Synthese (2025) 206:116
https://doi.org/10.1007/511229-025-05184-3

ORIGINAL RESEARCH |

®

Check for
updates

Compositional understanding in signaling games

David Peter Wallis Freeborn’

Received: 7 August 2024 / Accepted: 25 July 2025
© The Author(s) 2025

Abstract

Receivers in standard signaling game models struggle with learning compositional
information. Even when the signalers send compositional messages, the receivers
do not interpret them compositionally. When information from one message com-
ponent is lost or forgotten, the information from other components is also erased.
In this paper I construct signaling game models in which genuine compositional
understanding evolves. I present two new models: a minimalist receiver who only
learns from the atomic messages of a signal, and a generalist receiver who learns
from all of the available information. These models are in many ways simpler than
previous alternatives, and allow the receivers to learn from the atomic components
of messages.
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1 Introduction

Two-player signaling games provide a model in which arbitrary signals can acquire
conventional meanings, shared between the different players (Lewis, 1969; Skyrms,
2010). However, sophisticated communication systems, such as human language,
do not merely use signals in isolation. Instead, human language is widely held to be
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compositional: we can generate complex expressions, whose meaning is determined
by their constituent parts, and the rules used to combine them.

Can signaling games help to explain the emergence of compositional commu-
nication? A number of recent studies (Barrett, 2006, 2007, 2009; Franke, 2014,
2016, Scott-Phillips, Blythe, Gardener, & Steinert-Threlkeld; Steinert-Threlkeld,
2016, 2020) attempt to construct signaling game models in which, at first glance, the
receiver seems to learn the meaning of compositional signals.

However, some authors have questioned whether the communication systems
learned in conventional signaling games models are truly compositional (Franke,
2014, 2016; Steinert-Threlkeld, 2016; LaCroix, 2023). As Franke (2016, p. 362) puts
it, “there is no reason to assume that the component parts of complex signals are
independently meaningful to the agents”. LaCroix (2023) makes these arguments
explicit, using information-theoretic reasoning. If certain messages are replaced or
forgotten, information is lost from other messages in the signal. The loss of infor-
mation suggests that the receiver could never have been interpreting the signal in a
compositional way to begin with. LaCroix argues that such syntactic signaling can-
not suffice to explain the evolution of compositionality (LaCroix, 2022). Whether
or not this is right, these arguments point to a serious problem with conventional
signaling games models. Ostensibly compositional models do not seem to be captur-
ing a robust sense of compositionality. I will call this the puzzle of compositional
understanding.

Empirical work shows that human learners do not, in fact, struggle with compo-
sitional interpretations in signaling-game settings. In iterated-learning experiments,
participants quickly converge on signal systems whose parts can be recombined pro-
ductively; receivers use these parts to infer the meanings of novel messages (Kirby
et al., 2008). Sender—receiver experiments paint the same picture: when roles alter-
nate, both players reshape their codes so that individual signal elements map sys-
tematically onto meaning dimensions, and receivers generalize those mappings to
unseen combinations (Moreno & Baggio, 2015). Indeed, even young children show a
bias to track function/content word patterns in artificial grammars in a way that sup-
ports later compositional interpretation, whereas adults rely on any salient regularity
(Nowak & Baggio, 2016). The puzzle I tackle therefore concerns model learners, not
human ones. In contrast to the human results, standard Lewis-Skyrms reinforcement
agents succeed at coordination yet fail to retain partial information carried by mes-
sage components'.

In this paper, I argue that LaCroix and Franke are right: conventional signaling
game models do not learn any compositional signaling. However, the puzzle of com-
positional understanding can be solved. I construct signaling game models in which
the meaning of the signals is robust against replacement and forgetting, in precisely
the way that Franke and LaCroix demand. Therefore, I argue that such models can in
fact allow for the evolution of compositionality.

The models I present in this paper use a more sophisticated receiver, able to learn
more complex patterns of information. I present two approaches, one minimalist and

'Some other related models on the evolution of language include Batali (Batali & Hurford, 1998); Kirby
and Knight (2000, 2007); Nowak and Krakauer (1999), Nowak et al. (2000).
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one generalist. In the minimalist approach, the receiver reinforces based on each
atomic message that they receive. Formally, this kind of receiver could be interpreted
as a simple feed-forward neural network. The generalist receiver reinforces on all the
information available, in effect learning a full joint probability distribution.

Several approaches already exist in which agents do acquire a more robust kind of
compositional communication, one that is resistant to the challenge posed by Franke
and LaCroix. Barrett et al. (2020) provide three models of hierarchical composition
games, which augment conventional signaling games with executive agents, which
can avoid the challenge raised by LaCroix and Franke. Under either an efficiency
requirement or an explicit cost per signal, the executives steer learning so that each
basic signal can come to encode just one semantic dimension. Franke (2014) models
agents equipped with a simple form of spill-over reinforcement learning, where suc-
cessful updates diffuse to similar states and signals rather than remaining entirely
local. This is enough for populations of otherwise unsophisticated learners to con-
verge on stable, order-sensitive form—meaning mappings. Finally, Steinert-Threlkeld
(2020) develops a model with sophisticated neural network senders and receivers in
which compositional signaling evolves. In Sect. 4, I will suggest a reason why this
model can avoid this puzzle of compositional understanding.

However, the two models presented here are distinct, and in some senses simpler
than previous models. In both cases, the models solve the puzzle of compositional
understanding by allowing for more sophisticated receivers, who explicitly consider
the separate information considered in the atomic messages. The other features of the
conventional signaling game models remain largely unchanged. These models also
shed some light into why the puzzle of compositionality arises in standard models
and I suggest some insights into the criteria that might be needed for compositional
understanding more generally.

2 Background
2.1 Signaling games

In a typical signaling game, there are two players. One player (the sender) has access
to the state of the world. The sender tries to convey information about the world
to a second player (the receiver). Then the receiver performs an act, based only on
the information that they have received. Both players are rewarded if the receiver
performs the right action corresponding to a given state of the world. However, the
receiver does not know the meaning of the signals in advance: these meanings must
be learned from rewards through successive iterations of the game.
More formally?, a signaling game is defined by a tuple,

2:<S7M5A7Pao-7p7u>7 (l)

2For convenience, I will closely follow the formalism and notation of Skyrms (2010) and LaCroix (2023)
wherever possible, throughout this paper.
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where S = {sq,...sr} is a set of states of the world, M = {my,...,m;} is a set
of possible messages that the sender can send and A = {ag,...a,} is a set of acts
that the receiver can perform. Let A(X) be a set of probability distributions over a
finite set, X. P € A(S) assigns a probability distribution over the possible states
of the world in S. We define the sender with a function from the states of the world
to the messages that they send, o : S — A(M). Likewise, we define the receiver
with a function from the messages that they receive to the actions that they can per-
form, p : M — A(A). The players are rewarded through a function that assigns a
utility based on whether performed actions appropriately match the state of the world
u:SxA—=R

For example, in the atomic 2-game, there are two equally probable states of the
world, so and s1, two possible messages mg and m and two possible actions, ag
and a;. Both players receive a reward of 1 if act 0 is performed in state 0 or act 1 is
performed in state 1. Otherwise, both players receive a reward of 0.

