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Entropy-based models to randomise real-
world hypergraphs
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Network theory has often disregarded many-body relationships, solely focusing on pairwise
interactions: neglecting them, however, can lead to misleading representations of complex systems.
Hypergraphs represent a suitable framework for describing polyadic interactions. Here, we leverage
the representation of hypergraphs based on the incidence matrix for extending the entropy-based
approach to higher-order structures: in analogy with the Exponential Random Graphs, we introduce
the Exponential RandomHypergraphs (ERHs). After exploring the asymptotic behaviour of thresholds
generalising the percolation one, we apply ERHs to study real-world data. First, we generalise key
network metrics to hypergraphs; then, we compute their expected value and compare it with the
empirical one, in order to detect deviations from random behaviours. Our method is analytically
tractable, scalable and capable of revealing structural patterns of real-world hypergraphs that differ
significantly from those emerging as a consequence of simpler constraints.

Networks provide a powerful language to model interacting systems1,2.
Within such a framework, the basic unit of interaction, i.e., the edge, involves
two nodes, and the complexity of the structure as a whole arises from the
combination of these units. Despite its many successes, network science
disregards certain aspects of interacting systems, notably the possibility that
more-than-two constituent units could interact at a time3. Yet, it has been
increasingly shown that, for a variety of systems, interactions cannot be
always decomposed into a pairwise fashion and that neglectinghigher-order
ones can lead to an incomplete, if notmisleading, representation of them3–5:
examples include chemical reactions involving several compounds, coor-
dination activities within small teams of co-working people and brain
activities mediated by groups of neurons. Generally speaking, thus, mod-
elling the joint coordination of multiple entities calls for a generalisation of
the traditional edge-centred framework.

While approaches focusing on the so-called simplicial complexes have
been proposed6,7, an increasingly popular alternative to support a science of
many-body interactions is provided by hypergraphs, as these mathematical
objects allow nodes to interact in groupswithout posing restrictions, such as
the ‘hierarchical’’ ones characterising the former ones8, which, in fact,
include all the subsets of a given simplex6.

Several contributions to the definition of analytical tools for their study
have already appeared9–12: while some pertain to the purely mathematical
literature and have considered probabilistic hypergraphs with the aim of
studying properties such as the existence of cycles, cliques, etc.13–15, others

have adopted approaches rooted into statistical physics. Among the latter
ones, some have proposed microcanonical approaches9,11 while others have
focused on canonical ones10,12,16.

The present contribution aims at extending the class of entropy-based
benchmarks17–20 to hypergraphs while providing a coherent framework to
formally derive the canonical approaches that have been proposed so far.
These models work by preserving a given set of quantities while rando-
mising everything else, hence destroying all possible correlations between
structural properties except for those that are genuinely embodied into the
constraints themselves20–22. The versatility of such an approach allows it to
be employed either in presence of full information (to quantify the level of
self-organisation of a given configuration by identifying the patterns that are
incompatible with simpler, structural constraints23–27) or in presence of
partial information (to infer themissing portion of a given configuration28).

Our strategy for defining null models for hypergraphs is based on the
randomisation of their incidence matrix, i.e., the (generally, rectangular)
table contains information about the connectivity of nodes (the set of
hyperedges they belong to) and the connectivity of hyperedges (the set of
nodes they cluster).Wewill explicitly derive twomembers of this novel class
of models hereby named Exponential RandomHypergraphs (ERH), i.e., the
Random Hypergraph Model (RHM) (RHM, generalising the Erdös-Rényi
Model) and the Hypergraph Configuration Model (HCM) (HCM, gen-
eralising the Configuration Model), and provide an analytical character-
isationof their behaviour. To this aim,wewill exploit the formal equivalence
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between the incidencematrix of a hypergraph and the biadjacencymatrix of
a bipartite graph10,12. Afterwards, we will employ the HCM to assess the
statistical significance of a number of patterns characterising several real-
world hypergraphs.

Methods
Formalism and basic quantities
Ahypergraph canbedefined as apairHðV; EHÞwhereV is the set of vertices
and EH is the set of hyperedges. Moving from the observation that the edge
set EG of a traditional, binary, undirected graph GðV; EGÞ is a subset of the
power set of V, several definitions of the hyperedge set EH have been pro-
vided: the two most popular ones are those proposed in29,30, where hyper-
edges tie one or more vertices, and in31, where hyperedges are allowed to be
empty sets as well. Hereby, we adopt the definition according towhichEH is
a multiset of the power set of V: since the concept of ‘multiset’’ extends the
concept of ‘set’’, allowing formultiple instances of (each of) its elements, our
choice implies that we are considering non-simple hypergraphs, admitting
loops and parallel edges (i.e., hyperedges involving exactly the same nodes)
of any size, including 0 (corresponding to empty hyperedges) and jVj
(corresponding to hyperedges clustering all vertices together).

As for traditional graphs, an algebraic representation of hypergraphs
can be devised as well. In analogy with the traditional case, we call the
cardinality of the set of nodes jVj � N and the cardinality of the set of
hyperedges jEH j � L: then, we consider theN × L table known as incidence
matrix, each row of which corresponds to a node and each columnof which
corresponds to a hyperedge. If we indicate the incidence matrix with I, its
generic entry Iiαwill be 1 if vertex i belongs to hyperedge α and 0 otherwise.
Notice that the number of 1s along each row can vary between 0 and L, the
former case indicating an isolated node and the latter one indicating a node
that belongs to each hyperedge; similarly, the number of 1s along each
column can vary between 0 and N, the former case indicating an empty
hyperedge and the latter one indicating a hyperedge that includes all nodes.
As explicitly noticed elsewhere9,10,12, representing a hypergraph via its inci-
dence matrix is equivalent to considering the bipartite graph defined by the
setsV and EH -more formally, the function that assigns each hypergraph to
the bipartite graph associated with it is a bijection when both nodes and
hyperedges are uniquely labelled9. For instance, the incidence matrix I
describing the binary, undirected hypergraph shown in Fig. 1 is the fol-
lowing:

e1 e2 e3 e4 e5

I ¼

n1

n2

n3

n4

n5

n6

0 1 1 0 1

0 0 1 1 1

0 1 1 1 0

1 0 0 1 1

1 1 1 1 0

0 1 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

: ð1Þ

Once the incidence matrix has been defined, several quantities
needed for the description of hypergraphs can be defined quite
straightforwardly: for example, the ‘degree of node i’’ (hereby, degree)
reads

ki ¼
XL
α¼1

Iiα ð2Þ

and counts thenumber of hyperedges that are incident to it; analogously, the
‘degree of hyperedge α’‘ (hereby, hyperdegree) reads

hα ¼
XN
i¼1

Iiα ð3Þ

and counts the number of nodes it clusters. Both the sum of degrees
and that of hyperdegrees equal the total number of 1s, i.e.,PN

i¼1ki ¼
PN

i¼1

PL
α¼1Iiα ¼

PL
α¼1

PN
i¼1Iiα ¼

PL
α¼1hα � T . Impor-

tantly, a node degree no longer coincides with the number of its neighbours:
instead, it matches the number of hyperedges it belongs to; a hyperdegree,
instead, provides information about the hyperedge size. Analogously, T
paves the way for the alternative definition of ‘density of connections’’
reading ρ = T/NL ≡ h/N, i.e., the ratio between the (average) number of
nodes each hyperedge clusters and the total number of nodes.

Binary, undirected hypergraphs randomisation
An early attempt to define randomisation algorithms for hypergraphs
within a framework closely resembling ours can be found in ref. 32. Its
authors, however, have just considered hyperedges that are incident to
triples of nodes—a framework that has been, later, applied to the studyof the
World Trade Network10.

Considering the incidence matrix has two clear advantages over the
tensor-based representation employed in10,32: i) generality, because the
incidence matrix allows hyperedges of any size to be handled at once; ii)
compactness, because the order of the tensor I never exceeds two,
hence allowing any hypergraph to be represented as a traditional,
bipartite graph.

In order to extend the rich set of nullmodels induced by graph-specific
global and local constraints to hypergraphs, we first need to identify the
quantities that can play this rolewithin the novel setting. Inwhat follows, we
will consider the total number of 1s, i.e., T, the degree and the hyperdegree
sequences, i.e., fkigNi¼1 and fhαgLα¼1—either separately or in a joint fashion;
moreover, we will distinguish between microcanonical and canonical ran-
domisation techniques.

Homogeneous benchmarks: the RHM
Microcanonical formulation. The model is defined by just one, global
constraint, which, in our case, reads

T ¼
XN
i¼1

XL
α¼1

Iiα; ð4Þ

Its microcanonical version extends the model by Erdös and Rényi33—also
known as Random GraphModel—to hypergraphs and prescribes to count
the number of incidence matrices that are compatible with a given, total
number of 1s, say T*: they are

ΩRHM ¼ V

T�

� �
ð5Þ

with V ≡ NL being the total number of entries of the incidence matrix I.
Once the total number of configurations composing the microcanonical
ensemble has been determined, a procedure to generate them is needed: in
the case of the RHM, it simply boils down to reshuffling the entries of the
incidence matrix, a procedure ensuring that the total number of 1s is kept
fixed while any, other correlation is destroyed.

Fig. 1 | Cartoon representation of a hypergraph. Black dots represent nodes, while
the coloured shapes represent hyperedges. The incidence matrix describing the
present hypergraph is defined by Eq. (1).
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Canonical formulation. The canonical version of the RHM, instead, extends
the model by Gilbert34 and rests upon the constrained maximisation of
Shannon entropy, i.e.

L � S½P� �
XM

i¼0
θi½PðIÞCiðIÞ � hCii� ð6Þ

where S½P� ¼ �P
I2I PðIÞ ln PðIÞ, C0 ≡ 〈C0〉 ≡ 1 sums up the normal-

isation condition and the remaining M − 1 constraints represent proper
topological properties. The sumdefining Shannon entropy runs over the set
I of incidencematrices described in the introductoryparagraphandknown
as canonical ensemble. Such an optimisation procedure defines the ERH
framework, described by the expression

PðIÞ ¼ e�HðIÞ

Z
¼ e�HðIÞP

I2I e�HðIÞ ¼
e�
PM

i¼1
θiCiðIÞP

I2I e�
PM

i¼1
θiCiðIÞ

: ð7Þ

In the simplest case, the only global constraint is represented by T and
leads to the expression

PðIÞ ¼ e�θTðIÞP
I2I e�θTðIÞ ¼

e�
PN

i¼1

PL

α¼1
θIiαP

I2I e�
PN

i¼1

PL

α¼1
θIiα

¼
YN
i¼1

YL
α¼1

xIiα
YN
i¼1

YL
α¼1

ð1þ xÞ�1

ð8Þ

that can be rewritten as

PðIÞ ¼
YN
i¼1

YL
α¼1

pIiα ð1� pÞ1�Iiα ¼ pTðIÞð1� pÞNL�TðIÞ ð9Þ

with e−θ ≡ x and p ≡ x/(1+ x). The canonical ensemble, now, includes all
N × L, rectangularmatrices whose number of entries equal to 1 ranges from
0 toNL. According to such a model, the entries of the incidence matrix are
i.i.d. Bernoulli random variables, i.e., Iiα ~ Ber(p), ∀ i, α; as a consequence,
the total number of 1s, the degrees and the hyperdegrees obey Binomial
distributions, being all defined as sums of i.i.d. Bernoulli random variables:
specifically, T ~ Bin(NL, p), ki ~ Bin(L, p), ∀ i and hα ~ Bin(N, p), ∀ α, in
turn, implying that 〈T〉RHM = NLp, hkiiRHM ¼ Lp, ∀ i and
hhαiRHM ¼ Np, ∀ α.

Parameter estimation. In order to ensure that 〈T〉RHM=T*, parameters have
to be tuned opportunistically. To this aim, the likelihood maximisation
principle can be invoked19: it prescribes to maximise the function LðθÞ �
ln PðI�jθÞ with respect to the unknown parameter that defines it. Such a
recipe leads us to find

p ¼ ρ� ¼ T�

NL
ð10Þ

with T* = T(I*) indicating the empirical value of the constraint defining
the RHM.

