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Transcranial ultrasound stimulation (TUS) is an emerging non-invasive neuromodulation tech-
nique, offering a potential alternative to pharmacological treatments for psychiatric and neuro-
logical disorders. While functional analysis has been instrumental in characterizing TUS effects,
understanding the underlying mechanisms remains a challenge. Here, we developed a whole-brain
model to represent functional changes as measured by fMRI, enabling us to investigate how TUS-
induced effects propagate throughout the brain with increasing stimulus intensity. We implemented
two mechanisms: one based on anatomical distance and another on broadcasting dynamics, to
explore plasticity-driven changes in specific brain regions. Finally, we highlighted the role of higher-
order functional interactions in localizing spatial effects of off-line TUS at two target areas—the
right thalamus and inferior frontal cortex—revealing distinct patterns of functional reorganization.
This work lays the foundation for mechanistic insights and predictive models of TUS, advancing its
potential clinical applications.
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Significance Statement

Transcranial ultrasound stimulation (TUS) offers a
non-invasive approach to modulating brain activity, hold-
ing promise for treating psychiatric and neurological dis-
orders. Despite its potential, the mechanisms under-
lying its effects remain poorly understood. By inte-
grating human fMRI data with whole-brain computa-
tional models, we identified how high-order functional
interactions localize and propagate TUS-induced effects
from local to global brain scales. This work intro-
duces two mechanisms—distance-based propagation and
diffusion-like broadcasting—that predict functional plas-
ticity changes, providing a foundation for understand-
ing and optimizing the biological and cognitive outcomes
of TUS. Our findings offer critical insights into the dy-
namics of neuromodulation, bridging experimental re-
sults and clinical applications.

I. INTRODUCTION

Non-invasive neuromodulation techniques have been
gaining ground as an alternative to pharmacological in-
terventions for the treatment of psychiatric and neurolog-
ical conditions [1-3]. Existing tools can modulate neu-
ronal firing rates via techniques including transcranial
direct current stimulation, transcranial magnetic stimu-
lation, and low-intensity transcranial ultrasound stimu-
lation (TUS) — with the latter being capable of reach-
ing deep brain areas with high spatial resolution [4-6].
Still, while TUS is a promising neuromodulation tech-
nique, many challenges remain in understanding its un-
derlying mechanisms, for example how it translates into
either stimulation or inhibition of neural activity [6-9].
Challenges in advancing the understanding of TUS ef-
fects include: (i) disentangling the spatially widespread
changes generated by stimulus-induced plasticity, (ii)
moving from population-level to individual-level descrip-
tions, which are essential to designing personalized ther-
apies, and (iii) predicting TUS effects via biologically re-
alistic mechanisms. Here, we address these challenges by
joining high-order interdependencies [10], communication
models [11], and whole-brain modeling [12, 13]. Our aim
is to identify robust informational markers to assess the
alterations in brain function induced by stimulation, and
to uncover their underlying biophysical mechanisms.

There are multiple ongoing research efforts trying to
unravel the widespread changes generated by TUS. At
the cellular level, the interaction of acoustic waves with
the neuronal membrane in TUS has been investigated
in terms of the activation of mechanosensitive ion chan-
nels or astrocytic TRPA1 [14-16], GABA inhibition [17]
or cavitation [18, 19]. These mechanisms are related to
synaptic plasticity processes, such as Long-Term Potenti-
ation (LTP) and Long-Term Depression (LTD), by modu-
lating neuronal excitability and neurotransmitter release
[20]. At a global level, studies on functional connec-
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tivity have shown the impact of stimulus-induced plas-
ticity at the population-level, revealing both increases
and decreases in connectivity [21-24]. Additionally, high-
order informational dependencies (HOI) have been used
to characterize how TUS reorganizes the brain at the
individual-level [25]. The core advancement of these
methods with respect to traditional functional connec-
tivity lies in their capacity to encode redundancy and
synergy among signals [26-28]. For a simple example of
the additional information encoded by these quantities,
consider cooking. Individual ingredients might not pro-
vide a notable impact on texture, smell, and taste. How-
ever, when combined in a recipe, they create a different
and —hopefully— memorable experience by working syn-
ergistically. Conversely, using multiple ingredients with
similar texture or flavor would result redundant, because
the same information is present among multiple ingredi-
ents.