A signaling system arises if the sender and receiver coordinate strategies perfectly
to maximize the payoff. Given that the meanings of the signals are initially arbitrary,
there may be more than one possible signaling system in general. For example, in the
atomic 2-game, there are two signaling systems (see Fig. 1), one in which message 0
corresponds to state 0 and message 1 corresponds to state 1, or one in which message
0 corresponds to state 1 and message 1 corresponds to state 0.

The sender and receiver learn to communicate through a process of reinforcement
learning. The sender assigns weights to each (world, message) pair, and the receiver
assigns weights to each (message, action) pair. The weights of the choice that each
player has made are reinforced each turn according to the reward that they receive. A
common choice is for each strategy to start with an equal reinforcement of 1, and for
each strategy to be chosen with probability proportional to its accumulated reward 3,
although other options are available.

We can visualize this form of reinforcement learning with an urn model *, For
example, with the atomic 2-game, we can imagine that the sender has two urns,
labeled sg and s1, corresponding to each state of the world, with balls corresponding
to messages mg and m;. Meanwhile, the receiver has two urns, labeled mg and m4
corresponding to the messages that they receive, with balls corresponding to acts ag
and a;. Players choose messages to send or acts to take by drawing a ball at random
from the corresponding urn, with probability proportional to the number of such balls

S0 mo ap  So mo ag

S1 mi ar s mi a

Fig. 1 The two signaling systems available in the atomic 2-game

3This is Richard Herrnstein’s matching law — see Herrnstein (1970), Roth and Erev (1995), Othmer and
Stevens (1997), Skyrms and Pemantle (2000).

4For instance see (Polya, 1921; Hoppe, 1984).
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in the urn. For example, suppose that the world is in state sg, the sender chooses
message my, and the receiver chooses act ag, leading to the two players receiving a
reward of 1. Then the sender adds an mg ball to urn sg, whilst the receiver adds an ag
ball to urn mg, making it more likely each player will opt for these strategies again
in the future.

More precisely, at turn number ¢, if the world is in state s, then the sender’s prob-
ability of picking any given message, m,, is,

Ri(my | 52

where R;(m; | s;) denotes the total reinforcement of message m; for a given state,
5z, (or the number of m; balls in the s, urn) at turn t. Likewise, given a message m,,,
the receiver’s probability of picking a given action a is,

Ry(ay
pt(az | my) = z%v 3)

where R;(m; | s;) denotes the total reinforcement of act a; for a given message, m,,
(or the number of a; balls in the m,, urn) at turn t.

2.2 The information content of signals

The entropy of a variable quantifies the amount of information one would need to learn
its exact state®. Let X be a discrete variable with possible values x1, z, ... € X. The
information entropy of X is defined as

H(X)=-Y" P(x)logP(x), @
TzeX

where P(z) is the probability of X taking value = °. The entropy of a probability
distribution is always greater than or equal to zero, H(X) > 0. In general, the infor-
mation entropy of X is maximal when all possible values are equally likely. If we
gain information about the value of a random variable, then its information entropy
decreases; if we know its exact value then the entropy will be 0.

Suppose we have an agent with probabilities P. Following Skyrms (2010), we can
define the quantity of information that a signal m; conveys to the agent about a state
s; of the world using their conditional credence about the state given that the signal
was sent (P(s; | m;) and the unconditional, prior credence about the state, P(s;),

5See Cover and Thomas (2006) for a more detailed overview.

S Where numerical values are specified, I will use logarithms of base 2 throughout his paper, but of course
we can alternatively define information-theoretic quantities with any such choice.
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P(si | m;)
H(m; log————2~. 5

( .77 ) g P(SZ) ( )
This quantity is also known as the pointwise mutual information. However, in gen-
eral, a signal can carry information about all states. Therefore, we can quantify the
average fotal information carried by a signal about the state of the world using a
weighted sum of the information carried about each particular state,

ZP si | m;)log (;;( W;J) (6)

This is the Kullback-Leibler divergence between the probability distribution con-
ditional on the signal m; and the marginal probability distribution. It measures the
total quantity information gained from moving from the marginal distribution to the
conditional distribution, according to the conditional distribution.

For the agent, the expected information received per turn, will be given by the
mutual information between the states (5) and the messages (M),

P(si | m;
Lo (85 M) = D P(si,m;) log (;(LTJ)’ ™
irj ‘

where P(s;, m;) is the joint probability of state s; and message m;. This quantity is
always non-negative and symmetric (I(S; M) = I(M; S)), reaching zero only when
the messages are wholly non-informative about the states.

The agent’s beliefs about the frequency of messages may not be correct. There-
fore, we will be interested in the true average information transmitted per turn. This
will be given by,

P(si | m;)

Idverdge S M ZQ m] Sz | m]) IOg P(sl) , 8)

where () represents the actual probabilities, with Q)(m;) giving the actual probabili-
ties that each message is sent. In other words, we weigh the information transmitted
by each possible message by the probability that this message is sent.

We can also specify the information content about specific states carried by a sig-
nal, not just its total quantity of information. If there are k signals, then the informa-
tion content can be represented by a k-dimensional vector,
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P(so | m;) P(sk—1 | m;)
I(m;) = <10gPO(80)7 e ’long(Sk—1)> ) )

where the ith element of the vector tells the information that signal m; provides
about the corresponding state of the world. In general, there are two types of informa-
tion we might be interested in: the information carried by the signals about the states
of the world (the information interpreted by the sender), and the information carried
by the signals about the acts (the information interpreted by the receiver) ’.

It is convenient to represent the information carried by each signal about states or
acts in tabular form. For example, consider the atomic 2-game. Suppose that the two
signals provide no information about the state of the world (perhaps no learning has
taken place, so the signals are entirely arbitrary). Then the information content of
each signal about the states of the world would be

so S1 ap ai
I(mo) 0 O I(mo) 0 0 (10)
I(m1 ) 0 O I(m1 ) 0 0

Such a signal carries no information about the state of the world, or about the acts.