The RHM (also considered in12, although without providing any
derivation from first principles, and in16, although without providing any
recipe for the estimation of its parameter) is formally equivalent to the
Bipartite Random Graph Model35. Such an identification is guaranteed by
our focus on non-simple hypergraphs.

Estimation of the number of empty hyperedges. Non-simple hypergraphs
admit the presence of empty as well as parallel hyperedges. As this type of
structures is associated with configurations that may be regarded as pro-
blematic (since not observed in empirical data), we evaluate how frequently
they appear in the ensembles induced by our benchmarks. Let us denote the
number of empty hyperedges, i.e., the number of hyperedges whose
hyperdegree equals zero, withN;: since the hyperdegrees are i.i.d. Binomial

random variables, N; � Bin ðL; p;Þ where

p; � ð1� pÞN ð11Þ

is the probability for the generic hyperedge to be empty or, equivalently, for
its hyperdegree to equal zero; the expected number of empty hyperedges
reads

hN;i ¼ Lp; ¼ Lð1� pÞN : ð12Þ

Let us, now, inspect the behaviour of p; the ensemble induced by the
RHM as the density of 1s in the incidence matrix, i.e., p = T/NL, varies. The
two regimes of interest are the dense one, defined byT→NL, and the sparse
one, defined by T→ 0. In the dense case, one finds

lim
T!NL

p; ¼ lim
T!NL

1� T
NL

� �N

¼ 0; ð13Þ

a relationship inducing hN;i !T!NL
0: in words, the probability of observing

empty hyperedges progressively vanishes as the density of 1s increases.
Consistently, in the sparse case, one finds

lim
T!0

p; ¼ lim
T!0

1� T
NL

� �N

¼ 1; ð14Þ

a relationship inducing hN;i !T!0
L: in words, the probability of observing

empty hyperedges progressively rises as the density of 1s decreases.
To evaluate the density of 1s in the incidencematrix in correspondence

of which the transition from the sparse to the dense regime happens, let us
consider the case N ≫ 1: more formally, this amounts to consider the
asymptotic framework defined by lettingN→+∞while posing T =O(L) -
equivalently, defined by posing p =O(1/N). Since p = T/NL and h = T/L
remain finite, the probability for the generic hyperedge to be empty obeys
the relationship

lim
N!þ1

p; ¼ lim
N!þ1

1� h
N

� �N

¼ e�h; ð15Þ

i.e., remains finite as well: consistently, the expected number of empty
hyperedges becomes

lim
N!þ1

hN;i ¼ lim
N!þ1

Lp; ¼ Le�h; ð16Þ

upon imposing Le−h≤1, i.e., that the expected number of empty hyperedges
is at most 1, one derives what may be called filling threshold, corresponding
to hRHM

f � ln L. In words, a value

p > pRHM
f ¼

hRHMf

N
¼ ln L

N
ð17Þ

ensures that the expected number of empty hyperedges in our random
hypergraph is strictly less than one. As a last observation, let us notice that
evaluating p; in correspondence with the filling threshold returns the value
1/L.

A comparisonwith simple graphs: estimating the number of isolated nodes.
A similar line of reasoning can be repeated for traditional graphs, the aim
being, now, that of estimatingN0, i.e., the number of isolated nodes. To this
aim, let us consider the asymptotic framework defined by lettingN→+∞
while posing L =O(N) - equivalently, defined by posing q =O(1/N). Since
q = 2L/N(N− 1) and k ≡ 2L/(N− 1) remains finite, the probability for the
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generic node i to be isolated obeys the relationship

lim
N!þ1

q0 ¼ lim
N!þ1

ð1� qÞN�1 ¼ lim
N!þ1

1� k
N � 1

� �N�1

¼ e�k;

ð18Þ
i.e., remains finite as well: this, in turn, implies that the expected number of
isolated nodes 〈N0〉 =Nq0 obeys the relationship

lim
N!þ1

hN0i ¼ lim
N!þ1

Nq0 ¼ Ne�k; ð19Þ

upon imposingNe−k≤1, i.e., that the expected number of isolated nodes is at
most 1, one derives the connectivity threshold, corresponding to
kRGM
c � lnN . In words, a value

q > qRGM
c ¼ kRGMc

N
¼ lnN

N
ð20Þ

ensures that the expected number of isolated nodes in our random graph is
strictly less than one1. As a last observation, let us notice that evaluating q0 in
correspondence with the connectivity threshold returns the value 1/N.

We also note that N is the only quantity playing a relevant role in the
case of graphs, while an interplay between L and N can be observed in the
case of hypergraphs: in both cases, however, a condition on connectivity is
present, driven by the request that the objects under investigations (nodes
on the one hand and hyperedges on the other) have a non-zero number of
connections.

Estimation of the number of parallel hyperedges. Let us now move to
considering the issue of parallel hyperedges. By definition, two, parallel
hyperedges α and β are characterised by identical columns: hence, their
Hamming distance, defined as the number of positions at which the cor-
responding symbols are different, is zero. More formally,

dαβ �
XN
i¼1

½Iiαð1� IiβÞ þ Iiβð1� IiαÞ�; ð21Þ

a sum whose generic addendum is 1 in just two cases: either Iiα = 1 and
Iiβ = 0, or Iiα = 0 and Iiβ = 1. Since dαβ ~ Bin(N, 2p(1− p)), one finds that

pαβ== � Pðdαβ ¼ 0Þ ¼ ½1� 2pð1� pÞ�N ð22Þ

and that

hdαβi ¼ 2pð1� pÞN ð23Þ

∀ α ≠ β. Since p(1 − p) = (T/NL)(1 − T/NL), one finds that

lim
T!NL

pð1� pÞ ¼ lim
T!0

pð1� pÞ ¼ 0; ð24Þ

i.e., p(1 − p) vanishes in both regimes, a result further implying that both

Pðdαβ ¼ 0Þ !T!NL
1 and Pðdαβ ¼ 0Þ !T!0

1 and that both hdαβi !T!NL
0 and

hdαβi !
T!0

0: in words, the probability of observing parallel hyperedges
progressively rises both as a consequence of having many 1s and as a
consequence of having few 1s. Analogously, for the expected Hamming
distance.

