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Disaggregating Time-Series with Many
Indicators: An Overview of the
DisaggregateTS Package

by Luke Mosley, Kaveh Salehzadeh Nobari, Giuseppe Brandi, and Alex Gibberd

Abstract Low-frequency time-series (e.g., quarterly data) are often treated as benchmarks for interpo-
lating to higher frequencies, since they generally exhibit greater precision and accuracy in contrast to
their high-frequency counterparts (e.g., monthly data) reported by governmental bodies. An array
of regression-based methods have been proposed in the literature which aim to estimate a target
high-frequency series using higher frequency indicators. However, in the era of big data and with
the prevalence of large volumes of administrative data-sources there is a need to extend traditional
methods to work in high-dimensional settings, i.e., where the number of indicators is similar or
larger than the number of low-frequency samples. The package DisaggregateTS includes both clas-
sical regressions-based disaggregation methods alongside recent extensions to high-dimensional
settings. This paper provides guidance on how to implement these methods via the package in R, and
demonstrates their use in an application to disaggregating CO2 emissions.

1 Introduction

Economic and administrative data, such as recorded surveys and consensus, are often disseminated by
international governmental agencies at low or inconsistent frequencies, or irregularly-spaced intervals.
To aid the forecasting of the evolution of the dynamics of these macroeconomic and socioeconomic
indicators, as well as their comparison with higher resolution indicators provided by international
agencies, statistical agencies rely on signal extraction, interpolation and temporal distribution ad-
justments of the low-frequency data to provide high precision and uninterrupted historical data.
Although, temporal distribution, interpolation and benchmarking are closely associated with one
another, this article and its respective package (DisaggregateTS, Mosley and S. Nobari, 2024), expend
particular attention to interpolation and temporal distribution (disaggregation) techniques, where
the latter is predicated on regression-based methods'. These regression-based temporal distribution
techniques rely on high-frequency indicators to estimate (relatively) accurate high-frequency data
points. With the prevalence of large volume of high-frequency administrative data, a great body
of literature pertaining to statistical and machine learning methods has been dedicated to taking
advantage of these additional resources for forecasting purposes (see Fuleky, 2019, for an overview
of macroeconomic forecasting in the presence of big data). Additionally, one may wish to utilize
these abundant indicators to generate high-frequency estimates of low-frequency time-series with
greater precision. However, in high-dimensional linear regression models where the number of
dimensions surpass that of the observations, consistent estimates of the parameters is not possible
without imposing additional structure (see Wainwright, 2019). Hence, this article and the package
DisaggregateTS adapt recent contributions in high-dimensional temporal disaggregation (see Mosley
et al., 2022) to extend previous work within this domain (see the package tempdisagg Sax et al., 2023,
and its corresponding article Sax and Steiner (2013)) to high-dimensional settings.

As noted by Dagum and Cholette (2006), time-series data reported by most governmental and
administrative agencies tend to be of low-frequency and precise, but not particularly timely, whereas
their high-frequency counterparts seldom uphold the same degree of precision.

The aim of temporal distribution techniques is to generate high-frequency estimates that can track
shorter term movements, than directly observable with the direct low-frequency observations. While
interpolation problems are generally encountered in the context of stock series, where say, the quarterly
value of the low-frequency series must coincide with the value of third month of the high-frequency
data (of the same quarter), temporal distribution problems often concern flow series, where instead
the value of the low-frequency quarterly series must agree with the sum (or weighted combination) of
the values of the high-frequency months in that quarter. The latter approach is generally accomplished
by identifying and taking advantage of a number of high-frequency indicators which are deemed to
behave in a similar manner to the low-frequency series, and by estimating the high-frequency series
through a linear combination of such indicators.

In the last few decades, a significant number of articles have been published within this domain—

1See Dagum and Cholette (2006) for an overview of benchmarking, interpolation, temporal distribution and
calendarization techniques.
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Figure 1: Quarterly and monthly simulated stock data

see Dagum and Cholette (2006) for a detailed review of these techniques. Notable studies within
this context include the additive regression-based benchmarking methods of Denton (1971) and
Chow and Lin (1971), Chow and Lin (1976), as well as those proposed by Fernandez (1981) and
Litterman (1983) in the presence of highly persistent error processes. More recently these methods
have been extended to the high-dimensional setting by Mosley et al. (2022), where prior information
on the structure of the linear regression model is used to enable estimation, and better condition
the regression problem. Specifically, this is accomplished by “least absolute shrinkage and selection
operator” (LASSO hereafter) proposed by Tibshirani (1996), which in principle selects an appropriate
model by penalizing the coefficients (in scale) of the high-dimensional regression, in effect discarding
the irrelevant indicators from the model. In what follows, we demonstrate how to apply these methods
using DisaggregateTS to easily estimate high-frequency series of interest.