After gaining insight into the functional changes induced
by stimulation, we can use this knowledge to develop
models that explain the plasticity-driven effects. This re-
quires two elements: communication models, and whole-
brain models. The former, communication models, are
needed to describe how stimuli propagate across anatomi-
cally connected regions [11, 29-31]. In this context, nav-
igation frameworks, such as shortest path length, have
been widely applied to characterize neural communica-
tion [32-34]. However, diffusion models have recently
demonstrated greater predictive power than efficiency-
based approaches in explaining functional effects [11, 35],
a notable example of this being recent results on the prop-
agation of focal electrical stimulation in intracranial EEG
recordings of drug-resistant epilepsy participants,|[36].
Whole-brain models involved instead the integration of
structural connectivity and neuronal dynamics [13, 37—
40] to enable the testing of mechanistic hypotheses, in-
cluding biophysically inspired ones [12, 41].

Here, by combining these elements, we aim to elucidate:
(i) to what extent high-order functional interactions to
localize TUS-induced spatial effects; (ii) how widespread
is the propagation of a stimulus across the brain when
its magnitude increases; and (iii) which network commu-
nication model of the TUS-induced plasticity better ex-
plains mechanistically the functional changes induced by
the stimulation. To address these questions, we analyze
fMRI data of human subjects stimulated at two different
targets: the right inferior frontal cortex and the right tha-
lamus. We show that the TUS of each induces a specific
signature of spatially widespread redundant and syner-
gistic changes. Specifically, for the inferior frontal cortex
stimulation (TUS-IFC), we observe effects in the frontal
and basal ganglia areas, while for the thalamic stimlua-
tion (TUS-Thal), effects are prominent in the cingulate,
temporal, and basal ganglia regions. Additionally, we
find that communication models based on network com-
municability and distance are more reliable predictors of
high-order functional changes than other communication
models for both stimuli. Lastly, using the two most in-
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FIG. 1. Methodology and absolute changes in redundancy and synergy after TUS. A. Twenty two subjects

participated in the experiment, N = 22 controls (non-TUS), N = 11 IFC-TUS, and N = 11 Thal-TUS. B. We quantified
the redundancy and synergy matrices, computing their median vector across rows and their ranked version, named median-
redundancy-rank or median-synergy-rank. C. For each ROI, we compared each median-HOI-rank/absolute distribution (dotted
line in B) between the control and TUS. D. We reported the t-values for the absolute changes, representing a shift to an increase

(red) or decrease (blue) HOI interactions.

formative communication models for the plasticity, we
develop a whole-brain model, reproducing the spreading
of the stimulation throughout the brain as the stimulus
intensity increases.

I1II. RESULTS

We analyzed changes in redundancy and synergy in
fMRI data following TUS. The participants underwent
an initial fMRI session lasting approximately 14 minutes
without stimulation (control, N = 22). On a separate
day, they received 80 seconds of TUS, with participants
receiving stimulation targeted at either the right inferior
frontal cortex (TUS-IFC, N = 11) or the right thalamus
(TUS-Thal, N = 11) (Fig. 1A), followed by an fMRI scan
lasting around 42 minutes.

We calculated redundancy and synergy (Fig. 1B)
for each pair of time series using the Integrated In-
formation Decomposition method [28]. This approach
decomposes the information of two variables measured
at two consecutive time points into redundant, syner-
gistic, and unique components that characterize spe-
cific dynamical patterns. Following previous work [42],

our analysis focused only on the redundant and syn-
ergistic interactions, neglecting the unique information
component (see Methods for further details). To as-
sess the relative relevance of every brain region in syn-
ergistic or redundant interactions, we ranked regions
by their redundancy-strength (median-redundancy-rank)
and synergy-strength (median-synergy-rank).