Alternatively, suppose that our agents have arrived at a signaling system, in which
the receiver knows that m always corresponds to sg and m; always corresponds to
s1. Then the information content would be,

So S1 ap a1
I(my) 1 -0 I(my) 1 —oo (11)

I(m) —o0 1 I(my) —o0 1

so each of the signals, mg and m1, carries one bit of information, exactly enough to
tell us the state of the world. Likewise, each signal exactly specifies the act that the
receiver will take. The —oo elements tell us which state-signal or signal-act pairs
have zero probability. Skyrms (2010) interprets this as a case of a signal carrying
propositional information. Thus the process of reinforcement learning breaks the
symmetry between initially arbitrary signals, and information is created “ex nihilo”
(see Skyrms, 2010, page 40).

"The games considered in this paper will always have exactly one act optimal for each state of the world.
Therefore, it will occasionally be convenient to talk about information about acts as if it carried informa-
tion about the state of the world directly. However, it will be very important to keep track of the informa-
tion as interpreted by the sender and by the receiver.

@ Springer



116 Page 8 of 28 Synthese (2025) 206:116

2.3 Compositionality

A language is compositional if the meaning of each composite expression can be
derived from the meaning of its parts and the way in which those parts are combined®.
For example, the meaning of this sentence I am now typing might derive from the
meaning of these words and the way that I am combining them. Typically this is
expressed as follows. Let mq, ... m, be n components of an expression, combined
into a complex expression o(my,...m,), where o is some syntactic combination
operation. Then if [ is an interpretation function, which assigns the meanings in this
language,

I(o(my,...my)) = fI(m1),...1(my)), (12)

where f is some function specific to the language in question.

In the context of co-operative signaling games, it is most natural to interpret the
meanings of expressions in terms of the information content conveyed by the signals,
as we defined in Sect. 2.2. The sender tries to send signals that best communicate their
credences about the state of the world. And the meaning that the receiver interprets
in the signals gives their credences about the state of the world. When a signaling
system is reached, the sender and receiver agree about the meanings of expressions.
However, in a compositional language, we should not need perfect transfer of infor-
mation for some information to be transmitted. Suppose that I know the meaning of
my but not my and I receive the message o(my, me). Then this still conveys partial
information about the possible values of f (I(my), I(m-)). For example, suppose
that we are discussing the professor’s choice of clothing today, and message m; con-
veys the clothing will be red’ . Then the message o (m1, m-) provides me with partial
information: I know that the clothing will be red, even if I am unclear about the item
of clothing. Partial information has been conveyed by closing off some options: I
know that the professor will not wear a chartreuse kimono or a fuchsia kaftan. This
capacity to convey partial information even when only some components are under-
stood is a general feature of compositional languages'’.

8 However, note that in natural languages, some morphemes may not bear information on their own but
rather carry meaning only through their effect on other constituents of an expression, for instance only
in the phrase only child.

9Note that some authors (e.g. Franke, 2014) maintain that conjunction is a rather trivial form of compo-
sitionality, because each conjunct already asserts its own content and the sentential meaning is just their
joint assertion. Nevertheless, for convenience and simplicity, I will continue to treat conjunction as an
example of compositionality.

10For completeness, note that there are special cases in which partial expressions do convey precisely no
information about the world. For instance, suppose I have a credence of exactly one half that m- could
mean an affirmation or negation. Then all I can discern from the complex expression o (m1,me) is that
the professor either wears red or does not wear red, with one half probability each. If I began with those
same beliefs, then no information about the professor’s clothing has been conveyed. However, if we shift
my prior beliefs even slightly, or my credences about the meaning of m- even slightly, then at least some
partial information is conveyed. Note also that this is also true of signaling systems: if they only tell me
what I already know, then no information about the world is conveyed.
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2.4 Ostensibly compositional syntactic games

The signals we have looked at so far have only carried atomic information. Barrett
et al. (2020) propose ways of constructing syntactic games, for which they argue the
signals can carry compositional information (see also Barrett, 2006, 2009; Barrett &
Skyrms, 2017). Let us look at one such example, a 4 x 4 x 4 two-sender signaling
game. We will refer back to this game several times as a key example.

There are four states of the world, sq, s1, s2, S3, and four acts, ag, a1, as, as, with
rewards of 1 if the act matches the world (a; = s;) and 0 otherwise. Now, however,
there are two senders, 04 and o, each of whom can choose between two signals to
send, m§ or mi and m¢' or m{! respectively. The one receiver must choose an action
based on the information that they receive from both signals.

A signaling system requires that each pair of possible signals uniquely specifies
one state of the world. One possible signaling system is shown in Fig 2. In this signal-
ing system, each sender sends an incomplete message about the state of the world.
Sender A sends mé‘ if the world is in state sg or s1, m{‘ if the world is in state so or

sender A

S0 > m‘g‘ > o
L1

51 mf — ai

2 > mE > a2

~

53 > My as

sender B

Fig. 2 One possible signaling system available in the 4 X 4 X 4 two-sender signaling game. Each
sender transmits a message if the world is in either of the corresponding states. The receiver takes an
action only when they receive both the corresponding message from sender a (red) and the correspond-
ing message from sender B (blue)
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s3, whereas sender B sends még if the world is in state s or so, m¥ if the world is
in state s; or s3. However, the receiver’s action is completely determined (and the
corresponding state of the world is completely specified) by the conjunction of the
two messages: ag if they receive m§ and m¥, ay if they receive mg and m¥, ay if
they receive mi! and m¥, and a; if they receive m{* and m?%.

A concrete example might help here. Suppose that the four states correspond to
the professor’s choice of clothing today: ay corresponds to a red dress, a1 to a blue
dress, as to a red suit, and ag to a blue suit. Then the four messages have an obvious
interpretation: mg‘ corresponds to a dress, mf to a suit, m{f to a red clothing, and
m?¥ to blue clothing. If the receiver correctly interprets these messages composition-
ally, then they should have learned that messages from sender A tell us the type of
clothing and messages from sender B the color.

