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Concept and Feature Change in Scientific and Deep Neural Net Representations 
 

Ioannis Votsis (ioannis.votsis@nulondon – www.votsis.org) 
Northeastern University London 

 
Abstract 

Scientific representations and their constituent concepts 
change over time to reflect improvements in our understanding 
of the world. Similar improvements in understanding lead to 
changes in DNN-procured representations and their features. In 
this paper, we investigate whether useful methodological 
practices in concept change and in feature change carry across 
the two types of representations. We argue that there is indeed 
considerable potential for methodological cross-pollination 
and offer some examples of how such benefit may be derived. 

Keywords: artificial neural nets; concepts; conceptual change; 
deep neural nets; featural change; features; models; theory 
change. 

 

Introduction 
Arguably, the main aim of science is to provide adequate, and 
in ideal circumstances correct, representations of the natural, 
social and human worlds.1 Scientific representations take 
many forms, e.g. theories, hypotheses, models, laws and 
principles. Here we emphasise scientific representations as 
extra-mental artifacts, not as mental states like beliefs 
(Dennett 1982; Fodor 1975; Simon 1978). What all 
representations share is that they are means through which we 
conceptualise the world. Their constituent parts can thus be 
thought of as concepts and relations between concepts. For 
example, the special theory of relativity, relates the concepts 
of mass and energy, the Lotka-Voltera model relates the 
concepts of predators and prey, and the Sapir-Whorf 
hypothesis relates the concepts of language and cognition. 

Over time, scientific representations tend to change. The 
classical representation of physical systems, for example, 
was supplanted by relativistic and quantum representations. 
Any change of representations (typically) involves a change 
of concepts (and their relations). The classical concept of 
mass, roughly the amount of matter in a body (later 
understood as a measure of its resistance to acceleration), was 
reconceived in relativistic physics as two concepts: rest mass, 
which is invariant across all reference frames and observers 
and relativistic mass, which is not. 

Representations also exist in other disciplines and human 
endeavours. This includes art, architecture and engineering, 
among others (Frigg 2022; Frigg & Nguyen 2020). More 
recently, representations in machine learning (ML) and deep 
neural nets (DNNs) have been garnering increased attention. 
Like scientific representations, DNN-procured models aim to 
provide adequate, and in ideal circumstances correct, 
representations of any target system for which we can gather 

 
1 Some philosophers of science suggest that practicing scientists 

prefer less accurate/correct/true representations on epistemic 
grounds, e.g. Potochnik (2017) and Elgin (2017). 

data. This includes playing games, detecting patterns in 
images and inferring the 3D structure of proteins from amino 
acid sequences. Given the overlap in aims between scientific 
representations and DNN-produced models, it should be 
unsurprising that the latter have also been employed in 
science, i.e. as scientific representations. To avoid confusion, 
we hereby label scientific representations that have not been 
acquired via DNNs or indeed other AI methods ‘classical’. 

Like classical scientific representations, models produced 
via DNNs (whether deployed for scientific or non-scientific 
purposes) are also made up of constituent parts. Instead of 
concepts and their relations, they are made up of variables 
(also known as features), parameters (also known as weights 
or connections – think of coefficients) and the functional 
relations between them. The task of neural net practitioners 
is to optimise model parameters by minimising the difference 
between the predicted output values and the actual values 
measured. Typically, the variables are manually designed and 
selected by humans, but there are also possibilities to extract 
and select them automatically. Like classical scientific 
representations, DNN-produced models undergo changes 
over time. For example, large language models such as 
BERT, Gemini and GPT, undergo changes during the 
training phase, but also via fine-tuning and via successive 
iterations (e.g. GPT-3.5 vs. GPT-4). As the constituent parts 
of a DNN-produced model include variables, parameters and 
functional relations, any change in such a model means a 
change in its variables, parameters or functional relations. 