Transcranial ultrasound stimulation alters HOI,
revealing spatial localization

To observe local functional changes due to stimu-
lation, we compared the distributions of the redun-
dancy (median-redundancy-rank) and synergy (median-
synergy-rank) (Fig. 1B) between the control group (non-
TUS) and each TUS condition for each brain area (Fig.
1C-D).

For TUS-IFC, we find alterations in the redundancy in
frontal regions (parsorbitalis, right rostral middle frontal,
right caudal middle frontal, and right paracentral), and
basal ganglia areas (accumbens and caudate) (Fig. 2A,
top row). Statistics (t-values and p-values) for these find-
ings are reported in Supplementary Table 1. Results
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also show changes in synergy at frontal (rostral mid-
dle frontal), parietal (supramarginal ), temporal (tem-
poral pole, entorhinal), and basal ganglia regions (puta-
men) (Supplementary Table 1) (Fig. 2A, bottom row).
In contrast, after TUS-Thal, the redundancy (Fig. 2B,
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FIG. 2. Relative changes in redundancy and synergy
after TUS. A. Top row: median-redundancy-rank distri-
bution changes after the TUS-IFC. Bottom row: Median-
synergy-rank distribution changes after the TUS-IFC. The
blue represents a region decreasing the HOI after TUS, wheres
the red color describes the increase. B. Similar to A, when
the target is the thalamus (TUS-Thal). We reported the t-
values corrected by a N = 1000 permutation test in all the
comparisons.

top row) changed at frontal (parstriangularis, lateral or-
bitofrontal), temporal (superior temporal, middle tem-
poral), basal ganglia (accumbens), cingulate (posterior
cingulate), and occipital (lateral occipital). The synergy
showed differences at the cingulate (rostral anterior cin-
gulate), temporal (entorhinal), and basal ganglia areas
(pallidum and thalamus). We report the statistics (¢-
values and p-values) in Supplementary Table 1.

In conclusion, the functional effects induced by TUS
vary significantly depending on the stimulation target,
leading to distinct spatial patterns. Overall, after TUS-
IFC redundancy and synergy show changes in the frontal
and basal ganglia areas, with synergy additionally ex-
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tending into the temporal and parietal lobes. When fo-
cusing on the frontal areas, the redundancy presented
lateralized changes, mainly decreasing in the right hemi-
sphere, particularly in the rostral and caudal middle
frontal regions and the paracentral lobule. In con-
trast, after TUS-Thal, both quantities presented spa-
tially widespread functional changes in the basal ganglia,
temporal, and cingulate regions, extending redundancy
into the frontal and occipital lobes. Interestingly, only
the synergy showed an increase in the right thalamus,
which was the targeted area for stimulation.

Distance and communicability predict changes in
HOI

After characterizing the local effects induced by TUS,
we aim to determine which communication models best
explain the global HOI effects produced by the stimula-
tion. To approach this, we examine the associations of
changes in redundancy and synergy with various models
of stimulus propagation, based either on efficient navi-
gation or on diffusion. In particular, following previous
work (see [36] and Methods for further details), we adopt
streamline length (distance) and shortest path efficiency
(SPE) as proxies for efficiency, and search information
(SI) and communicability (CMY) as a proxy for diffusion.
To compute the associations between HOI changes and
these models, we created eight “representative” vectors:
one for each of the four connectivity models (distance,
SPE, SI, CMY), and four representing redundancy and
synergy changes for the two targets (TUS-IFC or TUS-
Thal minus control), respectively. We describe these vec-
tors as representative, because the models were computed
using group-averaged properties (more specifically, aver-
age anatomical or functional matrices; see Methods for
details), rather than individual measurements. Then, for
each target, we correlated the vectors corresponding to
the four models with those representing the changes in re-
dundancy and synergy for that target, where by changes
here we refer to the difference between the measurements
after stimulation and those in the control condition (e.g.
TUS-IFC minus control).