We can see this by looking at the information content of the atomic messages
about the states (i.e. the information as interpreted by the sender),

s) S1  S2 83

I(md) 1 1 —00 —-o©

I(m#) —co0 —o0 1 1 (13)
I(m®) 1 - 1 —oo

I(mP) —oo 1 —o0 1

On the other hand, if we look at the information carried possible conjunctions of the
two signals about the acts (i.e. the information interpreted by the receiver), we see
that the act is completely specified by the conjunctions of the signals,

a a1 ay as

I(m{') and I(m&) 2 —00 —o0 —00

I(m{) and I(mP) —o0 2 —o0 — (14)
I(mf!) and I(mf) —o00 —o0 2 —oo

I(m#)and I(m?) —oc0 —o00 —o0 2

At first glance, it might appear that the receiver is obtaining and interpreting com-
positional information — in this case their action is determined by the conjunction of
two atomic symbols. For example, if and only if the receiver sees messages m{' and
m& they take action ag, the appropriate action to receive a reward if the world is in
state so. To return to our example, the receiver learns that the professor is wearing a
red dress, from the two distinct messages, one telling him the clothing is a dress, the
other telling him that the clothing is red. Analogous examples of apparently composi-
tional communication have been built upon models of this essential form Barrett and
Skyrms (2017), Barrett et al. (2020).
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3 The puzzle of compositional understanding

The signals sent by the sender in the 4 x 4 x 4 two-sender signaling game are com-
positional. However, upon closer inspection, we shall see that the signals are not
being interpreted compositionally by the receiver. To put it another way, the receiver
is interpreting each conjunction of signals as a distinct atomic signal. Doubts along
these lines have been raised by Franke (2014, 2016); Steinert-Threlkeld (2016), LaC-
roix (2023).

LaCroix (2023) demonstrates this with a simple example. Suppose that the
4 x 4 x 4 two-sender game has reached the signaling system described in Sect. 2.4.
And let us tie this back to concrete example of professorial attire from Sect. 2.4.
There are four atomic signals, m{' (dress), mi* (suit), m§ (red), and m¥ (blue).
The receiver knows how to interpret each compound signal, mg &mE (red dress),
mi&m?P (blue dress), mi*&m¥ (red suit), and mi&m?P (blue suit).

Now suppose that sender B substitutes one of their signals, m& (red) with an
entirely new signal, m%. This could be interpreted as an act of replacement of a sig-
nal, or forgetting the previous signal. Perhaps they have forgotten the English word
red, and instead substitute it with the French word rouge to describe the color. So,
they amend their behavior, so that any time they would have sent message m& (red),
they now send m¥ (rouge). In the urn analogy, they simply relabel all balls labeled
with m¥ (red) with balls labeled m¥ (rouge) in the sender’s urns.

So now we have four different possible atomic signals, m{' (dress), mi' (suit),
m¥% (rouge), and m¥ (blue). However, let us suppose that our receiver does not
understand any French. We will leave the receiver’s balls unchanged, so they
start with zero balls labeled m¥ (rouge). Now if the senders deliver the message
m{j‘&m?B (dress and rouge) to the receiver, how does this change the information
content of the signal?

The inclusion of a novel signal does not meaningfully change the informational
content available to the sender about the states of the world: except for the relabel-
ling their reinforcement remains the same. So except for the exact substitution of the
message m (red) with m¥ (rouge), the information content of the signals will be
identical to that in Eq. 13,

S S1___ 82 83
I(mg) 1 1 -0 —

I(m#) —oco —oo 1 1 15 (15)
I(m¥) 1 —-o0 1 —oo’

I(mP) —oo 1 —o0 1

However, the information available to the receiver about the acts has changed! After
all, the receiver has not yet learned the meaning of the new message m?% (they do
not understand the French word rouge, and this new signal starts with zero reinforce-
ment). Therefore, at least some information must have been lost, when compared to
Eq. 14. The information about the acts is now,
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I(m{) and I(m¥?

I(m#) and I(m

I(m#') and I(m:
(

I(m#') and I(mf

where we interpret the signals as dress and rouge, dress and blue, suit and rouge, and
suit and blue respectively.

The problem is that rather more information has been lost than we would expect
if the receiver were interpreting these signals compositionally. Observe that the
sender cannot glean any meaning from any signal containing the new signal, rouge:
the information content is zero for every column in those two rows. That is, all of
the information from any of the compositional signals involving m¥ (red) has been
wiped out altogether, whilst all signals containing the new message m?¥ (rouge) con-
vey no information. To put it another way, messages m{ (dress) or m4' (suit)will
initially convey no information to the receiver when they are sent in conjunction with
the new signal m¥ (rouge). In total, an average of one bit of information has been
lost, according to Eq. 8, as shown in Fig 3.

If the signals were being interpreted compositionally, then m{' and m4 should still
convey some information, regardless of the substitution. For instance, m{ (dress)
should still individually correspond to the world being in one of two states, sg or
s1 (red dress or blue dress); likewise m?* should correspond to the world being in
state s or s3 (red suit or blue suit). The addition of the unknown signal, m% (rouge)
would not be able to eradicate the known meaning of these messages. By Eq. 8, we

2.00

175

g
n
o

=
N
«

1.00

0.75

0.50

Receiver's Information Content (bits)

°
N
o

0.00

0 20000 40000 60000 80000 100000
Turn Number

Fig.3 Simulation of the receiver’s average information in the conventional 4 x 4 X 4 two-sender sig-

naling game, with the signal replaced at turn 50,000 (red, dashed line). Almost one bit of information
is lost
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would expect only one half of a bit of information to be lost on average. The total
information would be,

ap ay as as
I(m) and I(m?) 1 1 -0 —
I(m{') and I(mf) —o0 2 —oc0 —o0 17 17
I(m#)and I(mf) —oco0 —o0 1 1
I(m#)and I(mP) —oc0 —o00 —o0 2

Recall from 2.3: that the components of a compositional signal should each com-
municate some partial information. If the receiver were truly interpreting these mes-
sages compositionally, then they should have learned that messages from sender A
tell us the type of garment and messages from sender B the color. Then, even though
they do not know the meaning of m¥ (rouge), the conjunction of Mg (dress) and
m¥% (rouge) should still convey partial information: the professor is wearing a dress,
of unknown color. The replacement of the word red should not prevent the receiver
from understanding the word dress.

Thus, although the senders transmit compositional signals, it seems that the
receiver must be interpreting each of the four pairs of signals atomically. That is, they
understand a message like mé‘&m?B as a single unit, rather than understanding the
meaning from the meaning of its parts and the way that they are combined. This gen-
eral argument applies to the ostensibly compositional signaling game models of Bar-
rett (2006), Scott-Phillips et al. (2012), Franke (2016), Barrett and Skyrms (2017).
LaCroix (2023) draws a general conclusion from this lesson: the problem is with the
syntactic composition of atomic messages. Perhaps “focusing exclusively on syntax
in discussing the evolution of compositionality under the signaling-game framework
is misguided” (LaCroix, 2023, p. 12). However, if we could construct a syntactic
model in which the receiver does interpret the signals compositionally, then we need
not succumb to this pessimistic conclusion.