Having motivated the various surface level similarities 
between classical scientific representations and DNN-
procured models, the question arises whether there are useful 
methodological practices that carry across the two ‘domains’. 
The present paper tries to answer this question by identifying 
such practices and by considering in what ways they can have 
a positive impact on the respective domains.  

The next section identifies useful methodological practices 
in classical scientific representations, particularly those that 
concern conceptual change. Directly following it is a section 
that identifies such practices in the context of DNN-produced 
models, with a focus on feature change. Succeeding those 
sections is a section that discusses the potential for 
methodological cross-pollination between the two contexts. 
The paper concludes with a summary of the main points. 

 

Concept Change in Scientific Representations 
We earlier broached the subject of changes in classical 
scientific representations and their constituent concepts (and 
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relations), but did not venture to answer the question why 
those changes take place. The primary reason behind such 
changes is the demand to improve the adequacy of those 
representations and concepts with respect to the empirical 
phenomena. It should be clear that no (classical or other) 
scientific representation is perfectly adequate. Indeed, far 
from it, most such representations tend to be rather poor in 
this regard, at least when they are first posited. That means 
that those same representations and their constituent concepts 
(and relations) need to be adjusted to boost adequacy. How 
exactly scientists go, or ought to go, about making those 
adjustments is a subject studied by philosophers and 
historians of science (Andersen, Barker & Chen 2006; 
Kitcher 1993; Kuhn 1962) as well as psychologists and 
cognitive scientists (Barsalou 1992; Carey 2000; Nercessian 
2008), among others. Various recommended methodological 
practices have emerged as a result. In this section, we identify 
some key practices, citing concrete examples along the way. 

The first commendable methodological practice has to do 
with the import of mathematising scientific representations 
(Redhead 2001). The precision afforded by mathematisation 
ensures scientific representations stick their neck out for 
potential empirical falsification and refutation (Popper 
[1959] 2005). This in turn allows representations to be more 
carefully scrutinised and assessed, increasing the likelihood 
of progress towards understanding the world. Quantitative 
representations also mean that the concepts at stake get 
operationalised into measurable variables. For example, the 
concepts of predators and prey are operationalised by 
population density variables in the Lotka-Voltera model. 

The second commendable methodological practice has to 
do with the import of trying out different variables and 
mathematical relations. Gopnik (2020) makes a similar point 
when she asserts that we must allocate enough time and 
resources for the exploration of scientific hypothesis spaces. 
Even if we assume that experimental scientists have chosen 
the right variables and measured them both accurately and 
precisely – a big ask by any account – it is non-trivial to 
decide how exactly to mathematically relate these variables. 
As an example of choosing a wrong variable, consider the 
angular velocity of a deferent (i.e. the theoretical centre of a 
planet’s epicycle) in Ptolemaic astronomy. This helped 
motivate another wrong choice, namely the mathematical 
relation that a deferent’s angular velocity is uniform with 
respect to the equant (i.e. another theoretical point in space). 
Bad choices such as these prevented Ptolemaic astronomy 
from ever settling on a stable empirically adequate account of 
planetary motions. It wasn’t until Copernicus that the equant 
was justly eliminated from astronomy, and Kepler that the 
relevant variable was replaced with area speed. The latter 
allowed the formulation of the second law of planetary 
motion: the line joining a planet and the Sun sweeps out equal 
areas in equal time intervals. Even this mathematical relation, 
however, became a hard-won victory only after Kepler 
switched from a circular to an elliptical conception of orbits, 
which demonstrates once again the importance of trying out 
different variables and different mathematical relations. 

The third, fourth and fifth commendable methodological 
practices concern solutions to the problem of concept 
inadequacy. Let us start with the third. This is the realisation 
that some concepts are empty. That is, they do not correspond 
to anything real. We already saw some examples (the equant, 
epicycles and deferents) in Ptolemaic astronomy. Other 
putative examples from the history of science, include the 
phlogiston, the caloric and the ether. All of these concepts are 
now defunct, often used as cautionary tales of how not to do 
science. The moral of these stories is that scientists must be 
prepared to move away from concepts that repeatedly lead 
nowhere, or, as Lakatos (1968) once put it, when scientific 
research programmes become degenerative. 