The remainder of the paper is organized as follows: Section 2 presents the methodologies behind
key temporal disaggregation techniques included in the DisaggregateTS package, along with their
extensions to high-dimensional settings. Section 3 introduces the DisaggregateTS package and
highlights its key functions. Sections 4 and 5 provide examples based on simulations (using a
function in the package that generates synthetic data) and empirical data to demonstrate the package’s
functionality. Finally, Section 6 concludes the paper.

2 Sparse temporal disaggregation

2.1 Classical regression-based techniques

The data in figures 1 and 2 are generated using the TempDisaggDGP() function from the Disaggre-
gateTS package, representing simulated stock and flow data. For the simulated stock data (Figure
1, each quarter’s low-frequency data should match the first month’s value of the corresponding
high-frequency series, denoted with red dots. For the simulated flow data (Figure 2, the quarterly
figures should equal the sum of the sub-quarterly values

Suppose we observe a low-frequency series, say, quarterly GDP, encoded as the vector y; € R",
containing n quarterly observations. We desire to disaggregate this series to higher frequencies
(say monthly), where the disaggregated series is denoted y;; € R?, with p = 3n. Furthermore, we
wish that the disaggregated series be temporally consistent without exhibiting any jumps between
quarters (see Section 3.4 of Dagum and Cholette, 2006, for examples of such inconsistencies between
the periods). The challenge is to identify an approach that distributes the variation between each
observed quarterly point to the monthly level. A method that has been extensively studied in the
literature concerns finding high-frequency (e.g., monthly) indicator series that are thought to exhibit
similar inter-quarterly movements as the low-frequency variable of interest. Let us denote a set of
p observations from these d indicators as the matrix X, € RP*4. A classical approach to provide
high-frequency estimates is the regression-based temporal disaggregation technique proposed by
Chow and Lin (1971) whereby the unobserved monthly series y;; are assumed to follow the regression:
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Figure 2: Quarterly and monthly simulated flow data
Ym = Xmﬁ + Uy, Wy~ N(Om/ Vm) (1)

where B € RY is a vector of regression coefficients to be estimated (noting that X,;, may contain
deterministic terms) and u;, € R? is a vector of residuals. Chow and Lin (1971) assume that uy,
follows as AR(1) process of the form u; = pu;_1 + & with & ~ N(0,0?) and |o| < 1. The assumption
of stationary residuals allows for a cointegrating relationship between y;, and X;; when they are
integrated of the same order. Thus, the covariance matrix has a well-known Toeplitz structure as
follows:

1 0 e ppfl
(72 0 1 . pp72
Vi = 1= p2 : : . (2)
pp71 pp72 .o 1

where p and ¢ are unknown parameters that need to be estimated. The dependent variable y;;, in (1) is
unobserved, hence the regression is premultiplied by the n x p aggregation matrix C, where:

C=1,®(1,1,1)
1 1100 0 0 --- 0
00 01 1 1 0 - 0 3)
0 --00 0 0 1 1 1)

where ® is the Kronecker operator, and the vector of ones in (3) is used for flow data (e.g., GDP), such
that the sum of the monthly GDPs coincides with its quarterly counterpart’. The premultiplication
yields the quarterly counterpart of (1):

Cym = CXwpB + Cup, Cuy ~ N(CO,,, CV,,CT). (4)

The GLS estimator for f is thus expressed as follows:

A _1 2
_ . 2 _

p =arg min {qu (yq Xqﬁ)‘z} ()
CxTv-1x ) Ty Tyl
= (Xq \ Xq) Xy Vg (6)

where X; = CXy;, y; = Cy,, and V,; = CV,,CT. Note that estimating p requires the knowledge
of the unknown parameters ¢ and p in V;; which are unknown. We employ the profile-likelihood
maximization technique of Bournay and Laroque (1979), which involves first estimating § and V,

2For alternative aggregations see Quilis (2018) and Sax et al. (2023). For instance, if quarterly values correspond
to averages of monthly values, then the vector in equation (3) assumes the form (0.33,0.33,0.33).
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conditional on a given value of p, and maximizing the log-likelihood function by conducting a grid
search over p € (—1,1) for the autoregressive parameter. However, in practical applications, including
well-known implementations such as the tempdisagg package and the Gretl econometric software
Cottrell and Lucchetti (2023), the grid search is often restricted to p € [0, 1), reflecting a non-negative
constraint on the autoregressive parameter. Our method is specifically designed to search within
p € [0,1), reflecting this non-negative constraint.