4 Genuine compositionality

In retrospect, it is not surprising that the receivers were not able to interpret these
signals compositionally in the 4 x 4 x 4 two-sender signaling game. The problem
lies with the information that we allowed the receiver to learn. Recall that the receiver
was only storing information about complete pair of signals, without storing any
information about its components. Recalling Eq. 3, the receiver’s probabilities of
choosing an action at each time step were restricted to probabilities of each act con-
ditional on the pairs of signals,
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Rt(az | mA&mB)
A By _ x Y
(2]

where R;(a; | m2 &méB ) is the total reinforcement of act a; given the conjunction of
both message m? and message mf . The receiver could only reinforce strategies of
this form. Or, in the urn analogy, the receiver has only four urns: one for each pair,
m¢ and mE, m¢' and m¥, m{* and m¥ and m¢' and m¥. There is no reinforcement
on responses to the signal components. As such, the receiver is restricted to necessar-
ily treat each message pair as basic, rather than its atomic components.

How might we loosen this restriction? Franke (2016) proposes using a method of
spill-over reinforcement learning. In this process, when a particular signal-action pair
is reinforced, other signal-action pairs are also reinforced to a lesser degree accord-
ing to a similarity metric. This innovation allows agents to generalize from learned
associations to novel situations. But it requires us to install a similarity metric into
the agents a priori, and these similarity metrics that do much of the heavy-lifting. In
a more naturalistic model, we would like the agents should spontaneously learn the
similarities between the components. Steinert-Threlkeld (2016) questions whether
these models have a genuine syntactic structure that gets compositionally interpreted.

I propose two plausible approaches. A simple approach would be to allow the
receiver to learn probabilities conditional on the atomic messages from each sender
— let us call this the minimalist approach. A bolder approach might be to relax the
restriction fully, and let the receiver learn about all of the message components and
their combinations that he receives, as if they are learning the full joint probability
distribution — let us call this the generalist approach. Either of these approaches will
work, but both are worth considering.

4.1 The minimalist approach

In the minimalist approach, we reinforce acts conditional on each of the atomic mes-
sages that they receive, rather than the combination of messages. In the urn analogy,
the receiver would have four urns, one for each of the input messages, m()“, mi, mf
and m¥. Suppose that the act a is to be reinforced upon receiving messages m¢ and
m&: then an ag ball would be placed in both the m{' and the m§ urns. Using our
clothing analogy, we replace the urns representing red dress, blue dress, red suit and
blue suit with urns representing red, blue, dress and suit.

Suppose that the information content carried by the signals about the states is
exactly the same as before. Then this would allow for a signaling system in which
the information carried by the messages about the acts corresponds exactly to the

information about the states, for example,
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I(mg) 1 1 -0 -
I(m‘f) —00 —00 1 1 (19)
I(m®) 1 —o 1 —o
I(mP) —oo 1 —o0 1

Clearly, if the message m& were replaced by m?%, only the information pertaining to

m& would be lost. The other message would give partial information,

a a1 ay ag

I(m{) 1 1 —oc0 —o©

I(m{') —o0 —o0 1 1 (20)
I(m?%) 0 0 0 0

I(mP) —oo 1 -

So in such a system, the receiver does seem to interpret the signals in a way that is
genuinely compositional. Each sender’s message conveys partial information to the
receiver, and only by combining the messages does the receiver acquire the full infor-
mation. If a sender’s message is replaced, no other information is lost.

However, we still need to show that the sender and receiver could arrive at this
signaling system in the first place. The key here is how the receiver should pick an
act, conditional on both messages that they receive. Naively, one might simply pick
the act proportional to the weighted sum of a strategy’s reinforcement given each
message, in the same way as the previous signaling games,

_ Ru(az | m3) + Ri(az | my))
N ZRt(ai | m2) + Re(a; | mf) 2D

naive (

Pt a | mf&mf)

However, it is easy to see that this would not lead to this signaling system. Consider
the receiver’s long-run reinforcements in each of their four urns, m{j‘, mi, mE and
m#P. In the long run, we would expect the receiver’s urn mj to receive roughly equal
reinforcement with the balls for acts ag and a1, and the receiver’s urn mOB to have
roughly equal reinforcement for acts ag and a2. Now suppose that the senders trans-
mit messages m{' and mJ: the receiver would pick the correct corresponding act ag
around half the time, but they would be just as likely to choose an incorrect act, a; or
as each about one quarter of the time.

To put it another way, upon receiving the component messages red and dress, three
possible acts would all have non-trivial reinforcement, corresponding to red dress,
red suit and blue dress. Only the act corresponding to the blue suit would never be
reinforced by the messages red and dress. So if the acts are chosen in direct propor-
tion to their reinforcement, the receiver would often choose the wrong act.
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But nothing about the structure of the signaling game compels us to require the
receiver to choose acts in this way. They do not have to pick acts with probabili-
ties directly proportional their total reinforcement. An alternative would be for the
receiver to instead pick strategies using some activation function, f, chosen so as to
ensure the choices are more sharply peaked around the correct action,

pminimalistt(az | mf&mf) — f(p;laivc(az | mf&myB)) . (22)

A sigmoid shape would be especially useful here, making the difference between
strongly and weakly reinforced actions becomes more pronounced. This means that
when receiving messages red and dress, the receiver would be much more likely to
choose the strongly reinforced red dress over the partly reinforced red suit or blue
dress. One possible choice is the tempered softmax function,

exp(z;/T)
Zi exp(xi/T) ’

Jrsm(zj) = (23)

where the temperature, T, controls the steepness of the function. With this in place,
the sender and receiver can efficiently arrive at a signaling system. When replace-
ment takes place, only a half a bit of information is lost, as we would expect for
compositional signaling (see Fig 4).

In effect, we could interpret such a minimalist receiver as a very simple, feed-
forward perceptron neural network. In this interpretation, the four atomic messages
forming the input layer, the four acts as the output layer, the function p"®V® as the
weights to be learned, and the f as the activation function, as depicted in Fig. 5. In

2.00

Information Content (bits)
o o = = - -
I g ° N 0 y
o v o w o w

°
N
o
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0 20000 40000 60000 80000 100000
Turn Number

Fig.4 Simulation of the tempered-softmax minimalist receiver’s average information inthe 4 X 4 x 4
two-sender signaling game, with the signal replaced at turn 50,000 (red, dashed line). Almost half a
bit of information is lost. For visibility purposes, the learning rate is slowed with a high temperature,
T = 2000

@ Springer



Synthese (2025) 206:116 Page 17 0f28 116

Weights Sum Activation function Output

pnaive f(pnaive)

299 ¢
N

Fig. 5 The minimalist receiver in the 4 X 4 X 4 two-sender signaling game, interpreted as a simple
perceptron

retrospect, this should not be a surprise: neural networks are designed precisely to
learn composite information'!.