Having said this, there is a fine line to be drawn between 
empty concepts that play no positive role in the adequacy of 
scientific representations, and those that are only seemingly 
empty as they do play such a role. In recent years, 
philosophers of science (e.g. Ladyman 2011; Votsis & 
Schurz 2012; Worrall 1989) have argued that all three of the 
above posits (the phlogiston, the caloric, and the ether) fall 
under the latter category. As an illustration, consider the case 
of the caloric. The caloric was posited to be a special kind of 
matter, i.e. distinct from ordinary matter, pertaining to heat 
phenomena. Although now abandoned, its proponents 
correctly identified some relations that play a positive role in 
the adequacy of the corresponding modern scientific 
representation, which cites kinetic energy flow (vs. caloric 
flow) in its explanations of heat phenomena. One such 
relation concerns the thermal expansion and thermal 
contraction of bodies. To wit, a body thermally expands when 
(caloric / kinetic energy) is added because the internal 
pressure (the repulsive force between caloric particles / the 
collisions of ordinary matter particles with the body’s 
boundaries) is increased and so the volume needed by the 
body to accommodate it also increases. Similarly, a body 
thermally contracts when (caloric / kinetic energy) is 
removed because the internal pressure (the repulsive force 
between caloric particles / the collisions of ordinary matter 
particles with the body’s boundaries) is decreased and so the 
volume needed by the body to accommodate it also 
decreases. The moral is that even seemingly empty concepts 
may hide within them some truth that needs to be preserved 
across successive scientific representations. 

The next two commendable methodological practices, the 
fourth and fifth on our list, have to do with the fact that 
oftentimes concept extensions are not quite correctly 
circumscribed, as they include either false positives or false 
negatives or both. Knowing that concepts, especially those in 
their nascency, are likely to include false positives and/or 
negatives means that it is important to try out different 
extension adjustments. One example from the history of 
science that involves both false positives and false negatives 
is the concept ‘planets’. As is well known, planets were 
thought of as wandering stars by the ancients, including 
Ptolemaic astronomers, as they move across the sky against 
what appears to be a backdrop of fixed stars. To be precise, 
the extension of the ancient concept of planets consisted of 
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Jupiter, Mars, Mercury, Saturn and Venus, as well as the 
Moon and the Sun. The last two were understandably 
included in that extension in that, in the eyes of an Earthly 
observer, they also move across the sky relative to the fixed 
stars. Our modern conception of planets has both added 
objects to that extension, e.g. Earth, Uranus and Neptune (the 
false negatives under the old conception), and removed 
objects from it, e.g. the Moon and the Sun (the false positives 
under the old conception). On the modern conception, planets 
are roughly speaking large approximately spherical celestial 
bodies that orbit around a star but are not themselves stars. 

An associated methodological set of practices involves the 
splitting or the merging of existing concepts. Carey (2000) 
calls such cases ‘differentiation’ and ‘coalescing or 
integration’ respectively. As an example of differentiation, 
she points to Galileo’s transformation of the concept of speed 
into the concepts of average velocity and instantaneous 
velocity. Our own examples above include the splitting of the 
concept of mass into rest mass and relativistic mass, as well 
as the splitting of the concept of wandering stars into planets, 
satellites, and stars. As an example of integration, Carey 
points to Galileo’s transformation of the Aristotelian 
concepts of natural motion and violent motion into a single 
concept of motion. Our own examples above include the 
merging of (revised versions of) the concepts of ordinary 
matter and caloric matter into the concept matter, as well as 
the merging of (revised versions of) the concepts of fixed and 
wandering stars into the concept stars. 

