrumental in charac-
terizing the TUS effects, understanding its indirect influence across the network remains
challenging. Here, we developed a whole-brain model to represent functional changes
as measured by fMRI, enabling us to investigate how TUS-induced effects propagate
throughout the brain with increasing stimulus intensity. We implemented two mecha-
nisms: one based on anatomical distance and another on broadcasting dynamics, to
explore plasticity-driven changes in specific brain regions. Finally, we highlighted the role
of higher-order functional interactions in localizing spatial effects of off-line TUS at two
target areas—the right thalamus and inferior frontal cortex—revealing distinct patterns
of functional reorganization. This work lays the foundation for mechanistic insights and
predictive models of TUS, advancing its potential clinical applications.
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weighted networks using the Brain Connectivity
Toolbox:
http://www.brain-connectivity-toolbox.net. We
used the Python code to simulate the Hopf
model, freely available at: https:/github.com/
carlosmig/StarCraft-2-Modeling.git. Brain plot
visualizations were generated using MRIcroGL:
https://www.nitrc.org/projects/mricrogl/. A
Python code to reproduce this work, along with
the data necessary to run the code, is available
at
https://github.com/nplresearch/Modelling-TUS.
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Author summary

Transcranial ultrasound stimulation (TUS) offers a non-invasive approach to modulat-
ing brain activity, holding promise for treating psychiatric and neurological disorders.
Despite its potential, the mechanisms underlying its effects remain poorly understood.
By integrating human fMRI data with whole-brain computational models, we identi-
fied how high-order functional interactions localize and propagate TUS-induced effects
from local to global brain scales. This work introduces two mechanisms—distance-
based propagation and diftusion-like broadcasting—that predict functional plasticity
changes, providing a foundation for understanding and optimizing the biological and
cognitive outcomes of TUS. Our findings offer critical insights into the dynamics of
neuromodulation, bridging experimental results and clinical applications.

Introduction

Non-invasive neuromodulation techniques have been gaining ground as an alternative to
pharmacological interventions for the treatment of psychiatric and neurological conditions
[1-3]. Existing tools can modulate neuronal firing rates via techniques including transcra-
nial direct current stimulation, transcranial magnetic stimulation, and low-intensity tran-
scranial ultrasound stimulation (T'US) — with the latter being capable of reaching deep
brain areas with high spatial resolution [4-6]. Still, while TUS is a promising neuromodu-
lation technique, many challenges remain in understanding its underlying mechanisms, for
example how it translates into either stimulation or inhibition of neural activity [6-9]. Chal-
lenges in advancing the understanding of TUS effects include: (i) disentangling the spatially
widespread changes generated by stimulus-induced plasticity, (ii) moving from population-
level to individual-level descriptions, which are essential to designing personalized therapies,
and (iii) predicting TUS effects via biologically realistic mechanisms. Here, we address these
challenges by joining high-order interdependencies [10], communication models [11], and
whole-brain modeling [12,13]. Our aim is to identify robust informational markers to assess
the alterations in brain function induced by stimulation, and to uncover their underlying
biophysical mechanisms.

There are multiple ongoing research efforts trying to unravel the widespread changes gen-
erated by TUS. At the cellular level, the interaction of acoustic waves with the neuronal mem-
brane in TUS has been investigated in terms of the activation of mechanosensitive ion chan-
nels or astrocytic TRPA1 [14-16], GABA inhibition [17] or cavitation [18,19]. These mech-
anisms are related to synaptic plasticity processes, such as Long-Term Potentiation (LTP)
and Long-Term Depression (LTD), by modulating neuronal excitability and neurotransmit-
ter release [20]. At a global level, studies on functional connectivity have shown the impact
of stimulus-induced plasticity at the population-level, revealing both increases and decreases
in connectivity [21-24]. Additionally, high-order informational dependencies (HOI) have
been used to characterize how TUS reorganizes the brain at the individual-level [25]. The core
advancement of these methods with respect to traditional functional connectivity lies in their
capacity to encode redundancy and synergy among signals [26-28]. For a simple example of
the additional information encoded by these quantities, consider cooking. Individual ingre-
dients might not provide a notable impact on texture, smell, and taste. However, when com-
bined in a recipe, they create a different and ~hopefully- memorable experience by working
synergistically. Conversely, using multiple ingredients with similar texture or flavor would
result redundant, because the same information is present among multiple ingredients.
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After gaining insight into the functional changes induced by stimulation, we can use this
knowledge to develop models that explain the plasticity-driven effects. This requires two ele-
ments: communication models, and whole-brain models. The former, communication mod-
els, are needed to describe how stimuli propagate across anatomically connected regions [11,
29-31]. In this context, navigation frameworks, such as shortest path length, have been widely
applied to characterize neural communication [32-34]. However, diffusion models have
recently demonstrated greater predictive power than efficiency-based approaches in explain-
ing functional effects [11,35], a notable example of this being recent results on the propaga-
tion of focal electrical stimulation in intracranial EEG recordings of drug-resistant epilepsy
participants,[36]. Whole-brain models involved instead the integration of structural con-
nectivity and neuronal dynamics [13,37-40] to enable the testing of mechanistic hypotheses,
including biophysically inspired ones [12,41].