Surprisingly, we found two opposing patterns (Fig. 3).
For TUS-TFC, redundancy alterations are negatively cor-
related with both network communicability (r = —0.381,
p < 0.001) and distance (r = —0.569, p < 0.001),
while synergy alterations are not significantly correlated
with any of the two (Fig. 3A). For TUS-Thal, synergy
alterations are positively correlated with both network
communicability (r = 0.353, p = 0.001) and distance
(r = 0.439, p < 0.001), while redundancy ones are not
correlated with any of the two (Fig. 3B). All other com-
munication models do not give any significant result, with
exception of a negative correlation of synergy with short-
est path efficiency for TUS-Thal (r = —0.325, p = 0.003.
Supplementary figure S1).

In both cases, the largest changes in absolute value for
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FIG. 3. Whole-brain associations between structural models and observed changes in TUS. For TUS-IFC A. and
TUS-Thal B., we computed the models and changes in HOI (after minus before) over a representative matrix (redundancy,
synergy, distance, and the communicability, CMY) averaged across all participants. Within each subpanel, each row corresponds
to a structural model (distance, top row; communicability model, CMY, bottom row), while each column corresponds to changes
in informational quantities (redundancy, left column; synergy, left right column). The darker boxes represent the p-values lower
than 0.05 after the Bonferroni correction, with the blue dots representing the redundant and red dots the synergistic changes.
The grey colour dots represent the non-significant associations. For the other two models, see Supplementary figure S1.

both redundancy and synergy after stimulation were as-
sociated with longer distances and with regions (see Fig.
3A-B, top row). However, in this case too, the effects
are opposing: for TUS-IFC we observe an overall de-
crease of redundancy with distance from the stimulation
(Fig. 3A, top row); for TUS-Thal instead we find an
overall increase in synergy with distance from the stimu-
lation. Together these findings suggest the presence of a
strong network effect in the TUS-induced plasticity, pos-
sibly mediated by the multiplicity of propagation paths
between regions [43].

‘Whole-brain model informed by distance or
communicability heterogeneity explains changes in
HOI

To test the hypothesis of a mechanistic link between
the observed global effects of TUS on HOI and communi-
cation models encoding different notions of connectivity,
we propose a whole-brain model which explicitly includes
communicability and distance as mechanisms affecting
redundancy and synergy. Specifically, we used a Hopf
model of neural oscillators, in which the local dynamics
of each node was simulated using the Stuart-Landau os-
cillator. For positive bifurcation parameter (a > 0), the
model enters a limit cycle, and the system exhibits sus-
tained oscillations. For negative bifurcation parameter
(a < 0), the model has a stable fixed point, and thus
the system will be dominated by noise. Finally, near the
bifurcation point (@ = 0), noise-driven and sustained os-
cillations coexist in time (Fig. 4A).

To include different notions of TUS propagation, we
informed the model using communicability or distance