The reason why we do not classify the operations of 
merging and splitting of concepts as separate methodological 
practices is because they are effectively produced via 
expansions and contractions of the corresponding extensions. 
It is also worth noting that additional expansions and 
contractions are often needed, beyond those required by the 
simple operation of merging and splitting concepts. That’s 
because the concepts to be merged or split are themselves 
revised, as indicated above. Take, for example, the modern 
concept of stars. This does not simply merge the Ptolemaic 
concepts of fixed stars and wandering stars since the latter 
also include modern day planets and the Moon. Instead, it 
only merges a revised version of the concept of the wandering 
stars, namely one that includes only the Sun, with the fixed 
stars. The concept of the fixed stars themselves is also revised 
to, among other things, include stars unseen with the naked 
eye, and exclude what look like stars but turn out to be 
galaxies.2 Needless to say, our modern conception of stars, 
sees them not as fixed on a celestial sphere and hence as being 
equidistant from the Earth, but as free floating and populating 
the universe at vastly different distances from the Earth. 

The sixth and final commendable methodological practice 
concerns the importance of introducing new concepts. To be 
clear, by ‘new’ we do not mean that such concepts have no 
anchor in something we understand, interact with, see or 
imagine. Rather, and generally speaking, they are concepts 
that are considerably less tethered to existing ideas. Indeed, 

 
2 Some galaxies, e.g. the Andromeda Galaxy, can be seen with 

the naked eye, though it appears like a single star. 

no claim is made here that there is a clear cut off point of what 
counts as a new concept. There are certainly some clear 
instances, and some clear counter-instances, of new concepts. 
Clear counterinstances, i.e. clear instances of concepts that 
are not new, include the modern concepts of planets and stars, 
as they are continuous in non-negligible ways with their 
Ptolemaic predecessors. Clear instances of new concepts 
include those first introduced as unseen common causes of 
seen correlations. The very identification of a correlation 
between seen things raises the question whether the things are 
themselves cause and effect or whether they are both effects 
of a yet-to-be seen common cause. Many discoveries and 
conceptual innovations in science proceed from the 
assumption that there is indeed such a common cause. It is 
thus useful to provisionally posit and subsequently attempt to 
observe and measure them. Examples from the history of 
science abound and include the postulation of the planet 
Neptune in physics to explain correlated disturbances in the 
orbits of other bodies in the solar system (most notably 
Uranus), and the postulation of common ancestors in biology 
to explain correlations between morphological characteristics 
like eyes in various species. Obviously, not all postulations 
are successful. The postulation of the planet Vulcan to 
explain the precession of the perihelion of Mercury is a good 
example where the presumed common cause turned out to be 
fictional. Still, common cause attempts to explain phenomena 
and, more generally, the introduction of new concepts are 
important tools in the theoretician’s toolbox. Indeed, the 
explanation of Mercury’s precession was only made possible 
by the introduction of the concept of mass as curvature of 
space in the general theory of relativity. 

Before we bring this section to a close, it is worth 
highlighting that many of the aforesaid methodological 
practices are not unique to science, but can also be found, at 
least in some recognisable form, in everyday life. This is not 
news to many developmental and evolutionary psychologists. 
As Carey notes “Just as the concepts of person and animal 
change in fundamental ways throughout childhood, so do a 
host of interrelated concepts [in science] also undergo 
conceptual change” (p. 16). 

 

Feature Change in DNN Representations 
In the introductory section, we outlined the constituent parts 
of models procured via DNNs. In this section, we briefly 
explain the production process to put the representational 
capacities of these models into perspective. Moreover, since 
DNN-produced models strive to provide adequate, and in 
ideal circumstances correct, representations of their target 
systems, we identify various recommended methodological 
practices, whose aim is to improve their adequacy. 