Here, by combining these elements, we aim to elucidate: (i) to what extent high-order func-
tional interactions to localize TUS-induced spatial effects; (ii) how widespread is the propa-
gation of a stimulus across the brain when its magnitude increases; and (iii) which network
communication model of the TUS-induced plasticity better explains mechanistically the func-
tional changes induced by the stimulation. To address these questions, we analyze fMRI data
of human subjects stimulated at two different targets: the right inferior frontal cortex and
the right thalamus. We show that the TUS of each induces a specific signature of spatially
widespread redundant and synergistic changes. Specifically, for the inferior frontal cortex
stimulation (TUS-IFC), we observe effects in the frontal and basal ganglia areas, while for
the thalamic stimulation (TUS-Thal), effects are prominent in the cingulate, temporal, and
basal ganglia regions. Additionally, we find that communication models based on network
communicability and distance are more reliable predictors of high-order functional changes
than other communication models for both stimuli. Lastly, using the two most informative
communication models for the plasticity, we develop a whole-brain model, reproducing the
spreading of the stimulation throughout the brain as the stimulus intensity increases.

Results

We analyzed changes in redundancy and synergy in fMRI data following TUS. The partici-
pants underwent an initial fMRI session lasting approximately 14 minutes without stimula-
tion (control, N = 22). On a separate day, they received 80 seconds of TUS, with participants
receiving stimulation targeted at either the right inferior frontal cortex (TUS-IFC, N = 11) or
the right thalamus (TUS-Thal, N = 11) (Fig 1A), followed by an fMRI scan lasting around 42
minutes.

We calculated redundancy and synergy (Fig 1B) for each pair of time series using the Inte-
grated Information Decomposition method [28]. This approach decomposes the informa-
tion of two variables measured at two consecutive time points into redundant, synergistic,
and unique components that characterize specific dynamical patterns. Following previous
work [44], our analysis focused only on the redundant and synergistic interactions, neglect-
ing the unique information component (see Methods for further details). To assess the relative
relevance of every brain region in synergistic or redundant interactions, we ranked regions
by their redundancy-strength (median-redundancy-rank) and synergy-strength (median-
synergy-rank).
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Fig 1. Methodology and absolute changes in redundancy and synergy after TUS. A. Twenty two subjects participated in the experiment,
N =22 controls (non-TUS), N = 11 IFC-TUS, and N = 11 Thal-TUS. B. We quantified the redundancy and synergy matrices, computing
their median vector across rows and their ranked version, named median-redundancy-rank or median-synergy-rank. C. For each ROI, we
compared each median-HOI-rank/absolute distribution (dotted line in B) between the control and TUS. D. We reported the t-values for
the absolute changes, representing a shift to an increase (red) or decrease (blue) HOI interactions.

https://doi.org/10.1371/journal.pcbi.1013514.9001

Transcranial ultrasound stimulation alters HOI, revealing spatial
localization

To observe local functional changes due to stimulation, we compared the distributions of
the redundancy (median-redundancy-rank) and synergy (median-synergy-rank) (Fig 1B)
between the control group (non-TUS) and each TUS condition for each brain area (Fig 1C-
D).