(denoted as ™), and a stimulation strength (denoted by
a B%) to quantify the changes in the TUS (Fig. 4B). Our
approach involved a two-step fitting process as outlined
in previous literature [44]. First, we performed a homo-
geneous fitting to determine the optimal global coupling
(G). Then, we conducted a heterogeneous fitting to ob-
tain the “bias” and “scale” parameters (Fig. 4B) to fit
the control condition (see Supplementary Figure S2). In
both cases, the goal was to achieve model simulations
that reproduce as closely as possible the functional con-
nectivity and mean brain synchrony (computed as the
average Kuramoto order parameter, KOP) measured in
data. Finally, after fitting the control condition, we sim-
ulated the effects of stimulation over a range of pertur-
bation intensities (described by the parameter «).
Using the calibrated models, we examined the similar-
ity between the empirical and simulated HOI effects of
TUS, revealing three key findings. First, negative a val-
ues lead to better performance regardless of the target
(Fig. 4C, « in the x-axis). Specifically, when « is neg-
ative, it results in larger positive correlations between
the simulated and observed HOI values, whereas posi-
tive a values produced smaller, anti-correlated values.
This suggests that the stimulation is likely disrupting
the excitatory/inhibitory balance by increasing inhibition
(noise), rather than by enhancing excitation (synchro-
nization). Moreover, when « increased, the time series
became progressively more synchronized, with the tha-
lamus stimulation leading to faster system synchroniza-
tion (see Supplementary Figure S3). Second, for both
targets and negative «, redundancy changes were best
reproduced by the distance-based model, while synergy
changes were more accurately captured by the communi-
cability model. Third, moving from strongly negative to
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FIG. 4. Whole-brain modeling predicts the propagation of TUS-induced plasticity from local to global scales.
A. The local dynamics of each node were simulated using the Stuart-Landau oscillator, which, depending on the bifurcation
parameter (a), can exhibit sustained oscillators (a > 0), noise (a < 0) or coexistence of noise-driven and sustained oscillations
(e = 0). B. We inform heterogeneous models with communication models based on communicability (CMY) or distance
(denoted as 8™), and a stimulation modulated by the parameter o (denoted by « ;) for each target. C. Redundancy and
synergy fitting between the empirical and simulated data: The x-axis corresponds to different simulated intensities in the model
(alpha), while the y-axis to the Spearman correlation between the empirical and simulated statistical differences (all the t-values
in TUS minus control). Each column corresponds to the changes in redundancy and synergy for the two targets. Results for
the model based on distance are shown with a solid line, those for the one based on the communicability model with a dashed
line. D. Corrected t-values in the simulated data (TUS minus control) for the distance-based model (for the communicability
model, see Fig S4). The columns are consistent with panel C. The brain plots illustrate the HOI changes, displaying significant
t-values corrected using a permutation test with N = 1000 iterations. Colors indicate negative/positive changes with respect
to no stimulation. Coloured triangles represent the stimulated target with significant t-values at negative alpha.

strongly positive «, we consistently observed a local-to- haviours for a ~ 0 (Fig. 4D, dashed red area), finally,
global transition characterized by three main regimes: (i) (iii) global, delocalized effects across the whole brain for
only localized effects on a handful of regions for a < 0, both redundancy and synergy for a > 0. Notably, in
(ii) an intermediate regime in which no region shows  the simulated TUS-IFC condition, in the localized regime
significant alterations in their synergy/redundancy be- (a < 0), we recovered the redundancy alterations in the
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right IFC (Fig. 4D, first panel, blue triangle) but not
synergistic ones (Fig. 4D, second panel, white triangle).
Conversely, for the TUS-Thal condition, only the syner-
gistic alterations in the right thalamus were reproduced
(Fig. 4D, fourth panel, red triangle).

III. DISCUSSION

Our results revealed distinct patterns of functional re-
organization following TUS, depending on the target.
We obtained these findings combining three innovations:
(i) the application of HOI to localize spatial effects in-
duced by TUS in humans, extending previous studies
in macaque data [21, 22, 25], (ii) the use of communi-
cation models as mechanisms to predict the functional
plasticity-driven impact of TUS, and (iii) the develop-
ment of a model to explain the mechanism of propaga-
tion of the effects of TUS when the stimulation intensity
increases. We found that, for TUS-IFC, HOIs exhib-
ited changes in frontal and basal ganglia areas, with the
redundancy decreasing in the right frontal hemisphere,
whereas, for TUS-Thal, changes were localized in the
cingulate, temporal, and basal ganglia areas, with the
synergy increasing in the stimulated right thalamus. Al-
though the TUS protocol is designed to modulate neu-
ronal activity by either increasing or decreasing it, studies
have observed both increased and decreased functional
connectivity [21-24], as well as higher-order interactions
[25] in macaques following TUS. This variability may
arise from a combination of LTP or LTD-like plasticity
effects, resulting in heterogeneous outcomes [21, 22, 45].

We reported two possible mechanisms for plasticity
induced by the stimulation to predict the functional
changes after TUS. The global functional changes pro-
duced by TUS were associated with distance and commu-
nicability regardless of the targeted area. In turn, mod-
els based on distance and communicability outperformed
models based on shortest path efficiency and search in-
formation. Altogether, our findings align with results
from drug-resistant epilepsy participants [36], in reported
communicability and search information —both diffusion
processes— were found to be the best predictors for the
propagation of focal electrical stimulation. Our results
also align with previous research predicting functional
connectivity patterns based on network communication,
in which diffusion models were shown to outperform mod-
els based on shortest path length [35]. We believe that
these findings provide valuable insights for modeling the
effects of various types of stimulation and suggest poten-
tial avenues for further research and clinical applications
[11].