One might wonder whether the introduction of such an activation function is in
some way ad hoc? Perhaps, although it should be noted that the conventional choice
of choosing a strategy in direct proportion to the total reinforcement would be also
arbitrary, in the absence of any particular justification'. After all, we should also

think of eq 3 as specifying some choice of activation.
4.2 The generalist approach

In the generalist approach, we allow the receiver to effectively learn about all of the
message components and their combinations (we can think of this as if they are learn-
ing a full joint probability distribution), that is p(ao, a1, as, az, mg, mit, mE, mP)
This could be implemented in a number of ways.

One possible implementation using the urn analogy is as follows. We allow the
receiver to have one-variable urns, corresponding to the individual messages and acts

"Indeed, the historical controversy over the ability of neural networks to learn compositional informa-
tion seems to closely parallel the contemporary debate about compositionality in signaling games (see
Goodfellow-neuralnets, Bengio, & Couville, 2016; Werbos (1974), Minsky and Papert (1972), Rumelhart
et al. (1986), Olazaran (1996). Indeed, these observations also seem to complement (Steinert-Threlkeld,
2020), who makes explicit use of neural network agents to learn complex compositional information in
signaling games.

12 Potentially, in an even more general setting, one could allow a good functional form of f to be learned
as well.
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(mg‘, ap, etc.); two-variable urns, corresponding to the message pairs, or message-
act pairs (m@'and m¥, mgland ay, etc.), up to the maximum number of possible
variables: in this case three (two messages and one act). Urns corresponding only
to messages (and combinations of messages) are reinforced whenever that message
(or combination) is received. For example, upon receiving the message combination
m{‘and m¥, a ball in placed in three urns: the one-variable urns mj and m#, and
the two-variable urn, mg'and m®&. These urns correspond to the receiver learning
about how likely different combinations of messages are to arrive together. When an
act is successfully rewarded, a ball is placed in the urns corresponding to any part of
that message and the act. For example, if the receiver is rewarded for choosing ag in
response to the previous message, a ball is placed in three urns: the two-variable urns
m()‘xand ao and mPand ag, and the three-variable urn, m64and m¥and ag. These
urns correspond to the receiver learning which acts receive reward in response to dif-
ferent combinations of messages.

In other words, our receiver learns on the basis of both the full message, and its
components (as well as learning of any correlations between the messages them-
selves!). Our receiver learns about which acts are reinforced on the basis of a mes-
sage containing red, a message containing dress and on the full message being red
dress.

We might imagine them piecing together a full joint probability distribution about
all these components'>. Let M stand for an arbitrary combination of n messages.
Then we might imagine the receiver’s reinforcements as them learning unconditional
probability distributions about the different messages and message components, and
about which acts receive reinforcement based on the different messages and message
components,

: Ry(M™)
generalist M) = t T 24
eneralis n R Ay M:ZL
PR 0, M) = e M) (25)

2 Relay, MP)

We could think of Eq. 24 corresponds to the implicit learned probabilities about com-
binations of messages, whilst Eq. 25 corresponds to the implicit learned probabilities
about which acts receive rewards for different combinations of messages. With this
in place, we then set the receiver to choose acts according to the implicit conditional
probabilities of the act given the full message that they have received, i.e.,

generalist n P(ayv 1 jf)
p (ay | M) = = - 26
¢ Y ) jp(aj7Mx) (26)

13 Thinking of this in terms of probabilities is a convenience. However the model is still purely syntactic,
in the sense of Barrett (2007, 2009).
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Finally, we need to specify a rule for the appropriate initial reinforcement if a new
message is introduced at some turn, 7', such as mf . Observe that adding a new mes-
sage must involve supplementing the system with not just one new urn, but many
new urns, for each possible message and message-act combination involving m?%.
This could be done in a number of different ways. One tempting choice would be to

simply add all new messages with a reinforcement of 1,

Ry(mPand M) =1, (27)

for all message combinations, M. Such a choice might be appropriate in many set-
tings; however it would destroy some of the informational content of the existing
messages. After all, then the probability of any given act, conditional on a signal,
m§ and M, that includes the new message would be,

B n
information-erasing B ny __ p(aya ms 5Mr) _ 1
p a, | myand M) = = —
T ( y| ! ! ij(aj7m§,Mg) Na’

(28)

where NN, is the number of acts available, independent of the rest of the signal, M.
If we view all new messages involving the new signal to carry the same information,
then we effectively no longer treat those other messages as carriers of compositional
information. Some information from the other signals M’ will be erased, just as in
the examples in Sect. 2.4. In the 4 x 4 x 4 two-sender game, the information carried
by the messages would be,

a0 a1 a2 a3
I(m{') and I(m®) 0 0 0 0
I(mg) and I(mB) —oo 2 —oco0 —o0 (29)

I(m{) and I(m?) 0 0 0 0

I(m{)and I(mP) —oco —o00 —o0

Instead, in order to preserve the informational content of existing messages, the
receiver should begin with the assumption that the existing messages are probabilis-
tically independent of the new message,

pijrjlformation—preserving(Min | m?B) — p(Mln)’ (30)
pij{lformation—preserving(aj and M:L | m‘]73) _ p(ajand Mln)’ (31)

for all messages M;" and acts, a;. Then, the probability of any given act, conditional
on a signal that includes the new message would be,
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p(a%mij?v M;L)

information-preserving B d M™) =
o ([ mrand M) = 5 olamP oty G2
25 plag, M)’

exactly preserving the informational content of the other messages in the signal,
M. The message of each signal in the 4 x 4 x 4 2-messenger game would then be
exactly as one would expect if the signals are being interpreted compositionally,

a0 a1 a2 az
I(m}') and I(m?) 1 1 —00 —o©
I(m{) and I(mP) —oo 2 —oc0 —o0 (34)
I(m)and I(mf) —o00 —o0 1 1
I(m#)and I(mP) —o0 —o00 —o0 2

Simulation results are shown in Figs 6 and 7. Observe that the information-preserv-
ing generalist loses less information but also recovers more slowly after the message
is erased. This is a feature of the urn-reinforcement learning: having retained much
of the information about the existing signals, the urns remain significantly reinforced
even after the old message is erased. This is a feature of the urn-model of reinforce-
ment learning, and would not necessarily hold with other kinds.
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Fig.6 Simulation of the information-erasing generalist receiver’s average information inthe 4 X 4 X 4

two-sender signaling game, with the signal replaced at turn 50,000 (red, dashed line). Almost one bit
of information is lost