Chow and Lin (1971) show the optimal solution is obtained by:

Y = XmP +VuCV, ! (yg — XgB), )

where Xmﬁ is the conditional expectation of y;; given X;; and the estimate of the monthly residuals are
obtained by disaggregating the quarterly residuals y; — X4 B to attain temporal consistency between
Ym and y.

Other variants of the regression-based techniques include those proposed by Denton (1971),
Ferndndez (1981), Litterman (1983), and Cholette (1984), with the latter two addressing scenarios
where y;;, and X;;; are not cointegrated. Although these traditional techniques are included in the
DisaggregateTS package, a comprehensive overview of different temporal disaggregation techniques
and distribution matrices can be found in Table 2 of Sax and Steiner (2013). The tempdisagg package
implements several standard methods for temporal disaggregation, each with distinct approaches for
estimating high-frequency series. These include the Denton, Denton-Cholette, Chow-Lin, ferndndez,
and Litterman methods. As summarized in Table 2 of Sax and Steiner (2013), Denton and Denton-
Cholette focus on movement preservation, while regression-based methods like Chow-Lin, fernandez,
and Litterman perform generalized least squares regressions on the low-frequency series using one or
more high-frequency indicators. We have implemented the Chow-Lin method with a non-negative
autoregressive parameter, constrained within the range [0, 1), following the approach of Bournay and
Laroque (1979) and Cottrell and Lucchetti (2023). This offers flexibility in different disaggregation
scenarios.

2.2 Extension to high-dimensional settings

The shortcoming of Chow and Lin (1971) becomes evident in data-rich environments, where the num-
ber of indicators d > n surpass that of the time-stamps for the low-frequency data. Let us once again
recall the GLS estimator (6). When d < n and the columns of X;V,; 1Xq are independent, the estimator

is well-defined. However, when d > n, the matrix is rank-deficient - i.e., rank(X;Vq* 1X;) < min(n,d),
the matrix x;v;lxq has linearly dependent columns, and thus is not invertible. In moderate dimen-
sions, where d =~ n, X,;'—Vq* 1Xq has eigenvalues close to zero, leading to high variance estimates of

B.
Mosley et al. (2022) resolve this problem by adding a regularizing penalty (e.g., {1 regularizer)
onto the GLS cost function (5):

~ _1 2
Bt p) = acg min { [V g = 3B, Al Bl }. ®

Unlike the GLS estimator (6), the regularized estimator corresponding to the cost function (8) is a
function of A, and the autoregressive parameter p. Henceforth, it is important to nominate the most
suitable A, and p to correctly recover the parameters. In (8), we denote the estimator as 3(A, | p) to
highlight that the solution paths of the estimator for different values of A, say, /\5,1) , A;z), s, A,(qk) are
generated for (i.e. conditional on) a fixed p. The solution paths are obtained using the LARS algorithm
proposed by Efron et al. (2004), the benefits of which have been extensively discussed in Mosley et al.
(2022).

LASSO estimators inherently exhibit a small bias, such that ||,[§||% < ||p* ||%, where f* denotes
the true coefficient vector. To alleviate this issue, Mosley et al. (2022) further follow Belloni and
Chernozhukov (2013), by performing a refitting procedure using least squares re-estimation. The
latter entails generating a new n x d) sub-matrix X’ g, Where d () < g from the original n x d matrix

Xy, with X’y corresponding to the columns of X; supported by B(/\S,” | p), for solutions I =1, -- -,k
obtained from the LARS algorithm®. We then perform a usual least squares estimation on (yq,X'y) to

(1

obtain debiased solution paths for each A;,’.