For TUS-IFC, we find alterations in the redundancy in frontal regions (parsorbitalis, right
rostral middle frontal, right caudal middle frontal, and right paracentral), and basal ganglia
areas (accumbens and caudate) (Fig 2A, top row). Statistics (t-values and p-values) for these
findings are reported in S1 Table. Results also show changes in synergy at frontal (rostral mid-
dle frontal), parietal (supramarginal ), temporal (temporal pole, entorhinal), and basal ganglia
regions (putamen) (see S1 Table) (Fig 2A, bottom row).

In contrast, after TUS-Thal, the redundancy (Fig 2B, top row) changed at frontal (parstri-
angularis, lateral orbitofrontal), temporal (superior temporal, middle temporal), basal gan-
glia (accumbens), cingulate (posterior cingulate), and occipital (lateral occipital). The synergy
showed differences at the cingulate (rostral anterior cingulate), temporal (entorhinal), and
basal ganglia areas (pallidum and thalamus). We report the statistics (¢-values and p-values)
in S1 Table.

In conclusion, the functional effects induced by TUS vary significantly depending on the
stimulation target, leading to distinct spatial patterns. Overall, after TUS-IFC redundancy and
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Fig 2. Relative changes in redundancy and synergy after TUS. A. Top row: median-redundancy-rank distribution changes after the TUS-IFC. Bottom row: Median-
synergy-rank distribution changes after the TUS-IFC. The blue represents a region decreasing the HOI after TUS, wheres the red color describes the increase. B. Similar
to A, when the target is the thalamus (T'US-Thal). We reported the t-values corrected by a N = 1000 permutation test in all the comparisons.

https://doi.org/10.1371/journal.pcbi.1013514.9002

synergy show changes in the frontal and basal ganglia areas, with synergy additionally extend-
ing into the temporal and parietal lobes. When focusing on the frontal areas, the redundancy
presented lateralized changes, mainly decreasing in the right hemisphere, particularly in the
rostral and caudal middle frontal regions and the paracentral lobule. In contrast, after TUS-
Thal, both quantities presented spatially widespread functional changes in the basal gan-

glia, temporal, and cingulate regions, extending redundancy into the frontal and occipital
lobes. Interestingly, only the synergy showed an increase in the right thalamus, which was the
targeted area for stimulation.

Distance and communicability predict changes in HOI

After characterizing the local effects induced by TUS, we aim to determine which communi-
cation models best explain the global HOI effects produced by the stimulation. To approach
this, we examine the associations of changes in redundancy and synergy with various mod-
els of stimulus propagation, based either on efficient navigation or on diffusion. In partic-
ular, following previous work (see [36] and Methods for further details), we adopt stream-
line length (distance) and shortest path efficiency (SPE) as proxies for efficiency, and search
information (SI) and communicability (CMY) as a proxy for diffusion. To compute the asso-
ciations between HOI changes and these models, we created eight “representative” vectors:
one for each of the four connectivity models (distance, SPE, SI, CMY), and four representing
redundancy and synergy changes for the two targets (TUS-IFC or TUS-Thal minus control),
respectively. We describe these vectors as representative, because the models were computed
using group-averaged properties (more specifically, average anatomical or functional matri-
ces; see Methods for details), rather than individual measurements. Then, for each target, we
correlated the vectors corresponding to the four models with those representing the changes
in redundancy and synergy for that target, where by changes here we refer to the difference
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between the measurements after stimulation and those in the control condition (e.g. TUS-IFC
minus control).

Surprisingly, we found two opposing patterns (Fig 3). For TUS-IFC, redundancy alter-
ations are negatively correlated with both network communicability (r = -0.381, p<0.001)
and distance (r = -0.569, p<0.001), while synergy alterations are not significantly correlated
with any of the two (Fig 3A). For TUS-Thal, synergy alterations are positively correlated with
both network communicability (r = 0.353, p = 0.001) and distance (r = 0.439, p<0.001), while
redundancy ones are not correlated with any of the two (Fig 3B). All other communication
models do not give any significant result, with exception of a negative correlation of synergy
with shortest path efficiency for TUS-Thal (r = -0.325, p = 0.003. S1 Fig).