@ Springer



Synthese (2025) 206:116 Page210f28 116

Receiver's Information Content Over Time (Generalist Model - Preserving)
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Fig. 7 Simulation of the information-preserving generalist receiver’s average information in the
4 x 4 x 4 two-sender signaling game, with the signal replaced at turn 50,000 (red, dashed line). Al-
most half a bit of information is lost

Consider again our professorial vestments example. We can think of the two ways
of incorporating a new message as follows. Suppose that the message red has been
erased and the receiver obtains the mysterious new messages rouge and dress. On the
information-erasing approach, they regard this as a truly new message with no prior
reinforcement. As such, this message erases prior information that they had learned
about the meaning of the word dress in this context. On the information-preserving
approach, they could assume that the message contained in this new message rouge
is statistically independent of what they already knew about the word dress. As such,
they believe that the composite message rouge dress retains all of their previous
knowledge and so tells them that the garment being worn is at least a dress, regard-
less of its color.

One advantage of this generalist approach is that grants us greater flexibility. We
can choose to model a new signal as either information-destroying or information-
preserving, depending on what we consider appropriate in another given situation.
Either of these approaches might be well-suited to modeling the integration of dif-
ferent kinds of new information. Another advantage is that the generalist approach
does not depend on an arbitrary activation function as in the minimalist approach.
One final advantage is that it presents a far more general learning framework than the
minimalist approach: we allow the receiver to learn any part of the joint probability
distribution over all the variables under consideration 4.

Another advantage of the generalist model over the minimalist model is that it
reaches a signaling system just as often as the traditional model. The reason is that the
generalist model selects its strategies according to the reinforcement conditional on
the conjunction of the two messages, just as in the traditional model. The difference is

4Where one could interpret the minimalist receiver as a simple feed-forward neural network, one might
interpret the receiver in the generalist procedure as implicitly learning the probabilities in a Bayesian
network.
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that the generalist model is not restricted in what the receiver can learn: the receiver is
also learning about the atomic messages at the same time. In this sense, the general-
ist model combines the advantages of both the minimalist and traditional model: the
receiver is learning from all the information available. However, this comes at the
expense of greater complexity.

5 Objections

Before proceeding, we should stop to consider whether these moves, from the tra-
ditional signaling model to the minimalist or generalist models, is really legitimate.
There are three immediate objections to consider.

First, at face value, these models might seem unnatural, artificial or convoluted, in
a way that traditional signaling game models are not.

For instance, the tempered softmax activation function used in the minimal-
ist model might seem like an unnatural imposition. However, any signaling game
architecture makes some choice of activation function, implicitly, or explicitly. For
example, traditional signaling games trained with Roth—Erev learning also have an
implicit linear activation function, in choosing the response in proportion to the rein-
forcement. We should not prefer linear activations a priori, and softmax offers one
reasonable choice'>. Plausibly, any monotone activation that accentuates the gap
between the best- and second-best actions would be likely to yield similar qualitative
outcomes.

However, I think the generalist model is more natural than the traditional model.
After all, there is no obvious reason for why a receiver should only receive reinforce-
ment based on whether their act corresponds to the full signal, rather than the atomic
message components of the signal. In fact, there is something especially natural about
a model which simply reinforces and learns about all the information available to
the receiver without any restriction. Another way to put this is that evolutionary pro-
cesses tend to explore the entire possibility landscape, so we should not restrict that
landscape a priori. Furthermore, it is hardly surprising that a reinforcement learner
will fail learn to interpret a signal compositionally if they can only reinforce based on
the whole signal, rather than the atomic messages that constitute its component parts.

Second, perhaps there is a sense in which allowing the receiver to reinforce on the
compositional parts of the signal might “hard-wire” the solution from the start. After
all, we have created receivers who are potentially far more structured than the receiv-
ers in traditional signaling games. Perhaps the structure of the neural network in the
minimalist model, or the implicit conditional probabilities in the generalist model
already contain information about the solution?

I5A wide variety of activation functions have seen use in machine learning contexts Goodfellow et al.
(2016). The appropriate choice of activation function is highly contingent, depending on the specifics
we are trying to model. For example, softmax implements Boltzmann exploration, a standard model of
stochastic choice in reinforcement learning and animal foraging; it therefore offers a cognitively and evo-
lutionarily plausible way to bias the receiver toward its highest-valued action while still permitting explo-
ration (Thrun, 1992; Sutton & Barto, 2018).
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However, these receivers exhibit more potential structure only because they are
more general types of learners. The potential structure exhibited by these receivers
is not additional pre-learned structure or information. One way to see this is that the
receivers of this type are not in any sense hard-wired to learning conjunctions of
signals. These models could also be used to learn other logical operations such as
inclusive or exclusive disjunctions.

Third, perhaps the receivers in these models are not really compositional at all.
Perhaps, the final action taken by the receiver is still fully determined by the full
conjunction of the messages, not by the atomic messages. In this sense, the lack of
compositionality is just being hidden by an extra layer of complexity in the structure
of the receiver.

This is easiest to see with the minimalist model. In effect the receiver has become
a more sophisticated neural network agent, with two layers of beliefs, a first layer that
contains the input message, and a second layer that selects an output action solely
based on the conjunction of messages. The final choice of action still depends solely
on the conjunction of messages, just as in the traditional model. Likewise, in the gen-
eralist model, the receiver acts solely on the conjunction of messages, albeit whilst
storing the other relevant information in a full joint probability distribution.

In one sense, this third objection is exactly right, but this is a bullet I am happy to
bite. The final action does indeed depend on the full message, not on the component
atomic messages. It is inevitable that such a receiver ultimately makes a decision
based on the whole message: what is important is how the receiver goes about inter-
preting the atomic messages to come to their conclusion about which act to perform.
The minimalist interprets the message compositionally but necessarily has intermedi-
ate steps of processing before reaching that final stage. But in pushing the step inside
the receiver, we have allowed the receiver, taken as a whole, to interpret messages
compositionally. As such, the receiver as a whole can retain partial information and
act accordingly when a sender’s message is forgotten or replaced.

Likewise, the generalist receiver stores more sophisticated information, involving
the individual probabilities and conditional probabilities. The relevant information
about the action conditional on combinations is stored, but so is store more com-
plete information. Uniquely of all the models considered here, the generalist receiver
effectively builds a model of the state of the world with all of the information that is
potentially available to them.