We developed a whole-brain model explaining how the
effects of TUS spread spatially throughout the brain as
the stimulation intensity increases. In particular, de-
pending on the intensity, the effects transitioned from
a localized to a global regime, opening new paths for
the exploration and prediction of changes in brain func-
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tion. We also found that larger stimulation intensities
led to quicker synchronization in the thalamus compared
to the IFC. This can be explained by the thalamus’s
more central role in system integration [46-49], which
would increase its capacity to promote more synchronized
interactions. Moreover, we implemented two possible
mechanisms of TUS propagation, one based on distance
and one broadcasting process that allowed us to test the
plasticity-driven changes in some brain areas for different
intensities. Similar to adjusting the bifurcation parame-
ter in the Hopf model, biophysically-inspired models have
shown a transition from noisy oscillations to sustained os-
cillations when the excitatory/inhibitory (E/I) balance
is disrupted through increased inhibition or excitation,
respectively [50-53]. In our findings, both models indi-
cated that the stimulus is more likely to induce noise in
the system rather than pure synchrony. This suggests
that the stimulus tends to disrupt the E/I balance by
enhancing inhibition rather than excitation. We stress
that —although the mechanisms of TUS or the plasticity-
induced chances are still a matter of debate [14-19]-
which mechanism leads to either inhibitory or excitatory
outcomes is even less understood [8, 17, 19, 54]. The
theta-burst TUS protocol used in this study has been
associated with an increase and decrease in neural activ-
ity [55], and our model could help clarify whether ultra-
sonic neuromodulation produces excitatory or inhibitory
effects. The whole-brain models have been used on per-
turbations and psychiatric or neurological conditions, en-
abling to test mechanisms that can be used for predicting
the outcomes of real experimental settings [37—40, 56].
Higher-order interactions have gained prominence in clin-
ical applications for characterizing and predicting healthy
aging [39, 57, 58|, early development [59], neurological
conditions [60, 61], and their associations with cogni-
tion [42] and consciousness [62]. Recently, HOI has been
applied to transcranial ultrasound stimulation (TUS) in
macaques, revealing different topological reorganizations
depending on the stimulation target [25]. Here, we ex-
tended this understanding to healthy humans, demon-
strating that spatial differences in response to TUS also
rely on the stimulation target.

Before concluding, it is important to acknowledge the
limitations of this study. First, our experiment included
22 participants. Future studies should build on this by
incorporating a larger sample size to enhance the robust-
ness of the results. Second, we proposed a mechanism for
modifying regional excitability. While the effects of per-
turbing only the stimulated target have been observed,
this presents an exciting avenue for future research, such
as further exploring the impact of stimulating both the
target and adjacent areas. Finally, while we used the
minimum mutual information (MMI) redundancy func-
tion, as supported by previous literature demonstrating
its clinical relevance in cognition [42], similar outcomes
might be attainable with other redundancy functions
[63]. Exploring alternative definitions [64, 65] could offer
valuable opportunities for further investigation.
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IV. MATERIALS AND METHODS
Partial Information Decomposition (PID)

Consider three random variables: two source variables
X% and X7, and a target variable Y. The Partial Infor-
mation Decomposition (PID) [66] decomposes the total
information provided by X* and X7 about Y, given by
Shannon’s mutual information I(X*;Y"), as follows:

I(X', X7;Y) = Red(X", X7;Y) 4 Syn(X*, X/;Y)
+ Un(X%Y|X7) + Un(X7;Y|XY), (1)

where Red(X? X7;Y) represents the information
provided by X' and X’/ about Y (redundancy),
Syn(X*, X7;Y) denotes the information provided jointly
by X and X7 about Y (synergy), Un(X%Y|X7) is
the unique information provided by X’ about Y, and
Un(X7;Y|X?) is the information that is provided only
by X7 about Y. The four terms of this decomposition
are naturally structured into a lattice with nodes
A = {{12},{1}, {2}, {1}{2}}, corresponding to the syn-
ergistic, unique in source one, unique in source two, and
redundant information, respectively. To compute these
terms, we followed the minimum mutual information
(MMI) PID decomposition for Gaussian systems [67],
where the redundancy is computed as the minimum
information between each source and the target, and the
synergy refers to the additional information provided by
the weaker source when the stronger source is known.