Finally, Mosley et al. (2022) choose the optimal estimate from (AL | p),- -+, B(AK | p) using the
Bayesian Information Criterion (BIC hereafter) proposed by Schwarz (1978). The motivation for nomi-

3noting the LARS algorithm produces solutions evaluated at a series of {A; }5‘:1 points.
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nating this statistic over resampling methods, such as cross-validation or bootstrapping techniques,
stems from the small sample size in the low-frequency observations. The optimal regularization is
chosen conditional on p according to

— : _ 3 52
An(p) = Argmin, 0 A0 (o) { 2L (ﬁ(/\n | o), 0 ) +10g(n)K/\n(p)}, )
where K () = [{r: (B(An | p)r # 0)}] is the degrees of freedom and L(B(Ay | p),6?) is the log-
likelihood function of the GLS regression (6), which in the presence of Gaussian errors, is given by:

1

£(B,0%) =~ log(2) — 1 10g(e%) — 3 log(IS]) — 205 (vy — X4B) (v~ X,f), (10

where [S| is the determinant of the Toeplitz matrix S depending on p, such that V; = 0?8 (recalling
that V, = CV,,CT).

3 The package

In this Section, we showcase the main functions that has been included in the DisaggregateTS package.
Following Sax et al. (2023), we first introduce the main function of the package and it its features, and
subsequently we will showcase other functions that allow the practitioner to conducting simulations
and analyses.

3.1 Functions

The main function of the package which performs the sparse temporal disaggregation method pro-
posed by Mosley et al. (2022) is disaggregate(). This function is of the following form:

disaggregate(Y, X, aggMat, aggRatio, method, ...)

where the first argument of the function, Y, corresponds to the n X 1 vector of low-frequency series
yq that we wish to disaggregate, and the second argument, X, is the p X d matrix of high-frequency
indicator series Xj;. In the event that there is no input X, the disaggregation matrix Xy, is replaced with
an n X 1 vector of ones.

The argument aggMat coincides with the aggregation matrix C in (3), and it has been set to "sum”
by default, rendering it suitable for flow data. Alternative options include "first”, "last” and
"average”. The aggregation (distribution) matrices that are utilized in this function are summarized
in table 2 of Sax et al. (2023).

The argument aggRatio has been set to 4 by default, which represents the ratio of annual to
quarterly data. In general, this argument should be set to the ratio of the high-frequency to low-
frequency series. For instance, in the examples considered in the preceding Sections, we had considered
quarterly data as the low-frequency series, and monthly data as its high-frequency counterpart. Thus,
in this setting aggRatio = 3. At first glance, the presence of the aggRatio argument may seem
redundant. However, if n > n; x aggRatio, then extrapolation is done up to n.

Finally, the argument method refers to the method of disaggregation under consideration. This
argument has been set to "Chow-1in" method by default, which is the classical regression-based
disaggregation technique introduced in Section 2.1. Other classical low-dimensional options include
"Denton”, "Denton-Cholette”, "fernandez”, and "Litterman”, where these techniques have been
extensively discussed in Dagum and Cholette (2006) and Sax and Steiner (2013). The main contribution
of this package stems from the "spTD" and "adaptive-spTD” options pertaining to sparse temporal
disaggregation and adaptive sparse temporal disaggregation, which are Mosley et al. (2022)’s high-
dimensional extension of the regression-based techniques proposed by Chow and Lin (1971). In a
high-dimensional regression, the adaptive LASSO is relevant when, for instance, the columns of the
design matrix X exhibit multicollinearity, and the Irrepresentability Condition (IC hereafter) is violated
(see Zou, 2006, for details). In such settings, the regularization parameter A does not satisfy the oracle
property, which can lead to inconsistent variable selection. The adaptive counterpart of the regularized
GLS cost function (8), can be expressed as follows:

; -1 2 2Bl
A | p) = in ¢ ||V 2 (yg — XgB)| + A -
P(Au [ p) = arg min H g (vq qlﬂ)H2 n]; o)

, (11)

where ﬁinit,j is an initial estimator, predicated on 3(g) from the regularized (LASSO) temporal disag-
gregation. See Mosley et al. (2022), for the details of the proposed methodology, and Zou (2006) and
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Van de Geer et al. (2011) to yield variable selection consistency using the OLS estimator and LASSO as
Binit,; when the IC condition is violated.