Let us, now, evaluate the expectedHamming distance between any two
hyperedges α and β within the asymptotic framework defined by letting
N→+∞while posing T =O(L) - equivalently, defined by posing p =O(1/
N). Since p = T/NL and h ≡ T/L remains finite, one finds that

lim
N!þ1

hdαβi ¼ lim
N!þ1

2h
N

1� h
N

� �
N ¼ 2h; ð25Þ

upon imposing 2h≥1, i.e., that the expectedHamming distance between any
two hyperedges α and β is at least 1, one derives what may be called reso-
lution threshold, corresponding to hRHM

r � 1=2. In words, a value
p > pRHM

r ¼ hRHMr =N ¼ 1=2N ensures that, on average, any two hyper-
edges α and β differ by at least one element.

Toderive a global conditionon the total numberof parallel hyperedges,
note that, although the overlaps between pairs of hyperedges cannot be
treated as i.i.d. random variables, the expected number of parallel hyper-
edges can still be computed explicitly. Upon posing p== � pαβ== , it reads

hN==i ¼
XL
α¼1

XL
β ¼ 1

β > α

p== ¼
LðL� 1Þ

2
p==: ð26Þ

Considering that p== !N!þ1
e�2h and imposing 〈N//〉≤1, i.e., that the

expected number of parallel hyperedges is at most 1, one derives what may
be called a multiple resolution threshold, corresponding to
hRHM
m � ln L� ln

ffiffiffi
2

p
≲hRHMf . In words, a value

p > pRHM
m ¼ hRHMm

N
¼ ln L

N
� ln

ffiffiffi
2

p

N
≲
ln L
N

¼
hRHMf

N
¼ pRHMf

ð27Þ

(also) ensures that the expected number of parallel hyperedges in our ran-
dom hypergraph is strictly less than one.

Estimation of the percolation threshold. The two thresholds derived in the
previous subsections emerge in consequence of the attempts to solve the
problems related to the appearance of empty as well as parallel hyperedges.
Remarkably, a third threshold exists: known as percolation threshold, it was
first derived in ref. 12, following the definition according to which any two
hyperedges are said to be connected if they share at least one node. Here, we
re-derive thepercolation threshold by considering the ‘hypergraph to graph’
projection (see also below):more formally, the total number of nodes shared
by hyperedge α with any other hyperedge reads

σα ¼
XN
i¼1

XL
β ¼ 1

β≠α

IiαIiβ; ð28Þ

its expected value being

hσαi ¼ NðL� 1Þp2 ’ NLp2; ð29Þ

imposing 〈σα〉 = 1 leads to find the value

pRHM
p ¼

hRHMp

N
¼ 1ffiffiffiffiffiffi

NL
p ð30Þ

which, in turn, induces the value hRHM
p �

ffiffiffiffiffiffiffiffiffi
N=L

p
. In words, a value

p > pRHM
p ensures that any two hyperedges in our random hypergraph

share, on average, at least one node.

Heterogeneous benchmarks: the HCM
Microcanonical formulation. The number of constraints can be enlarged to
include the degrees, i.e., the sequence fkigNi¼1, and the hyperdegrees, i.e., the
sequence fhαgLα¼1. Although counting the number of configurations on
which both sequencesmatch their empirical values is a hard task, numerical
recipes that shuffle the entries of a rectangular matrix, while preserving its
marginals, exist9,36–38. It should be, however, noticed that, if not carefully
implemented, algorithmsof the kindmay lead to anon-uniformexploration
of the space of configurations39,40; moreover, the issue concerning the time
needed to collect a sufficiently large number of configurations should be
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addressed even in the presence of an ergodic system. A recent proposal is
that of extending the traditional Curveball algorithm to hypergraphs38.

Canonical formulation. Solving the corresponding problem in the canonical
framework is, instead, straightforward. Indeed, Shannon entropy max-
imisation leads to

PðIÞ ¼ e�
PN

i¼1
αikiðIÞ�

PL

α¼1
βαhαðIÞP

I2Ie
�
PN

i¼1
αikiðIÞ�

PL

α¼1
βαhαðIÞ

¼ e�
PN

i¼1

PL

α¼1
ðαiþβαÞIiαP

I2Ie
�
PN

i¼1

PL

α¼1
ðαiþβαÞIiα

¼
YN
i¼1

xkiðIÞi

YL
α¼1

yhαðIÞα

YN
i¼1

YL
α¼1

ð1þ xiyαÞ�1;

ð31Þ

an expression that can be re-written as

PðIÞ ¼ QN
i¼1

QL
α¼1

pIiαiα ð1� piαÞ1�Iiα ð32Þ

with e�αi � xi, ∀ i, e�βα � yα, ∀ α and piα ≡ xiyα/(1 + xiyα), ∀ i, α.
According to such a model, the entries of the incidence matrix of a hyper-
graph are independent random variables that obey different Bernoulli dis-
tributions, i.e., Iiα ~ Ber(piα), ∀ i, α. As a consequence, both degrees
and hyperdegrees obey Poisson-Binomial distributions, i.e.
ki � PoissBin ðL; fpiαgLα¼1Þ, ∀ i and hα � PoissBin ðN; fpiαgNi¼1Þ, ∀ α24.

Parameter estimation. In this case, solving the likelihood maximisation
problem amounts to solving the system of coupled equations

k�i ¼
XL
α¼1

xiyα
1þ xiyα

¼
XL
α¼1

piα ¼ hkii; 8 i ð33Þ

h�α ¼
XN
i¼1

xiyα
1þ xiyα

¼
XN
i¼1

piα ¼ hhαi; 8 α ð34Þ

ensuring that hkii ¼ k�i , ∀ i, hhαi ¼ h�α, ∀ α (and, as a consequence,
〈T〉 = T*). In case hypergraphs are sparse and in the absence of hubs

piα ’ xiyα ¼
k�i h

�
α

T� ; 8 i; α: ð35Þ

TheHCMreduces to a ‘partial’’ConfigurationModel24when either the
degree or the hyperdegree sequence is left unconstrained (see also Supple-
mentary Note 1 of the Supplementary Information). The canonical
ensemble of each randomisation model (Supplementary Table 1 in
the Supplementary Information sums up the sets of constraints defining
them) can be explicitly sampled by considering each entry of I, drawing a
real number uiα ∈ U[0, 1] and posing Iiα = 1 if uiα≤piα, ∀ i, α.