Integrated information decomposition (®ID)

Consider the stochastic process of two random vari-
ables X; = {X}, X/} and denote the two variables in a
current state ¢, by X/ and X7, and the same two vari-
ables in a past state t —7, by X/__, and , X/__. The inte-
grated information decomposition (®ID) is the forward
and backward decomposition of I(X} _, X7 ;X! X7),
called the time delay mutual information, in redundant,
synergistic and unique information [28]. The ®ID can
be represented by the forward and backward interactions
of the product A x A, resulting in 16 distinct atoms:
synergy to synergy, redundancy to redundancy, unique
in source one to unique in source two (and backward),
and redundancy to synergy, among others. Following
previous work [42], our analyses focus on two specific
atoms quantifying the temporal persistence of redun-
dancy and synergy: persistent redundancy (redundancy
that remains redundancy) and persistent synergy (syn-
ergy that remains synergy).

Note that while some approaches to assessing higher-
order interactions involve three or more time series, we
employed the “higher-order” concept here as we ana-
lyzed four random variables { X} _, X7 _; X}, X/}, where
(X%, X7) represent the two variables at the current state
t, along with (X;__, X} ) being their states at t — 7.
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Synergy and redundancy rank framework

The ®ID was computed for all combinations of pair-
wise BOLD time series X/, X/, where i and j represent
two different brain regions, with (i,5) € 1,...,84. This
resulted in two symmetrical matrices capturing redun-
dancy and synergy. We then calculated the median of
each matrix to obtain two strength vectors (each 1x84)
representing redundancy and synergy. Additionally, we
derived rank strength vectors for both redundancy and
synergy (each 1x84), ranking each region by its strength.
Finally, we compared the absolute or rank strength val-
ues between the TUS (IFC-TUS or Thal-TUS) and the
Control vector.

Distance and communication models

D € R3*34 denotes the distance with D;; being the
average streamline length between two regions ¢ and j,
computed per subject. As a representative value of dis-
tance, we used an average across subjects normalized
by the maximum (distance = D/maz(D)). Similarly,
M € R8>8 denotes the structural connectivity, where
M;; is defined as the average number of streamlines con-
necting two brain regions ¢ and j. We computed an aver-
age across subjects as the representative structural con-
nectivity, denoted by M, likewise normalized with real
values between zero and one. Then, we computed the
matrix of lengths L = 1/M, with L;; the cost of commu-
nication between the regions ¢ and j.

The Shortest Path efficiency is denoted by SPE, where
(SPE;;) is computed as the inverse of the shortest path
or geodesic connecting two nodes ¢ and j. Given the
sequence of regions {7, u,...,v,j}, such that A}, = Li, +
-+ -+ Ly; is the minimum transmission cost between ¢ and
j, then SPEU = 1//\;(] [68]

The Search Information is denoted by SI and quanti-
fies the amount of information to bias a random walk into
the shortest path {i,u,...,v,j}. The transition prob-
ability of traveling from 4 to j is computed as T;; =
M,/ 224:1Mik~ Therefore, the probability of a ran-
dom walk to travel from 7 to j via the shortest path
is II;; = Tjy X -+ x Ty;. Finally, the search information
(S1;5) is computed as S1I;; = —log, (I1;;) [35].

The Communicability, denoted by CMY, is a broad-
casting process quantifying the redundant walks connect-
ing two regions while penalizing the longer paths. There-
fore, CMY;; = Y02 W™ /nl = eWii | where Wi =
Wi;/(\/5i\/55), and s; = Zi4:1 Sy, 1s the strength of re-
gion 4 [69, 70].