The second main function of the DisaggregateTS package is TempDisaggDGP (), which generates
synthetic data that can be used for conducting simulations using the disaggregate() function. The
main arguments of this function are as follows:

TempDisaggDGP(n_1, n, aggRatio, p, beta, sparsity, method, aggMat, rho, ...)

where the first argument corresponds to the size of low-frequency series and n to that of the
high-frequency series. Moreover, aggRatio and aggMat are defined as before, in turn representing the
ratio of the high-frequency to low-frequency series, as well as the aggregation matrix (3). A minor
difference in the DGP function is that if # > n; x aggRatio, then the last n — aggRatio x 1; columns
of the aggregation matrix are set to zero, such that Y is observed only up to n;. Argument p sets the
dimensionality of high-frequency series (set to 1 by default), beta which has been set to 1 by default is
the positive and negative elements of the coefficient vector, sparsity is the sparsity percentage of the
coefficient vector, and rho is the autocorrelation of the error terms, which has been set to @ by default.
Finally, the method argument determines the data generating process of the error terms, corresponding
to methods discussed earlier in this Section.

A number of optional arguments included in the function determine the mean vector and the
standard deviation of the design matrix, as well as options such a setting seed for running the
simulations, where the design matrix and the coefficient vectors are fixed.

In what follows, we showcase a simple example of the function and its respective outputs:

# Generate low-frequency quarterly series and its high-frequency monthly counterpart
SynthethicData <- TempDisaggDGP(n_1 = 2,

n==a6,

aggRatio = 3,

p =6,

beta = 0.5,

sparsity = 0.5,

method = 'Chow-Lin',

rho = 0.5)

In the example above, we generate low-frequency series y, € R? corresponding to two quarters,
and consequently, its high-frequency monthly counterpart y,, € R®. It is further assumed that the
data is generated using six monthly indicators - i.e., X3*®, with a coefficient vector B € R®, where
/3j € {—0.5,0,+0.5}. Since, the sparsity argument is set to 0.5, only half of f’s elements are non-zero.
Finally, the error vector u,;, is assumed to follow the AR(1) structure of Chow and Lin (1971), with an
autocorrelation parameter of p = 0.5.

4 Simulations

In this Section, we show a simulation exercise to demonstrate the implementation of the temporal
disaggregation method via the DisaggregateTS package.

4.1 Classical setting

We start by simulating the dependent variable Y € R'” and the set of high-frequency exogenous
variables X € R%>5 by using the command:

# Set seed for reproducibility
set.seed(27)
# Generate low-frequency yearly series and its high-frequency quarterly counterpart
n_l <- 17 # The number of low-frequency data points - annual
n <- 68 # The number of high-frequency (quarterly) data points.
p_sim <- 5 # The number of the high-frequency exogenous variables.
rho_sim <- @.8 # autocorrelation parameter
Sim_data <- TempDisaggDGP(n_1,

n,

aggRatio = 4,

p = p_sim,
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Figure 3: Temporal disaggregated and interpolated observations for the estimation under the classical
setting. The plot is built using the snippet code provided in this subsection. As we used the setting
aggMat = sum, the sum of every four disaggregated observations corresponds to an actual low-
frequency observation.

rho = rho_sim)
Y_sim <- matrix(Sim_data$Y_Gen) # Extract the simulated dependent low-frequency variable
X_sim <- matrix(Sim_data$X_Gen) # Extract the simulated dependent
# (low-frequency) variable
Y_sim_HF_obs <- matrix(Sim_data$y_Gen) # HF simulated observations

In this example, we are generating a set of low-frequency data, i.e. 17 annual datapoints and a set
of high-frequency (quarterly) exogenous variables that we want to use to infer the high-frequency
counterpart of the low-frequency data. We now want to temporally disaggregate the low-frequency
time series by using the information encapsulated in the high-frequency time series. In this case,
since the number of time observations is larger than the number of exogenous variables, we can
use standard methodologies to estimate the temporal disaggregation model. To do so, we use the
disaggregate() function setting method="Chow-Lin". The code is as follows:

C_sparse_SIM <- disaggregate(Y_sim,

X_sim,
aggMat = "sum"”,
aggRatio = 4,

method = "Chow-Lin")
C_sparse_SIM$beta_Est

#> 1 x 1 Matrix of class "dgeMatrix”
# [,1]
#> [1,] 0.3193439

Y_HF_SIM <- C_sparse_SIM$y_Est[ ,1] # Extract the temporal disaggregated
# dependent variable estimated through the function disaggregate()

We show in Figure 3 the results, where we depict the high-frequency observation computed via
standard interpolation and estimated through the Chow-Lin temporal disaggregation method.
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High—Dimensional Setting
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Figure 4: Temporal disaggregated and interpolated observations for the estimation under the high-
dimensional setting. The plot is built using the snippet code provided in this subsection. As we used
the setting aggMat = sum, the sum of every four disaggregated observations corresponds to an actual
low-frequency observation.