DNNs are made up of three layers (input, hidden and 
output) of neurons and their connections. What marks DNNs 
from other artificial neural nets is that they possess several 
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hidden layers of neurons, i.e. their layers are ‘deep’. In a 
typical neural net architecture, neurons at the input layer 
receive one instance of values at a time from all the input 
variables of a training dataset. They then pass these values on 
as outputs to neurons in the first hidden layer, which receive 
them as inputs. Which neurons in the hidden layer are 
receiving these values depends on whether there is a 
connection between the given input layer neuron and the 
given hidden layer neuron. These connections are 
differentially weighted. Each input for a hidden layer neuron 
value is multiplied by the weight of the corresponding 
connection. The output value of a hidden layer neuron is 
sequentially determined by: (1) the sum of all the weighted 
values of input layer neurons connected to it, and (2) the 
chosen activation (e.g. the sigmoid) function which takes that 
sum and transforms it, often in a nonlinear fashion. The 
output value of the given neuron in the first hidden layer then 
gets passed on as an input to one or more neurons in the next 
hidden layer, or, if there aren’t any, the output layer. Either 
way, the process is repeated by calculating the sum of the 
given neuron’s weighted inputs and applying an activation 
function. When this calculation takes place at the output layer 
neuron(s), a prediction or classification ensues. This can then 
be compared to actual measured values (in supervised 
learning) or to some other ‘targeted’ values (in unsupervised 
learning) to establish the loss function, roughly, how badly 
the values in the output match the desired (actual or 
‘targeted’) values. An apt algorithm (e.g. backpropagation) is 
then deployed to minimise the mismatch by adjusting the 
connection weights to achieve a better fit. The whole process, 
i.e. from the feeding of input variable values into the input 
layer neurons to the calculation of output values at the output 
layer neurons and their comparison to desired values, is 
repeated numerous times until a model with good accuracy 
and good generalisability (i.e. external validity) is generated.3 

Models produced via DNNs tend to be exceedingly 
complex. According to some estimates (Briganti 2024), the 
latest GPT models have hundreds of billions of parameters. 
It’s not clear exactly how many variables – henceforth: 
features – are employed in such models, but what is clear is 
that the number is unacceptably high. AI theoreticians and 
practitioners are under to reduce the high dimensionality of 
(i.e. the high number of features in) datasets. On top of this 
complication concerning the sheer number of features, there 
is also the issue of the intricate functional relations that link 
the features. The form of these relations may be 
comprehensible, but a systematic understanding of how input 
gets transformed into output seems out of reach for the 
limited human mind. No wonder then that the resulting 
representations are notoriously difficult (some even say 
impossible) to decipher, earning them the sobriquet ‘black 
boxes’ (Bender & Koller 2020; Harnad 2024). 

For our purposes we will focus on methodological efforts 
to reduce this complexity so as to make the DNN-produced 
models easier and less computationally costly to train and 

 
3 We here omit discussion of the validation and test phases of 

training neural nets for expedience. 

run, but also, hopefully, to make them more transparent, 
interpretable, and explainable. Some of these methods, e.g. 
pruning (Frankle & Carbin 2018; LeCun, Denker & Solla 
1989), aim to simplify the DNN itself by removing 
connections between neurons or neurons themselves, without 
loss of accuracy. Other methods, e.g. feature selection and 
feature extraction, aim to simplify the datasets upon which 
the DNN-produced models are trained. Since the comparison 
between features (in DNN-produced models) and concepts 
(in classical scientific representations) is more intelligible 
than the comparison between the said neurons and concepts, 
the discussion that follows is restricted to the application of 
feature selection and extraction methodological practices.   

What are feature selection methods? Such methods are 
employed to reduce the set of input features to a proper subset 
that makes the most significant contributions to the 
successful training and generalisability of the model. There 
are three kinds of feature selection methods: wrapper, filter 
and intrinsic methods.  