In both cases, the largest changes in absolute value for both redundancy and synergy after
stimulation were associated with longer distances and with regions (see Fig 3A and 3B, top
row). However, in this case too, the effects are opposing: for TUS-IFC we observe an overall
decrease of redundancy with distance from the stimulation (Fig 3A, top row); for TUS-Thal
instead we find an overall increase in synergy with distance from the stimulation. Together
these findings suggest the presence of a strong network effect in the TUS-induced plasticity,
possibly mediated by the multiplicity of propagation paths between regions [55].

Whole-brain model informed by distance or communicability
heterogeneity explains changes in HOI

To test the hypothesis of a mechanistic link between the observed global effects of TUS on
HOI and communication models encoding different notions of connectivity, we propose a
whole-brain model which explicitly includes communicability and distance as mechanisms
affecting redundancy and synergy. Specifically, we used a Hopf model of neural oscillators, in
which the local dynamics of each node was simulated using the Stuart-Landau oscillator. For
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Fig 3. Whole-brain associations between structural models and observed changes in TUS. For TUS-IFC A. and TUS-Thal B., we computed the models and changes
in HOI (after minus before) over a representative matrix (redundancy, synergy, distance, and the communicability, CMY) averaged across all participants. Within each
subpanel, each row corresponds to a structural model (distance, top row; communicability model, CMY, bottom row), while each column corresponds to changes in
informational quantities (redundancy, left column; synergy, left right column). The darker boxes represent the p-values lower than 0.05 after the Bonferroni correction,
with the blue dots representing the redundant and red dots the synergistic changes. The grey colour dots represent the non-significant associations. For the other two
models, see S1 Fig.

https://doi.org/10.1371/journal.pcbi.1013514.g003
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positive bifurcation parameter (a>0), the model enters a limit cycle, and the system exhibits
sustained oscillations. For negative bifurcation parameter (a<0), the model has a stable fixed
point, and thus the system will be dominated by noise. Finally, near the bifurcation point (a =
0), noise-driven and sustained oscillations coexist in time (Fig 4A).

To include different notions of TUS propagation, we informed the model using communi-
cability or distance (denoted as 3"), and a stimulation strength (denoted by « ;) to quantify
the changes in the TUS (Fig 4B). Our approach involved a two-step fitting process as outlined
in previous literature [53]. First, we performed a homogeneous fitting to determine the opti-
mal global coupling (G). Then, we conducted a heterogeneous fitting to obtain the “bias” and
“scale” parameters (Fig 4B) to fit the control condition (see S2 Fig). In both cases, the goal
was to achieve model simulations that reproduce as closely as possible the functional con-
nectivity and mean brain synchrony (computed as the average Kuramoto order parameter,
KOP) measured in data. Finally, after fitting the control condition, we simulated the effects of
stimulation over a range of perturbation intensities (described by the parameter ).

Using the calibrated models, we examined the similarity between the empirical and simu-
lated HOI effects of TUS, revealing three key findings. First, negative « values lead to better
performance regardless of the target (Fig 4C, « in the x-axis). Specifically, when « is nega-
tive, it results in larger positive correlations between the simulated and observed HOI val-
ues, whereas positive o values produced smaller, anti-correlated values. This suggests that
the stimulation is likely disrupting the excitatory/inhibitory balance by increasing inhibition
(noise), rather than by enhancing excitation (synchronization). Moreover, when « increased,
the time series became progressively more synchronized, with the thalamus stimulation
leading to faster system synchronization (see S3 Fig). Second, for both targets and negative
a, redundancy changes were best reproduced by the distance-based model, while synergy
changes were more accurately captured by the communicability model. Third, moving from
strongly negative to strongly positive &, we consistently observed a local-to-global transition
characterized by three main regimes: (i) only localized effects on a handful of regions for o <«
0, (ii) an intermediate regime in which no region shows significant alterations in their syn-
ergy/redundancy behaviours for o ~ 0 (Fig 4D, dashed red area), finally, (iii) global, delocal-
ized effects across the whole brain for both redundancy and synergy for a > 0. Notably, in the
simulated TUS-IFC condition, in the localized regime (& < 0), we recovered the redundancy
alterations in the right IFC (Fig 4D, first panel, blue triangle) but not synergistic ones (Fig 4D,
second panel, white triangle). Conversely, for the TUS-Thal condition, only the synergistic
alterations in the right thalamus were reproduced (Fig 4D, fourth panel, red triangle).