4.2 High-dimensional setting

We now repeat the simulation experiment in a high-dimensional setting, where the number of temporal
observations is lower than the number of exogenous variables. In this case, standard methods like
Chow-Lin cannot be applied. To do so, we simulate the dependent variable Y € R' as before, but
now the set of high-frequency exogenous variables is of dimension X € R68%100, Similarly, as before,
we can use the following command:

# Generate low-frequency yearly series and its high-frequency quarterly counterpart
set.seed(27)

n_1l <- 17 # The number of low-frequency data points

n <- 68 # The number of high-frequency data points - quarterly

p_sim <- 100 # The number of the high-frequency exogenous variables.

rho_sim <- 0.8 # autocorrelation parameter

Sim_data <- TempDisaggDGP(n_1,

n'
aggRatio = 4,
p = p_sim,

rho = rho_sim)
Y_sim <- matrix(Sim_data$Y_Gen) #Extract the simulated dependent
# (low-frequency) variable
X_sim <- Sim_data$X_Gen #Extract the simulated exogenous variables - high-frequency

In this case, we cannot use a standard technique, and we need to estimate a sparse model to
overcome the curse of dimensionality. The disaggregate() function can handle the high-dimensional
setting by choosing the method to be "spTD" or "adaptive-spTD". In the following example, we use
the latter:

As we can see from both Figures 3 and 4, the standard interpolation cannot reproduce the fluctua-
tions of the data, making the result overly smooth. On the other hand, the temporal disaggregation
methods demonstrate fluctuations in line with the actual observations. We remark that the degree
of success in recovering the short-term fluctuations depends considerably on the setting, and as one
may expect, performance is not as strong in the high-dimensional scenario where the estimator must
simultaneously search for appropriate indicators and estimate the parameters.
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We would in general caution against throwing sets of non-curated (i.e. possibly irrelevant) indi-
cators into any of the Chow-Lin methods. Instead, we recommend that where possible, indicators
that are designed to track the outcome of interest are used, e.g., we may wish to benchmark (align)
monthly flash-indicators of GDP against more reliable yearly/quarterly observations, in this case,
the flash estimates can be used as an indicator within a standard Chow-Lin approach. If there is a
larger set of indicators which practitioners find hard to decide amongst, that is all indicators could
be feasible from the practitioner view, then we recommend users may try the model-selection based
"spTD", and "adaptive-spTD” routines. In some settings, use of the classical Chow-Lin procedure
becomes impossible due to the lack of low-frequency responses, in such settings it is necessary to
either apply regularization or perform model-selection.

To conclude the simulation exercise, we present a set of statistics from 1,000 simulations for both
the linearly interpolated and temporally disaggregated time series across the two simulation settings.
The results are summarized in Table 1. As it can be observed, the temporally disaggregated time
series provides a much better representation of the real data’s level of dispersion, while interpolation
consistently underestimates it. In terms of MSE and MAE, the findings are mixed: for the classic
case, temporal disaggregation shows lower values for both metrics, whereas in the high-dimensional
setting, the opposite trend is observed.

Table 1: Mean and standard deviation (in parentheses) of key statistical measures for the high-
frequency simulated observations, temporal disaggregated observations, and interpolated obser-
vations across 1000 Monte Carlo simulations. MAE and MSE are computed with respect to the
high-frequency simulated observations.

Statistic Classical_Obs Classical_Temporal_Disaggregation Classical_Interpolation HighDim_Obs ~HighDim_Temporal_Disaggregation HighDim_Interpolation

Standard Deviation ~ 2.716 (0.258) 2.888 (0.597) 1.488 (0.321) 10.089 (0.888) 8.478 (1.696) 418 (0.817)
Kurtosis 2.897 (0.519) 2902 (0.527) 2.689 (0.694) 2.898 (0.558) 2.890 (0.523) 2.892 (0.772)
MSE ) 2405 (1.733) 5.158 (0.977) ( 104.463 (28.519) 86.095 (16.258)
MAE ) 1.185 (0.386) 1.809 (0.178) ( 8.136 (1.101) 7.403 (0.735)

e -
- -

-)
-)

5 Empirical application

In this Section, we show how temporal disaggregation can be used in a real-world problem.