Wrapper feature selection methods are computationally 
expensive as they involve training several models, each with 
a different subset of input features. The subset composition 
varies according to the specific method (e.g. forward 
selection, backward elimination, recursive elimination) 
employed to generate it. At the end of the process, the input 
features of those models that perform best are selected as the 
ones making significant contributions. 

Filter feature selection methods assess the contributions of 
individual input features to the output variable, typically by 
employing statistical measures (e.g. Pearson’s correlation, 
Spearman’s rank and mutual information). The choice of 
statistical measures depends on factors like whether the 
values are numerical or categorical. The input features that 
come out on top in these statistical assessments, e.g. those 
that are most highly correlated with the output variable, are 
then selected as the ones making significant contributions. 

Intrinsic (a.k.a. embedded) feature selection methods are 
so called because they are built into the normal training 
pipeline for models. Well-known examples of such methods 
include L1 (also known as Lasso) and L2 (also known as 
Ridge) regularisation. These methods penalise parameters 
with high values, thereby indirectly reducing or eliminating 
the impact of features that are multiplied by those parameters. 
Among the main benefits of regularisation is overfitting 
avoidance. 

Besides feature selection methods, there are also feature 
extraction methods. The latter are employed to identify and 
obtain features from raw data. As with feature selection, 
feature extraction can be employed to help reduce data 
complexity, thereby speeding up training and improving 
performance by focusing on the most relevant features. They 
also help to simplify the model, rendering it more likely to be 
transparent, interpretable and explainable. Unlike feature 
selection, feature extraction methods do not pick out existing 
features, but rather automatically create new ones, or, more 
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accurately, transform existing into new features. In cases of 
medical image processing, for example, feature extraction 
may lead to the discovery of hitherto unknown characteristics 
that matter for diagnostic/prognostic purposes (Kuan 2017). 

There are several distinct kinds of feature extraction 
methods, including autoencoders, component analyses 
(principal component, kernel principal component, 
independent component and linear discriminant analysis), 
and feature hashing. Autoencoders are special artificial 
neural nets that learn to compress unlabelled data from high 
to lower dimensional representations (encoding) that can then 
be used to reconstruct the original data (decoding). 
Component analyses transform the original features into a 
new set of fewer features. Principal component analysis, for 
example, linearly transforms the data so that they are framed 
within a new coordinate system, where the greatest variances 
are explicated by the new features (i.e. the coordinates). 
Feature hashing allows the conversion of categorical into 
numerical data, thereby reducing the relevant features by 
mapping them to a fixed-size vector. In all feature extraction 
methods, the transformation of features attempts to preserve 
the most important information present in the original dataset. 

Finally, it is worth pointing out that feature selection and 
feature extraction methods are closely related to 
dimensionality reduction techniques. In fact, some 
researchers see feature extraction as a proper subset of 
dimensionality reduction techniques (de-la-Bandera et al. 
2020). As the name suggests, dimensionality reduction 
involves the reduction of dimensions or features for the same 
reasons mentioned earlier, e.g. computational efficiency, etc. 
Of particular importance to us here is the so-called ‘curse of 
dimensionality’. This is the observation that there is an 
inverse relationship between the number of dimensions 
(features) and the generalisability of the model. That is, other 
things being equal, the more dimensions in a model, the less 
generalisable the model is expected to be. 

 

Methodological Cross-pollination 
A good place to begin the discussion of whether there is 
potential for methodological cross-pollination between the 
two contexts, i.e. classical scientific and DNN-produced 
representations, is by specifying similarities and differences 
in the methodological practices they employ to change 
concepts or features. Once we achieve that, we can then move 
on to consider if some of the methodological practices that 
work well in one context may be successfully transplanted 
into the other context.  