Discussion

Our results revealed distinct patterns of functional reorganization following TUS, depend-
ing on the target. We obtained these findings combining three innovations: (i) the application
of HOI to localize spatial effects induced by TUS in humans, extending previous studies in
macaque data [21,22,25], (ii) the use of communication models as mechanisms to predict the
functional plasticity-driven impact of TUS, and (iii) the development of a model to explain
the mechanism of propagation of the effects of TUS when the stimulation intensity increases.
We found that, for TUS-IFC, HOIs exhibited changes in frontal and basal ganglia areas, with
the redundancy decreasing in the right frontal hemisphere, whereas, for TUS-Thal, changes
were localized in the cingulate, temporal, and basal ganglia areas, with the synergy increas-
ing in the stimulated right thalamus. Although the TUS protocol is designed to modulate
neuronal activity by either increasing or decreasing it, studies have observed both increased
and decreased functional connectivity [21-24], as well as higher-order interactions [25] in
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ences (all the t-values in TUS minus control). Each column corresponds to the changes in redundancy and synergy for the two targets. Results for the model based on
distance are shown with a solid line, those for the one based on the communicability model with a dashed line. D. Corrected ¢-values in the simulated data (TUS minus
control) for the distance-based model (for the communicability model, see S4 Fig). The columns are consistent with panel C. The brain plots illustrate the HOI changes,
displaying significant t-values corrected using a permutation test with N = 1000 iterations. Colors indicate negative/positive changes with respect to no stimulation.
Coloured triangles represent the stimulated target with significant t-values at negative alpha.

https://doi.org/10.1371/journal.pcbi.1013514.9004
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macaques following TUS. This variability may arise from a combination of LTP or LTD-like
plasticity effects, resulting in heterogeneous outcomes [21,22,56].

We reported two possible mechanisms for plasticity induced by the stimulation to pre-
dict the functional changes after TUS. The global functional changes produced by TUS were
associated with distance and communicability regardless of the targeted area. In turn, mod-
els based on distance and communicability outperformed models based on shortest path efhi-
ciency and search information. Altogether, our findings align with results from drug-resistant
epilepsy participants [36], in reported communicability and search information —both dif-
fusion processes— were found to be the best predictors for the propagation of focal electrical
stimulation. Our results also align with previous research predicting functional connectivity
patterns based on network communication, in which diffusion models were shown to out-
perform models based on shortest path length [35]. We believe that these findings provide
valuable insights for modeling the effects of various types of stimulation and suggest potential
avenues for further research and clinical applications [11].

We developed a whole-brain model explaining how the effects of TUS spread spatially
throughout the brain as the stimulation intensity increases. In particular, depending on the
intensity, the effects transitioned from a localized to a global regime, opening new paths
for the exploration and prediction of changes in brain function. We also found that larger
stimulation intensities led to quicker synchronization in the thalamus compared to the IFC.
This can be explained by the thalamus’s more central role in system integration [57-60],
which would increase its capacity to promote more synchronized interactions. Moreover, we
implemented two possible mechanisms of TUS propagation, one based on distance and one
broadcasting process that allowed us to test the plasticity-driven changes in some brain areas
for different intensities. Similar to adjusting the bifurcation parameter in the Hopf model,
biophysically-inspired models have shown a transition from noisy oscillations to sustained
oscillations when the excitatory/inhibitory (E/I) balance is disrupted through increased inhi-
bition or excitation, respectively [49-52]. Furthermore, bifurcation diagrams establish a con-
nection between realistic models, such as the Wilson-Cowan model, and the bifurcation
parameter in the Hopf model. In the Wilson-Cowan model, shifting the E/I balance toward
excitation leads to sustained oscillations, while moving it toward inhibition results in damped
activity [61]. In our findings, both models indicated that the stimulus is more likely to induce
noise in the system rather than pure synchrony. This suggests that the stimulus tends to dis-
rupt the E/I balance by enhancing inhibition rather than excitation. We stress that —although
the mechanisms of TUS or the plasticity-induced chances are still a matter of debate [14-19]-
which mechanism leads to either inhibitory or excitatory outcomes is even less understood
[8,17,19,62]. The theta-burst TUS protocol used in this study has been associated with an
increase and decrease in neural activity [63], and our model could help clarify whether ultra-
sonic neuromodulation produces excitatory or inhibitory effects. The whole-brain models
have been used on perturbations and psychiatric or neurological conditions, enabling to test
mechanisms that can be used for predicting the outcomes of real experimental settings [37-
40,641