The urgent need to address climate change has propelled the scientific community to explore
innovative approaches to quantify and manage greenhouse gas (GHG) emissions. Carbon intensity, a
crucial metric that measures the amount of carbon dioxide equivalent emitted per unit of economic
activity (e.g. sales), plays a pivotal role in assessing the environmental sustainability of industries,
countries, and global economies. By focusing on emissions per unit of economic output, carbon
intensity accounts for the fact that larger organizations or economies may naturally produce more
emissions simply due to scale. This allows for a fair comparison of sustainability performance across
different entities, regardless of size. Accurate and timely carbon accounting and the development
of robust measurement frameworks are essential for effective emission reduction strategies and the
pursuit of sustainable development goals. While carbon accounting frameworks offer valuable insights
into emissions quantification, they are not without limitations. One of those limitations is the frequency
with which this information is released, generally at an annual frequency, while most companies’
economic indicators are made public on a quarterly basis. This is a perfect example in which temporal
disaggregation can be used to bridge the gap between data availability and prompt economic and
financial analyses. In this application, the variable of interest is the GHG emissions for IBM between Q3
2005 and Q3 2021, at annual frequency, resulting in 17 datapoints, ie. Y € RY. For the high-frequency
data, we used the balance sheet, income statement, and cash flow statement quarterly data between
Q3 2005 and Q3 2021, resulting in 68 datapoints for the 128 variables. We remove variables that have a
pairwise correlation higher than 0.99, resulting in a filtered dataset with 112 variables, i.e. X € R68x112,
In this example, we employed the adaptive LASSO method (method = "adaptive-spTD") as a way to
select the best variables that can be used to recover the high-frequency observations and we applied
the aggMat = "sum” aggregation method. The rationale for using this method, in conjunction with
aggRatio = 4 is to ensure that the disaggregated quarterly carbon intensity values are consistent
with the overall annual figures as the goal is to break down the emissions and sales data such that
the sum of the quarterly carbon intensities equals the yearly total. The adaptive LASSO procedure
select only seven non-zero coefficients, which are Actual sales per employee, trailing 12-month net
sales, Enterprise value, Current liabilities, total liabilities and equity, total line of credit and net debt.
Actual sales per employee, trailing 12-month net sales and Enterprise value indicate company sales
and size, both linked to the company’s economic activity, operational intensity, and commitment to
sustainability, and hence potential emissions. Current liabilities and total liabilities and equity reflect
the company’s financial position and operational scale, both of which might influence emissions. Total
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Figure 5: Temporal disaggregated and interpolated GHG emissions observations. In this example, we
used the setting aggMat = sum, so the sum of the quarterly disaggregated GHG sums to the actual
annual observation.

line of credit and net debt highlight the company’s ability to borrow, which could impact investment in
emissions-reducing projects. We show the results in Figure 5 alongside a linear interpolation method.

As it is possible to observe from the plot, the interpolated data do not fluctuate as we would expect
from real GHG emissions, as the method is not conditional on the variability of the high-frequency
variables. In this respect, the temporal disaggregated observations show more realistic dynamics. This
result can then be used to compute the GHG intensity, computing the ratio between GHG emissions
and the sales for the corresponding quarter.

6 Summary

In this paper, we have given an overview of the key functionality for the DisaggregateTS R package.
The package builds on features of the existing tempdisagg package allowing the user to easily apply
the regularized Chow-Lin type procedure of Mosley et al. (2022) and compare this with classical
methods based on interpolation via smoothing (e.g. Denton, 1971), or the Fernandez (1981) and
Fernandez (1981) methods in the case where series are not co-integrated. The package may be
extended in future to allow cross-sectional constraints, the disaggregation of panel time-series data,
and the accommodation of factor (latent-variable) structures in the temporal-disaggregation problem.

It is important to point out that when performing disaggregation, one should be careful to select
an appropriate set of indicator time-series, and not purely rely on the model-selection procedures
deployed here. Whilst these methods can help pick from a set of indicators, there is still room for them
to pick irrelevant/spurious series, especially given the short nature of the aggregate series. To this end,
we do not recommend just relying on one method alone, but rather a user deploy several methods of
disaggregation. The user should then attempt to obtain some form of (potentially qualitative) external
validation of the resultant series in their application of choice. One should always remember, that as
the high-frequency series is not observed, there can be no direct empirical validation of the methods
other than at the aggregate scale.
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