The HCM is formally equivalent to the Bipartite Configuration
Model35. Such an identification is guaranteed by our focus on non-simple
hypergraphs.

Estimation of the number of empty hyperedges. Let us, now, consider the
probability for the generic hyperedge α to be empty or, in other terms,
that its hyperdegree hα is zero. Upon remembering that
hα � PoissBin ðN; fpiαgNi¼1Þ, one finds

pα; �
YN
i¼1

ð1� piαÞ ð36Þ

while the expected number of empty hyperedges, now, reads

hN;i �
XL
α¼1

pα; ¼
XL
α¼1

YN
i¼1

ð1� piαÞ: ð37Þ

As previously done, let us inspect the behaviour of the aforementioned
quantities on the ensemble induced by the HCM as the density of 1s in the
incidence matrix varies. Although it depends on (the heterogeneity of) the
sets of coefficients fxigNi¼1 and fyαgLα¼1, general conclusions can be still
drawn within a simpler framework. To this aim, let us consider the func-
tional form reading

piα ¼
zf igα

1þ zf igα
; 8 i; α ð38Þ

where the vector of fitnesses ff igNi¼1 accounts for the heterogeneity of nodes,
the vector of fitnesses fgαgLα¼1 accounts for the heterogeneity of hyperedges,
and z tunes thedensity of 1s in the incidencematrix - ‘partial’’Configuration
Models are recovered upon posing either fi = 1, ∀ i or gα = 1, ∀ α.) Within
such a framework, the fitnesses of the nodes and the fitnesses of the
hyperedges can be drawn from any distribution. The dense and sparse
regimes are now defined by the positions z→+∞ and z→ 0, respectively.
In the dense case, one finds

lim
z!þ1

pα; ¼ lim
z!þ1

YN
i¼1

1� zf igα
1þ zf igα

� �
¼ 0; ð39Þ

a relationship inducing hN;i !z!þ1
0: in words, the probability of observing

empty hyperedges progressively vanishes as the density of 1s increases.
Consistently, in the sparse case one finds

lim
z!0

pα; ¼ lim
z!0

YN
i¼1

1� zf igα
1þ zf igα

� �
¼ 1; ð40Þ

a relationship inducing hN;i !
z!0

L: in words, the probability of observing
empty hyperedges progressively rises as the density of 1s decreases.

For what concerns the filling threshold, a derivation that is similar-in-
spirit to the one carried out for the case of the RHM can be sketched. Let us
poseourselves in the sparse regime: since1� piα ’ e�piα , theprobability for
the generic hyperedge to be empty satisfies the chain of relationships

pα; ¼
YN
i¼1

ð1� piαÞ ’
YN
i¼1

e�piα ¼ e�
PN

i¼1
piα ¼ e�hα ; ð41Þ

consistently, the expected number of empty hyperedges becomes

hN;i ¼
XL
α¼1

pα; ’
XL
α¼1

e�hα ð42Þ

and imposing hN;i≤ 1, i.e., that the expected number of empty hyperedges
is at most 1, one derives a global condition to be satisfied by the hyperde-
grees. In general terms, the aforementioned condition leads to require
e�hα ¼ Oð1=LÞ, i.e., hα ¼ Oðln LÞ, ∀ α and piα ¼ Oðln L=NÞ, ∀ i, α.

A comparisonwith simple graphs: estimating the number of isolated nodes.
Coming to traditional graphs, the aim is now to estimate the number of
isolated nodes. In this case, 1� pij ’ e�pij and the probability for the
generic node i to be isolated reads

qi0 ¼
YN
j ¼ 1

j≠i

ð1� pijÞ ’
YN
j ¼ 1

j≠i

e�pij ¼ e
�
PN

jð≠iÞ¼1
pij ¼ e�ki ;

ð43Þ
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consistently, the expected number of isolated nodes becomes

hN0i ¼
XN
i¼1

qi0 ’
XN
i¼1

e�ki ð44Þ

and imposing 〈N0〉≤1, i.e., that the expected number of isolated nodes is at
most 1, one derives a global condition to be satisfied by the degrees. In
general terms, the aforementioned condition leads to require
e�ki ¼ Oð1=NÞ, i.e., ki ¼ OðlnNÞ, ∀ i and pij ¼ OðlnN=NÞ, ∀ i < j.

Estimation of the number of parallel hyperedges. As in the case of the RHM,
we consider the Hamming distance between the columns representing the

two hyperedges α and β. Since, now, dαβ � PoissBin ðN; fqαβi gNi¼1Þ, where
qαβi � piαð1� piβÞ þ piβð1� piαÞwith piα = zfigα/(1+ zfigα) and piβ= zfigβ/

(1+ zfigβ), one finds that

Pðdαβ ¼ 0Þ ¼
YN
i¼1

ð1� qαβi Þ ð45Þ

and that

hdαβi ¼
XN
i¼1

qαβi ð46Þ

∀ α ≠ β. Since

lim
z!þ1

qαβi ¼ lim
z!0

qαβi ¼ 0; ð47Þ

i.e., qαβi vanishes in both regimes, one finds that both Pðdαβ ¼ 0Þ !z!þ1
1

and Pðdαβ ¼ 0Þ !z!0
1 and that both hdαβi !z!þ1

0 and hdαβi !
z!0

0: as in the
case of the RHM, the probability of observing parallel hyperedges pro-
gressively rises both as a consequence of having many 1s and as a con-
sequence of having few 1s. Analogously, for the expected Hamming
distance.