Higher-order interactions have gained prominence in clinical applications for characteriz-
ing and predicting healthy aging [39,65,66], early development [67], neurological conditions
[68,69], and their associations with cognition [44] and consciousness [70]. Recently, HOI has
been applied to transcranial ultrasound stimulation (TUS) in macaques, revealing different
topological reorganizations depending on the stimulation target [25]. Here, we extended this
understanding to healthy humans, demonstrating that spatial differences in response to TUS
also rely on the stimulation target.
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Before concluding, it is important to acknowledge the limitations of this study. First, our
experiment included 22 participants. Future studies should build on this by incorporating
a larger sample size to enhance the robustness of the results. Second, the experimental pro-
tocol involves session-to-session variability, as the control and stimulation sessions are con-
ducted on separate days. This may introduce additional variability in the estimation of HOL
Future studies employing online stimulation protocols could mitigate this issue by enabling
recordings before, during, and after TUS within a single session. Third, we proposed a mech-
anism for modifying regional excitability. While the effects of perturbing only the stimulated
target have been observed, this presents an exciting avenue for future research, such as fur-
ther exploring the impact of stimulating both the target and adjacent areas. Finally, while we
used the minimum mutual information (MMI) redundancy function, as supported by previ-
ous literature demonstrating its clinical relevance in cognition [44], similar outcomes might
be attainable with other redundancy functions [71]. Exploring alternative definitions [72,73]
could offer valuable opportunities for further investigation.

Materials and methods
Ethics statement

The study adhered to the ethical standards of the Helsinki Declaration of 1978, as revised

in 2008, and received approval from the University of Nottingham Faculty of Psychology
Ethics Committee (reference: F1298R, 28/03/2022). After providing detailed information and
answering all questions, participants provided written consent.

Participants

Twenty-two healthy, right-handed volunteers participated in this study. None had a history
of neurological or psychiatric disorders (except for cases of depression considered remitted
for at least one year) and were not taking any medications. The additional exclusion crite-
ria included close relatives with a history of seizures, a predisposition for syncope, excessive
hair that could interfere with transducer coupling, current or planned pregnancy, implanted
metallic devices, skin diseases, claustrophobia, or anxiety related to MRI, and tattoos near
the head. Participants were instructed to avoid recreational drugs for 48 hours before their
visits and to limit alcohol consumption to no more than four units within the preceding 24
hours. The study was conducted in two sessions. During the first session, participants under-
went a 45-minute MRI scan, which included a 14-minute resting-state fMRI sequence. They
returned for a second session on a different day, scheduled at the same time of day as their
initial visit (time difference: 55.4+40.1 minutes for the IFC group vs. 69.5+48.9 minutes for
the thalamus group; p=0.469). Participants were pseudo-randomly assigned to one of two
groups, ensuring an equal distribution of sexes, based on the TUS brain target: either the right
inferior frontal cortex or the right thalamus. Immediately following stimulation, participants
underwent another 45-minute MRI session (delay between TUS and rs-fMRI: 15+2.16 min-
utes for the IFC group vs. 15.4+1.37 minutes for the thalamus group; p=0.95), which included
a 42-minute rs-fMRI sequence.

Detailed information on data acquisition and preprocessing is available in S1 Text.

Partial Information Decomposition (PID)

Consider three random variables: two source variables X’ and X/, and a target variable Y. The
Partial Information Decomposition (PID) [42] decomposes the total information provided by
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X' and X’ about Y, given by Shannon’s mutual information I(X*; Y), as follows:

I(X,X;Y)= Red(X',X);Y) + Syn(X', X/; Y)
+Un(X'; Y|X7) + Un(X; Y|X), (1)

where Red (X', X/; Y) represents the information provided by X’ and X’ about Y (redundancy),
Syn(X', X/; Y) denotes the information provided jointly by X’ and X’ about Y (synergy),
Un(X’; Y|X') is the unique information provided by X* about Y, and Un(X; Y|X") is the infor-
mation that is provided only by X’ about Y. The four terms of this decomposition are natu-
rally structured into a lattice with nodes A = {{12}, {1}, {2},{1}{2}}, corresponding to the
synergistic, unique in source one, unique in source two, and redundant information, respec-
tively. To compute these terms, we followed the minimum mutual information (MMI) PID
decomposition for Gaussian systems [43], where the redundancy is computed as the mini-
mum information between each source and the target, and the synergy refers to the additional
information provided by the weaker source when the stronger source is known.