6 Comparisons with other models

As discussed in Sect. 1, there are several alternative approaches to the solving the
puzzle of compositionality, each carrying some similarities to the minimalist and
generalist models proposed here. (Barrett et al., 2020) propose three two-sender game
models in which executive agents reinforce or suppress basic senders and enforce
minimal signaling. In the special composition game, the two basic senders are pre-
assigned one semantic dimension each. The role-free composition game removes
those fixed roles. Reinforcement learning usually drives the senders to partition the
state-space into complementary semantic dimensions. The general composition game
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keeps this role freedom but eliminates the explicit efficiency rule; instead every sig-
nal carries a cost that is deducted from pay-offs. Because unnecessary signals now
reduce net reinforcement, the population again evolves the one-sender-per-dimension
scheme across a wide range of cost/pay-off parameters. The executive sender (who
decides which basic sender(s) may speak) and the executive receiver (who tells the
basic receiver how to interpret what arrives) learn in tandem with the basic agents, so
contextual demands plus either efficiency constraints or signal costs reliably steer the
whole hierarchy toward a compositional communicative language.

As such, receivers interpret each atomic message in isolation when the game’s
context demands it; combining messages simply intersects the independently learned
meanings. These models explain how compositionality might emerge as a result of
linguistic and computational costs and how the sender might evolve to send only
single terms when that is most efficient and hence be an active partner in the use of a
compositional language. However, it is worth noting that these dynamics occur within
individual learning agents, rather than through explicit population-level evolution.
Note that the executive-functional architecture introduces significant complexity and
relies on mechanisms that are not present in standard reinforcement-based agents.
Moreover, these models arguably make the sender an active partner in optimizing for
compositionality.

On the other hand, (Franke, 2014) keeps the classic single-sender/single-receiver
architecture but tweaks how reinforcement spreads. After a rewarded move, weight
flows to similar states and similar symbols. Because each atomic signal’s reinforce-
ment spills into new contexts, the receiver treats those atomic units as independently
meaningful resources; when two familiar atomic units are sent together, their mean-
ings combine predictably, so losing one still leaves the other’s contribution intact.
Together with a mild lateral-inhibition parameter, this spillover reinforcement learn-
ing can lead to compositional communication.

Finally, (Steinert-Threlkeld, 2020) shows that a variable-context signaling
game,with multiple objects and gradable properties, coupled to neural-network learn-
ers and an attention mechanism produces stable compositional communication. One
subset of signals encodes which dimension of a gradable property is relevant; another
subset encodes the polarity (highest vs. lowest) along that dimension. The polarity
signal modifies the dimension signal rather than contributing a second, independent
proposition.

However, the minimalist and generalist models are in many respects architectur-
ally simpler than the alternatives. After all, in many ways, both models are a natu-
ral generalization of the standard canonical Lewis—Skyrms signaling game, relaxing
some of the assumptions about what information the receiver can learn. As such,
the models require auxiliary learning mechanisms, no additional sender states, and
no extra executive control elements. Likewise, the neural networks in the general-
ist receiver are substantially simpler than those required in the (Steinert-Threlkeld,
2020) (although more complex networks would surely be needed to interpret more
sophisticated compositional signals).

As such, the minimalist and generalist models carry certain explanatory advan-
tages, especially regarding the puzzle of compositionality. The puzzle arises because
receivers in conventional signaling games only reinforce based on the entire mes-
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sage, rather than the components. The minimalist and generalist models confront this
problem directly, by explicitly allowing reinforcement on the other signals, without
introducing additional agents or learning mechanisms.

The minimalist and generalist models are nonetheless quite general. After all, the
parameters governing the receiver can be varied or, in a more naturalistic model,
tuned by evolutionary processes. More significantly, these models dispense with any
artificial restriction on receivers to only learn on the full compositional messages:
they are now rewarded for exploiting every statistical cue available to them. The
generalist model is capable of approximating a full joint probability distribution over
messages and acts, making it an obvious bridge to more Bayesian treatments of lan-
guage evolution, whilst the minimalist receiver likewise suggests connections with
classic work on neural-network learnability.

7 Conclusions

The receivers in traditional signaling game models do not interpret composite signals
compositionally. However, we should never have expected them to do so. The receiv-
ers in such models explicitly learn and choose their action based on only the entire
message, not its components. They never consider information about the atomic mes-
sages. However, I have shown by example that we can construct signaling game
models in which the receivers do interpret signals compositionally. The key is that the
receivers consider the component information available from the atomic messages.

Both of the compositional models are worthy of further consideration. The mini-
malist receiver only considers the atomic messages, and requires a judicious choice
of activation function in order to reach a signaling system. However, minimalist
receivers of this type might provide a point of contact between signaling games and
research involving neural networks. Indeed, these observations complement Stein-
ert-Threlkeld (2020), who uses larger recurrent neural networks models of agents
to learn non-trivial compositional states. The arguments presented here suggest that
these models are able to learn genuinely compositional information, rather than sim-
ply appearing to do so.

As I discussed above, this is not surprising in retrospect. Artificial neural networks
were developed precisely for the purpose of learning complex information, and their
success in learning logical operators was demonstrated decades ago. The problems
with learning compositional information in signaling games do not arise from the
inherent structure of the game, but rather from the a priori restriction to very simple
receivers, incapable of storing complex information with component parts. It seems
likely that future progress in understanding the emergence of communication and
language using signaling games will depend upon more sophisticated agents such as
these.

The generalist receiver is a more naturalistic model. After all, why should we
restrict the receiver to only take into account either the atomic messages or the whole
message? Simply allowing the receiver to consider a// of the information available to
them brings some of the advantages of both approaches. Such a model is also more
compatible with a Bayesian approach: after all, we can imagine such a receiver as
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gradually learning the full joint probability distribution via Bayesian learning meth-
ods rather than reinforcement learning. This seems likely to provide a fruitful towards
developing more general or more explicitly Bayesian models of communication.

Either of the compositional approaches could serve as a starting point for more
general investigations into signaling games and compositionality. In this paper, I
have intentionally restricted attention to the simplest type of signaling game in which
compositionality can be of relevance. However, there are obvious routes to general-
ize these models to cases where more complex information must be conveyed. The
minimalist model could be elaborated by allowing more complex functions of the
input information (for example allowing more general activation functions). The gen-
eralist model generalizes to more complex settings very naturally, by always allow-
ing all possible beliefs to form and be reinforced.

Suppose that we needed to deal with very complex compositional data. Perhaps a
more sophisticated minimalist receiver, suitable for the task, would be interpretable
as a neural network with many hidden layers. Likewise, a more sophisticated gen-
eralist receiver would effectively learn an increasingly complex Bayesian network
with more nodes. These speculative possibilities suggest some potentially promising
avenues that deserve further inquiry.
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