‘Whole-brain model

We simulated the brain activity using a supercriti-
cal Hopf bifurcation model (Stuart-Landau oscillators)
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[37, T1]. The following ordinary differential equations [3]
define the dynamic for each node i:

dxl(t) o ) _
7t =awi(t) — [27(t) — y2(t)] :i(t)
- wz’yz( ) + 7”1(”7 (2)
dy;it) =azyi(t) — [27(t) — y7(t)] ya(t
+ wiwi(t) + ’W?i(t)-

Where y(t) corresponds to the imaginary component, and
the real component of the time series, x(t), simulated
the BOLD-like signals. We set the oscillation frequency
fi = 0.05 Hz (w; = 0.05 x 2 x 7) for overall nodes. When
the bifurcation parameter a is positive (a > 0), the sys-
tem exhibits a limit cycle, leading to sustained oscilla-
tions. If (a < 0), the system has a stable fixed point
and is dominated by noise. Near the bifurcation point
(a = 0), both noise-driven and sustained oscillations co-
exist over time. We used 84 nodes, parcellated using the
Desikan-Killiany atlas (See Supplementary Tables S2 and
S3 for details), including subcortical areas and structural
connectivity matrices M € R3*84 (19 matrices, as de-
scribed in Supplementary information, three images were
excluded due to excessive motion). The brain areas are
coupled with the structural connectivity M, G = 0.16
represents the global coupling (a fitted parameter. Sup-
plementary figure S2), and n;(¢t), with v = 0.02 the stan-
dard deviation, the external Gaussian noise [3].

d.’L’Z‘ (t
dt

) i) — [22(6) — 2(0)] () — wini(t)
+ G0 My (x5(t) — x(t) +ymi(t), (3)
=aiyi(t) — [27(t) — y7 (1)) wi(t) + wizi(t)

+ G0 Mij (y;(t) — i) +ymi(t).

dt

~—

We proposed modifying the bifurcation parameter as
a proxy of modulate neuronal activity. Biophysical-
inspired models have revealed a switch from noisy oscilla-
tions to sustained oscillations (limit cycles) when disrupt-
ing the excitation/inhibition balance through excitation
[50-53], analogous to increasing the bifurcation parame-
ter in the Hopf model. Following previous literature, we
incorporated heterogeneity in our model [44].

9
Control and TUS model

We simulated the control condition using the Hofp
model with a; = bias + scale 8%, where B is the het-
erogeneous vector of distances or communicability. The
parameters scale and bias were fitted as (bias, scale) =
(—0.17,0.24) in the distance model and (bias, scale) =
(—0.08,0.21) in communicability (see Supplementary fig-
ure S2). Additionally, for TUS, a; = bias + scale (B; +
a 37), where 87 = 1 if s is the stimulated target and zero
in other case.

We ran 1100s simulations with an integration step of
0.1s in the Euler-Maruyama integration scheme for each
subject (19 structural connectivity matrices). The sim-
ulated time series were band-pass filtered between 0.001
and 0.01 Hz and removed the first and last 100s, resulting
in 15-minute simulations.

Statistical analysis

This study compared the redundancy and synergy of
each control (non-TUS) versus each TUS experiment
(IFC-TUS or Thal-TUS) using a t-stat (TUS minus con-
trol). We performed a 1.000 permutation two-samples
t-test analysis per region in the empirical data and the
simulations to find the statistically significant differ-
ences. Bonferroni corrected the correlations between re-
dundancy and synergy changes with the communication
models.

Code availability

The data analysis was conducted using MATLAB
version 2022b.  The MATLAB code for quantify-
ing synergy and redundancy from integrated infor-
mation decomposition of time series, utilizing the
Gaussian MMI solver, is available at https://doi.
org/10.1038/s41593-022-01070-0 [42]. We com-
puted the communication models for weighted net-
works using the Brain Connectivity Toolbox [72]. We
used the Python code to simulate the Hopf model,
freely available at: https://github.com/carlosmig/
StarCraft-2-Modeling.git[71].
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