Integrated information decomposition (PID). Consider the stochastic process of two
random variables X; = {X}X]t} and denote the two variables in a current state £, by X! and X{,
and the same two variables in a past state ¢ - 7, by X! ,, and ,X’,;_T. The integrated informa-
tion decomposition (®ID) is the forward and backward decomposition of I(X: ., X, .; Xi, X),
called the time delay mutual information, in redundant, synergistic and unique informa-
tion [28]. The ®ID can be represented by the forward and backward interactions of the prod-
uct A X A, resulting in 16 distinct atoms: synergy to synergy, redundancy to redundancy,
unique in source one to unique in source two (and backward), and redundancy to synergy,
among others. Following previous work [44], our analyses focus on two specific atoms quan-
tifying the temporal persistence of redundancy and synergy: persistent redundancy (redun-
dancy that remains redundancy) and persistent synergy (synergy that remains synergy).

Note that while some approaches to assessing higher-order interactions involve three or
more time series, we employed the “higher-order” concept here as we analyzed four random
variables {XLT,XLT;X’;,X{}, where (X', X) represent the two variables at the current state t,
along with (X _,, X} ) being their states at - .

Synergy and redundancy rank framework. The ®ID was computed for all combinations
of pairwise BOLD time series )Q,X{, where i and j represent two different brain regions, with
(i,j) €1,...,84. This resulted in two symmetrical matrices capturing redundancy and synergy.
We then calculated the median of each matrix to obtain two strength vectors (each 1x84) rep-
resenting redundancy and synergy. Additionally, we derived rank strength vectors for both
redundancy and synergy (each 1x84), ranking each region by its strength. Finally, we com-
pared the absolute or rank strength values between the TUS (IFC-TUS or Thal-TUS) and the
Control vector.

Distance and communication models

D € R**®* denotes the distance with D;; being the average streamline length between two
regions i and j, computed per subject. As a representative value of distance, we used an aver-
age across subjects normalized by the maximum (distance = D/max(D)). Similarly, M €
R334 denotes the structural connectivity, where M;; is defined as the average number of
streamlines connecting two brain regions i and j. We computed an average across subjects as
the representative structural connectivity, denoted by M, likewise normalized with real values
between zero and one. Then, we computed the matrix of lengths L = 1/M, with L the cost of
communication between the regions i and j.
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The Shortest Path efficiency is denoted by SPE, where (SPE;;) is computed as the inverse
of the shortest path or geodesic connecting two nodes i and j. Given the sequence of regions
{i,u,...,v,j}, such that Aj; = Liy + -+ + Ly; is the minimum transmission cost between i and j,
then SPE;; = 1/A; [45].

The Search Information is denoted by SI and quantifies the amount of information to bias a
random walk into the shortest path {7, u, ..., v,j}. The transition probability of traveling from
i to j is computed as Tj; = M;;/ Zi: M. Therefore, the probability of a random walk to travel
from i to j via the shortest path is IT;; = T;, X --- X T,;. Finally, the search information (SI;) is
computed as SI;; = -log, (IT;;) [35].

The Communicability, denoted by CMY, is a broadcasting process quantifying the redun-

dant walks connecting two regions while penalizing the longer paths. Therefore, CMY;; =

I W;j”/n! =", where Wi = Wil (\/si/5), and s; = Ziil sy is the strength of region i [46

47]. B

Whole-brain model

We simulated the brain activity using a supercritical Hopf bifurcation model (Stuart-Landau
oscillators) [37,48]. The following ordinary differential equations [3] define the dynamic for
each node i:

dT(f) = a0 - [2(0) - 320 x(0)
-wiyi(t) +ymi(t), )
B L (- [200) - 2] ()

dt
+W,‘x,‘(t) +¥Yni ( t) .