The first similarity between methodological practices to 
note is rather trivial, but it cannot be ignored as some 
researchers find this practice highly objectionable. Both 
classical scientific and DNN-produced representations are 
often mathematically expressed. In fact, the latter cannot but 
be mathematically expressed as the methods involved in 
producing them are thoroughly mathematical: all input gets 
numerically vectorised and processed through a sequence of 
summation and activation functions. Classical scientific 

representations, on the other hand, are not always so 
expressed. Indeed, there is still considerable resistance in 
producing mathematical representations in the social sciences 
and the humanities, not least because such representations are 
thought by some (e.g. hermeneutics advocates like Habermas 
1965) to go beyond what is possible in describing behaviour. 
Such resistance has led to the creation of filter bubbles within 
and across disciplines (Maree & Maree 2020), with some 
researchers choosing to cut off all communication with their 
colleagues along these battle lines. The difficulty of 
mathematising representations in the social sciences and the 
humanities notwithstanding, we hope that our thoughts on the 
import of mathematisation are clearly laid out above. 

The second similarity to note is the importance of trying out 
different mathematical relations between the concepts 
(strictly: the corresponding variables) or features at issue. In 
both contexts, the sky is the limit as to which mathematical 
relation may be tried out, as, in principle, any of them may 
lead to fruition. The universal approximation theorem 
vouches for the richness of mathematical expressibility via 
DNN-produced representations. This states, roughly, that any 
feedforward neural net with sufficient complexity can 
approximate any continuous function to any desired degree 
of accuracy. 

The third similarity to note concerns the adequacy of a 
representation, which crucially depends on the choice of 
concepts or features. This is true in both contexts. We have 
already seen how some concept choices, e.g. Ptolemy’s 
angular velocity of the centre of a planet’s epicycle, impeded 
progress in the history of science. In the context of DNN-
produced models, the importance of such choices becomes 
obvious in cases where feature selection and extraction 
methods are applied. When existing features offer nothing to 
write home about vis-à-vis the model’s generalisability, such 
methods are employed to weed them out. Indeed, sometimes 
entirely new features are needed – that’s where feature 
extraction methods become exceptionally handy. 

The fourth noteworthy similarity is that both concepts and 
features can be reshaped to increase the adequacy of their 
respective representations. The operations that can be 
brought to bear in remoulding concepts are contraction (to 
decrease the false positives) and expansion (to decrease the 
false negatives). In the case of features, the reshaping is 
carried out by feature extraction methods. These allow new 
features to be extracted from raw data, features that seek to 
preserve the essential information found in that data. 

The fifth and final similarity worthy of note is that new 
concepts and features are sometimes needed to overcome 
failures in representational adequacy. In the case of concepts, 
we have seen how the method of seeking a common cause 
can lead to new concepts that denote hitherto unobservable, 
but hopefully existing, things (posited to explain correlations 
between observables). In the case of features, as we already 
saw, feature extraction methods can lead to new features that 
seek to capture the essence of the kinds of patterns and trends 
already present in the raw data.  
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Besides similarities, there are some differences between the 
practices in the two contexts. These differences, we argue, act 
as opportunities for cross-pollination. 

The first such difference is that, practically speaking, the 
choice of mathematical relations in either context is 
constrained in various ways. In classical scientific 
representations that choice is cognitively bounded. For 
example, throughout history scientists have been inclined to 
posit simple mathematical relations such as linear and inverse 
square equations. Such an approach has served us well in the 
past, as simple relations have turned out to be empirically 
adequate, but it may not continue to serve us as well in the 
future. For all we know, the next big step in understanding 
the world may require massively complex mathematical 
relations. The application of DNNs to science, their 
admittedly serious transparency, interpretability and 
explainability problems notwithstanding, may thus prove 
propitious, as they are clearly capable of constructing 
massively complex mathematical relations. At the very least, 
we have one good reason to mimic the DNN approach in 
liberating our choice of mathematical relations. On the other 
hand, DNN modelling tends to be unnecessarily profligate in 
expressing mathematical relations (Cf. Lemos et al. 2023). 
That’s at least partly why all the aforesaid methods are 
imperative, including those that aim to simplify networks and 
those that aim to simplify datasets. Indeed, one may argue 
that knowing how simple most classical scientific 
representations are should inspire and put pressure on DNN 
theoreticians and practitioners to devise networks that lead to 
substantially more parsimonious models. 