Forwhat concerns the resolution threshold, a derivation that is similar-
in-spirit to the one carried out for the case of the RHM can be sketched. Let
us pose ourselves in the sparse regime and consider that
1� qαβi ’ e�qαβi ’ e�ðpiαþpiβÞ. As a consequence

pαβ== � Pðdαβ ¼ 0Þ ¼
YN
i¼1

ð1� qαβi Þ ’
YN
i¼1

e�qαβi ’ e
�
PN
i¼1

ðpiαþpiβÞ ¼ e�ðhαþhβÞ

ð48Þ

and

hdαβi ¼
XN
i¼1

qαβi ’
XN
i¼1

ðpiα þ piβÞ ¼ hα þ hβ: ð49Þ

Imposing 〈dαβ〉≥1, i.e., that the expected Hamming distance between
any two hyperedges α and β is at least 1, amounts to require that
P(dαβ = 0)≤e−1 - thus recovering the same condition holding true in the case
of the RHM where, in fact, p== � pαβ== !N!þ1

e�2h.
The expected number of parallel hyperedges, now, reads

hN==i ¼
XL
α¼1

XL
β ¼ 1

β > α

pαβ== ’
XL
α¼1

XL
β ¼ 1

β > α

e�ðhαþhβÞ;
ð50Þ

upon imposing 〈N//〉≤1, i.e., that the expectednumberof parallel hyperedges
is at most 1, one derives a global condition to be satisfied by the

hyperdegrees. In general terms, the aforementioned condition leads to
require e�ðhαþhβÞ ¼ Oð1=L2Þ, i.e., hα ¼ Oðln LÞ, ∀ α and
piα ¼ Oðln L=NÞ, ∀ i, α.

Estimation of the percolation threshold. For what concerns the percolation
threshold, the expected value of the total number of nodes shared by
hyperedge α with any other hyperedge, now, reads

hσαi ¼
XN
i¼1

XL
β ¼ 1

β≠α

piαpiβ ð51Þ

and imposing 〈σα〉 = 1 leads to a global condition to be satisfied. In general
terms, the aforementioned condition leads to require piαpiβ =O(1/NL), i.e.,
piα ¼ Oð1= ffiffiffiffiffiffi

NL
p Þ, ∀ i, α.

Results
Hypergraphs in the dense and sparse regime
Let us start by verifying the correctness of the estimations of the filling,
multiple resolution and percolation thresholds provided by our bench-
marks: to this aim, we have considered the values N = 300 and L = 1000.

The RHM. Each quantity has been plotted as a function of p ∈ [10−6, 1].
The dense (sparse) regime is recovered for large (small) values of p. Each
dot of Figs. 2–4 represents an average taken over an ensemble of 103

configurations explicitly sampled from the RHM and is accompanied by
the corresponding 95% confidence interval, calculated via the bootstrap
method41.

The filling threshold. Figure 2a depicts the (analytical) trend of hN;i=L ¼
p; ¼ ð1� pÞN (solid line): its agreement with the numerical estimations
(dots) confirms the correctness of our formula.

Although the value of the filling threshold has been determined by
inspecting the asymptotic behaviour of hN;i, the quantity showing the
neatest transition from the sparse to the dense regime is the probability of
observing at least one empty hyperedge

PðN; > 0Þ ¼ 1� PðN; ¼ 0Þ ¼ 1� ð1� p;ÞL ¼ 1� ½1� ð1� pÞN �L;
ð52Þ

where we have exploited the fact that PðN; > 0Þ is nothing but the com-
plementary of the probability that no hyperedge is empty. Since
p; !N!þ1

e�h, evaluating such an expression in correspondence of hRHM
f ¼

ln L ’ 6:907 returns the value 1/L = 10−3 (see Fig. 2a). As a consequence,
the result PðN; > 0Þ !N!þ1

1� ð1� e�hÞL is numerically recovered (see
Fig. 2b). In words, although the filling threshold ensures that each, single
hyperedge is empty with an overall small probability, the likelihood of
observing at least one, empty hyperedge is still large (i.e., ≃ 2/3): the
steepness of the trend of PðN; > 0Þ, however, suggests it to quickly vanish
as the density of 1s in the incidence matrix crosses the
value pRHM

f ¼ hRHMf =N ¼ ln L=N ’ 0:023.

The multiple resolution threshold. Figure 3a depicts the trend of 2〈N//〉/
L(L − 1) = [1−2p(1−p)]N = p// (solid line): again, its agreement with the
numerical estimations (dots) confirms the correctness of our formula.

Evaluating p== !N!þ1
e�2h in correspondence of hRHM

m ≲ ln L ’ 6:907
returns the value 1/L2 = 10−6 (see Fig. 3a): in words, the aforementioned,
critical value causes the likelihood of observing any two parallel hyperedges
to be almost the square of the probability for each single hyperedge to be
empty (i.e., 1/L, see the comments under Eq. (17)).

As the overlaps between pairs of hyperedges cannot be treated as i.i.d.
random variables, evaluating the probability of observing at least one pair of
parallel hyperedges forces us to proceed in a purely numerical fashion.
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Calculating P(N∥ > 0) in correspondence of pRHM
m ¼ hRHMm =N≲ ln L=N ’

0:023 returns the value 0.6 (see Fig. 3b).
Carrying out such an estimation in the aforementioned regime is,

however, instructive as it leads to the expression PðN== > 0Þ ¼
1� ð1� p==ÞLðL�1Þ=2 ¼ 1� f1� ½1� 2p ð1� pÞ�NgLðL�1Þ=2 !N!þ1

1�
½1� e�2h�LðL�1Þ=2

that, evaluated in correspondence of

hRHM
m ≲ ln L ’ 6:907, returns the value PðN== > 0Þ ¼ 1�

ð1� 1=L2ÞLðL�1Þ=2 ’ 0:393 - whose difference with 0.6, obtained numeri-
cally, lets us fully appreciate the role played by correlations.