Where y(t) corresponds to the imaginary component, and the real component of the time
series, x(t), simulated the BOLD-like signals. We set the oscillation frequency f; = 0.05 Hz
(w; =0.05 X 2 X ) for overall nodes. When the bifurcation parameter a is positive (a > 0),
the system exhibits a limit cycle, leading to sustained oscillations. If (a < 0), the system has a
stable fixed point and is dominated by noise. Near the bifurcation point (a = 0), both noise-
driven and sustained oscillations coexist over time. We used 84 nodes, parcellated using the
Desikan-Killiany atlas (See S2 and S3 Tables for details), including subcortical areas and struc-
tural connectivity matrices M € R¥>*** (19 matrices. As described in S1 Text, three images
were excluded due to excessive motion). The brain areas are coupled with the structural con-
nectivity M, G = 0.16 represents the global coupling (S2 Fig), and #;(t), with y = 0.02 the
standard deviation, the external Gaussian noise [3].

dx:iigt) = ax(t) - [xf(t)—y?(t)]xi(t)-wiyi(t)
+G 20 My (x5(8) - x(8)) + ymi(0), (3)
dy;f(tt) = ayi(t) - [xf(t) —y,-z(t)]yi(t) +wix; (1)

+G Xy M (3(8) = yi (1)) + ymi(2).

We proposed modifying the bifurcation parameter as a proxy of modulate neuronal activ-
ity. Biophysical-inspired models have revealed a switch from noisy oscillations to sustained
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oscillations (limit cycles) when disrupting the excitation/inhibition balance through excita-
tion [49-52], analogous to increasing the bifurcation parameter in the Hopf model. Following
previous literature, we incorporated heterogeneity in our model [53].

Control and TUS model. We simulated the control condition using the Hofp model with
a; = bias + scale ', where f is the heterogeneous vector of distances or communicability. The
parameters scale and bias were fitted as (bias, scale) = (=0.17,0.24) in the distance model and
(bias, scale) = (-0.08,0.21) in communicability (see S2 Fig). Additionally, for TUS, g; = bias +
scale (B; + a f37), where 8 = 1 if s is the stimulated target and zero in other case.

We ran 1100s simulations with an integration step of 0.1s in the Euler-Maruyama inte-
gration scheme for each subject (19 structural connectivity matrices). The simulated time
series were band-pass filtered between 0.001 and 0.01 Hz and removed the first and last 100s,
resulting in 15-minute simulations.

Statistical analysis

This study compared the redundancy and synergy of each control (non-TUS) versus each
TUS experiment (IFC-TUS or Thal-TUS) using a t-stat (TUS minus control). We performed
a 1.000 permutation two-samples t-test analysis per region in the empirical data and the sim-
ulations to find the statistically significant differences. Bonferroni corrected the correlations
between redundancy and synergy changes with the communication models.

Supporting information

S1 Fig. Whole-brain associations between structural models and observed changes in
TUS. For TUS-IFC A. and TUS-Thal B. Within each subpanel, the rows correspond to the
search information (SI) and short path efficiency (SPE) models, while each column to changes
in informational quantities (redundancy, left column; synergy, left right column). The darker
boxes represent the p-values lower than 0.05 after a Bonferroni correction.

(EPS)

S2 Fig. Whole-brain fitting. A. Homogeneous model for the control condition (non-TUS)
B. Heterogeneous distance model for non-TUS. C. Heterogeneous communicability model
for non-TUS. The first column corresponds to the differences in synchrony (measured as the
mean of the Kuramoto order parameter) between the empirical and simulated data. The sec-
ond column is the correlation between the functional connectivities between the simulations
and the empirical data, and the third column is the multiplication of the two former columns.
(EPS)

S3 Fig. Modulation of synchrony by stimulation intensity. Synchrony differences
(mean(KOP)) between empirical data and the target at various intensities, modulated by «,
for each model (distance in solid line, and communicability in dashed line).

(EPS)

S4 Fig. Simulated HOI effects after TUS. Similar to Fig 4D, for the communicability model.
(EPS)

S1 Table. Relative redundancy and synergy changes after TUS.
(XLSX)

$2 Table. Desikan-Killiany atlas, including subcortical areas: right hemisphere.
(XLSX)
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$3 Table. Desikan-Killiany atlas, including subcortical areas: left hemisphere.
(XLSX)

S1 Text. Data acquisition, FUS protocols, and image preprocessing.
(DOCX)
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