The second major point of divergence between the two 
contexts concerns the ways they go about selecting concepts 
or features. In the case of concepts, it is not always easy to 
see which ones (strictly: the corresponding variables) 
contribute to the adequacy of a scientific representation. Part 
of the problem has to do with the fact that it is hard to 
manually make various calculations. The same is not true of 
features, as feature selection and feature extraction methods 
automate these calculations by default. Indeed, sometimes a 
combinatorially exhaustive approach is adopted (e.g. some 
wrapper methods are like this) that guarantees success at the 
expense of speed. But besides directly applying ML and 
DNN methods to the context of scientific representation 
production, this approach offers another potential pathway to 
success. Sometimes a shift in scientific representations and 
their concepts requires brute force, and sometimes feature 
selection and extraction inspired heuristics may do the trick.   

The third major point of divergence between the two 
contexts is that it is unclear if features can be empty like 
concepts. That’s because concepts, unlike features, are not 
directly measurable. It’s only when concepts become 
operationalised into variables that we can be sure that they 
are not empty, even though they may still be mistargeting, i.e. 
measuring something other than what we intend to observe. 
Features are, by definition, measurable properties, and, as 
such, do not face the emptiness challenge. They do, however, 
also face the problem of mistargeting. The question then 

arises whether any of the methodological practices discussed 
earlier can help with mistargeting. It seems plausible, at least 
prima facie, that practices analogous to feature extraction 
methods can be applied to concepts to shift their sights 
towards the right targets by reshaping them in the ways 
outlined above. Having the right concepts (or concepts fairly 
similar to the right ones), i.e. those that trace the contours of 
natural categories relatively faithfully, is paramount to being 
able to successfully predict and manipulate the world around 
us. As such, it is well-worth trying to analogously apply 
selection and extraction methods to concepts, as a conceptual 
engineering of sorts. 

The fourth and final point of difference between the two 
contexts is how they go about reshaping concepts and 
features. In the case of feature extraction, the reshaping is 
achieved by trying to preserve variance in the data, since that 
variance is conjectured to reflect real patterns and trends. 
Even so, feature extraction methods seem to ignore another 
potentially fruitful way to reshape features, namely via 
systematically expanding or contracting the set of things to 
which those features apply. That’s something that DNN 
practitioners and theoreticians can learn from concept change 
in the context of classical scientific representations. They 
need a method that performs analogous expansion and 
contraction operations with respect to feature extensions. We 
see no reason why such a method could not prove to be a 
useful supplement to existing feature extraction practices. 
Indeed, we provisionally propose the names ‘feature 
expansion’ and ‘feature contraction’ for these new methods. 
 

Conclusion 
This paper took as its starting point some initial similarities 

between classical scientific representations and models 
procured via DNNs. They both: (i) aim to provide adequate, 
and in ideal circumstances correct, descriptions of their target 
domains, (ii) change over time to improve their adequacy, 
and (iii) have constituent parts, concepts and features 
respectively, that often change along with them. The paper 
then explored useful methodological practices that influence 
conceptual change in the context of classical scientific 
representations and those that influence featural change in the 
context of DNN-produced models. These explorations set the 
stage and allowed for a more meaningful comparison of the 
methodological similarities and differences between the two 
contexts, and, more crucially, the potential for cross-
pollination. It was suggested that cross-pollination is indeed 
promising, and some rough examples were offered to 
demonstrate how practices found in the one context may 
bring benefit to the other. The upshot and hoped-for outcome 
is that by assisting theoreticians and practitioners to come out 
of their methodological shells, new insights may be gained in 
our attempts to advance our understanding of the world. 
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