The percolation threshold. Let us, now, focus on the projection of our
hypergraph onto the layer of hyperedges. The generic hyperedge is isolated
either because is not ‘connected’’with anynodeor because is a singleton (i.e.,
it is ‘connected’’with a nodewithwhich no other hyperedge is ‘connected’’):
in symbols,

p0 � f1� p½1� ð1� pÞL�1�gN ¼ ½ð1� pÞ þ pð1� pÞL�1�N : ð53Þ

In order to evaluate p0 in correspondence of the percolation threshold,
let us consider that L = s2N, with s2 = 10/3; one, then, finds

lim
N!þ1

p0 ¼ lim
N!þ1

1� 1
Ns

� �
þ 1

Ns
1� 1

Ns

� �s2N�1
" #N

¼ e�
1�e�s

s ; ð54Þ

whose numerical value amounts to 0.631 (see Fig. 4a): in words, the value
p0ðp ¼ pRHM

p Þ≲2=3 implies that the expected number of isolated hyper-
edges in the projection 〈N0〉 = Lp0 tends to 2L/3 as p tends to pRHM

p .
Pairs of hyperedges cannot be treated as independent. Let us, in fact,

consider the bipartite representation of a hypergraph: as adjacent pairs of
hyperedges (say α, β and β, γ) may share some neighbours (on the opposite
layer), the number of common neighbours of α and β will, in general,
covariate with the number of common neighbours of β and γ; therefore,
evaluating the probability of observing at least one, isolatedhyperedge in the
projection forces us to proceed in a purely numerical fashion. Calculating
P(N0 > 0) in correspondence of pRHM

p ¼ hRHMp =N ¼ 1=
ffiffiffiffiffiffi
NL

p ’ 0:002
practically returns 1 (see Fig. 4b). From the perspective of a hypergraph
connectedness, the percolation threshold is ‘less strict’’ than the filling
threshold, allowing for a larger number of disconnected nodes (2/3 of the
total versus 1).

As before, estimating the percolation threshold in the regimewhere the
pairs of hyperedges behave as i.i.d. Binomial randomvariables is instructive.
In this case, projecting a bipartite network onto the layer of hyperedges
amounts to connect any two of them with probability 1� ð1� p2ÞN—i.e.,
the complementary of the probability ð1� p2ÞN of not sharing any node.
The number of isolated nodes, thus, obeys the relationshipN0 ~ Bin(L, p0),
with

p0 � ½ð1� p2ÞN �L ð55Þ

Fig. 2 | Impact of empty hyperedges on the RHM
ensemble. More in detail, the trends of hN;i=L ¼
p; ¼ ð1� pÞN !N!þ1

e�h , i.e., the probability for the
generichyperedge tobe emtpy is represented in (a) and
the one of PðN; > 0Þ ¼ 1� ½1� ð1� pÞN �L !N!þ1

1� ð1� e�hÞL, i.e., the probability of observing
at least one empty hyperedge is represented in (b).
Evaluating them in correspondence of pRHM

f ¼
hRHM
f =N ¼ ln L=N ’ 0:023 (vertical line) returns,

respectively, the values 1/L = 10−3 and 1− (1−1/L)L≃
0.6323.Thedense (sparse) regime is recovered for large
(small) values of p. Each dot represents an average
taken over an ensemble of 103 configurations (expli-
citly sampled from the RHM) and is accompanied
by the corresponding 95% confidence interval.

Fig. 3 | Impact of parallel hyperedges on the RHM
ensemble. More in detail, the trends of 2hNki
=LðL� 1Þ ¼ ½1� 2pð1� pÞ�N ¼ pk !N!þ1

e�2h ,
i.e., the probability for the generic pair of hyperedges
to be parallel and P(N∥ > 0), i.e., the probability of
observing at least one pair of parallel hyperedges, as
functions of p, are represented, respectively, in
(a and b). Evaluating them in correspondence of
pRHM
m ¼ hRHM

m =N≲ ln L=N ’ 0:023 (vertical line)
returns, respectively, the values 1/L2 = 10−6 and
≃ 0.6. The dense (sparse) regime is recovered for
large (small) values of p. Each dot represents an
average taken over an ensemble of 103 configura-
tions (explicitly sampled from the RHM) and is
accompanied by the corresponding 95% confidence
interval.
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being the probability for the generic hyperedge to be isolated: inwords, such
an expression returns the probability for the generic hyperedge to not share
any node - with probability ð1� p2ÞN - with any other hyperedge—with a
probability amounting to the previous one raised to the power of L. As a
consequence, evaluating p0 in correspondence with the percolation
threshold returns a value tending to 1/3, a result further implying that the
expected number of isolated hyperedges in the projection 〈N0〉 = Lp0 tends
to the value L/3 - both letting us fully appreciate the role played by
correlations.

Within such a context, the probability of observing at least one isolated

hyperedge in the projection satisfies the chain of relationships PðN0 > 0Þ ¼
1� PðN0 ¼ 0Þ ¼ 1� ð1� p0ÞL ¼ 1� ½1� ð1� p2ÞNL�L !N!þ1

1� ð1�
e�1ÞL: as the last expression quickly converges to 1 for large values of L, the
same qualitative behaviour observed before is thus recovered.

Finally, one may wonder which kind of mesoscale structure is identi-
fied by the percolation threshold: the answer is provided by Fig. 4c, showing
the appearance of a large connected component - as alsopointedout in12, the
presence of a large connected component is inspected by projecting our
hypergraph onto the layer of nodes, whose connectedness is ensured by
requiring the connectedness of hyperedges.

The role of thresholds in ahypergraph evolution. Let us, now,make a couple
of observations. The first one concerns the result according to which
hRHM
m ≲hRHMf : such a relationship suggests that, while filling a large portion

of the incidence matrix is not required to observe a limited amount of
parallel hyperedges (see Fig. 3b), when empty hyperedges are no longer
observed, parallel hyperedges are no longer observed as well.

The second one concerns the result according to which either
hRHM
f ≤ hRHMp or hRHM

f ≥ hRHMp . By progressively rising the parameter p,
two, different thresholds are, thus,met: ifhRHM

f ≤ hRHMp , thefilling threshold
pRHM
f ¼ ln L=N is met before the percolation threshold pRHM

p ¼ 1=
ffiffiffiffiffiffi
NL

p
,

i.e., hyperedges are filled before they start sharing nodes—as a consequence,
singletons appear; if hRHM

f ≥ hRHMp , the percolation threshold pRHM
p ¼

1=
ffiffiffiffiffiffi
NL

p
is met before the filling threshold pRHM

f ¼ ln L=N , i.e., hyperedges
start sharing nodes before they are filled—as a consequence, no singleton
appears before the filling threshold is crossed.

Notice that, for simple graphs, kRGM
p ¼ 1≤ kRGMc ¼ lnN , i.e., by

progressively rising the parameter q, the percolation threshold is alwaysmet
before the connectivity threshold.

TheHCM. In order to carry out the numerical simulations in the case of the
HCM, we have followed the procedure described in the previous sections
and drawn both the fitnesses of nodes and those of hyperedges from a Pareto
distribution with α= 2 - other fat-tailed distributions were considered:
qualitatively, results do not change. Each quantity has been plotted as a
function of ρ(z) = 〈T〉/NL ∈ [10−6, 1] where hTi ¼ PN

i¼1

PL
α¼1zf igα=ð1þ

zf igαÞ varies with z. The dense (sparse) regime is recovered for large (small)
values of z. Each dot of Figs. 5–7 represents an average taken over an
ensemble of 103 configurations explicitly sampled from the HCM and is
accompanied by the corresponding 95% confidence interval.

The filling threshold. Figure 5a depicts the (analytical) trend of
hN;i=L ¼ PL

α¼1p
α
;=L ¼ p; (solid line): as in the case of the RHM, its

agreement with the numerical estimations (dots) confirms the cor-
rectness of our formula. Deriving an explicit expression for the filling

Fig. 5 | Impact of empty hyperedges on the HCM
ensemble. More in detail, trends of hN;i=L ¼ p; ,
i.e., the probability for the generic hyperedge to be
empty and PðN; > 0Þ ’ 1�QL

α¼1ð1� e�hα Þ, i.e.,
the probability of observing at least one empty
hyperedge, are represented as functions of the con-
nectance ρ, respectively in (a and b). Evaluating the
latter in correspondence of the filling threshold,
reading pHCM

f ’ 0:032 (vertical line), returns the
value ≃ 0.642. The dense (sparse) regime is recov-
ered for large (small) values of z. Each dot represents
an average taken over an ensemble of 103 config-
urations (explicitly sampled from the HCM) and is
accompanied by the corresponding 95% confidence
interval.

Fig. 4 | Impact of isolated hyperedges on the RHM
ensemble.More in detail, trends of 〈N0〉/L = p0, i.e.,
the probability for the generic hyperedge to be iso-
lated in the projection, P(N0 > 0), i.e., the probability
of observing at least one, isolated hyperedge in the
projection and ∣LCC∣/N, i.e., the percentage of nodes
belonging to the largest connected component
(LCC), are represented as functions of p, respectively
in (a–c). Evaluating the first two in correspondence
of pRHM

p ¼ hRHM
p =N ¼ 1=

ffiffiffiffiffiffi
NL

p ’ 0:002 (vertical
line) returns, respectively, the values eðe

�s�1Þ=s ’
0:631 and ≃ 1. The dense (sparse) regime is
recovered for large (small) values of p. Each dot
represents an average taken over an ensemble of 103

configurations (explicitly sampled from the RHM)
and is accompanied by the corresponding 95%
confidence interval.
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threshold in the case of the HCM is a rather difficult task; still, we
can proceed in a purely numerical fashion and individuate the value
of the density of 1s in the incidence matrix guaranteeing that the
expected number of empty hyperedges (divided by L) amounts to 1
(divided by L): although its, precise, numerical value depends on the
values of the fitnesses, such a threshold still lies in the right tail of the
trend induced by the HCM and reads pHCM

f ’ 0:032 (see Fig. 5a).
Even in this case, the quantity showing the neatest transition from the

sparse to the dense regime is the probability of observing at least one empty
hyperedge

PðN; > 0Þ ¼ 1� PðN; ¼ 0Þ ¼ 1�
YL
α¼1

ð1� pα;Þ

¼ 1�
YL
α¼1

1�
YN
i¼1

ð1� piαÞ
" # ð56Þ

that, in the sparse regime, can be approximated as
PðN; > 0Þ ’ 1�QL

α¼1ð1� e�hα Þ: as Fig. 5b shows, evaluating PðN; > 0Þ
in correspondence of the filling threshold returns 0.642. Finally, let us

explicitly notice that the value of the filling threshold is shifted on the right
with respect to its homogeneous counterpart, an evidence probably due to
the presence of small fitnesses that increase the probability of observing at
least one, empty hyperedge, hence requiring a larger value of z to let
PðN; > 0Þ vanish.

Themultiple resolution threshold. Figure 6a depicts the (analytical) trend of

2hN==i=LðL� 1Þ ¼ 2
PL

α¼1

PL
β ¼ 1
β > α

pαβ== =LðL� 1Þ ¼ p== (solid line): as

in the case of the RHM, its agreement with the numerical estimations (dots)
confirms the correctness of our formula.

Adopting the strategy described in the previous paragraph, i.e.,
that of requiring that the expected number of parallel hyperedges
(divided by L(L − 1)/2) amounts to 1 (divided by L(L − 1)/2), we
found that pHCM

m ’ 0:031 (see Fig. 6a). Numerically clculating
P(N∥ > 0) in correspondence of the multiple resolution threshold
returns the value 0.493 (see Fig. 6b).

Let us notice that the value of the multiple resolution threshold no
longer coincides with the value of the filling threshold, although it is still
shifted to the right with respect to its homogeneous counterpart.

Fig. 6 | Impact of parallel hyperedges on the HCM
ensemble. More in detail, trends of
2hNki=LðL� 1Þ ¼ pk , i.e., the probability for the
generic pair of hyperedges to be parallel and
P(N∥ > 0), i.e., the probability of observing at least
one pair of parallel hyperedges, are represented as
functions of the connectance ρ, respectively, in
(a and b). Evaluating the latter in correspondence
with the multiple resolution threshold, reading
pHCM
m ’ 0:031 (vertical line), returns 0.493. The
dense (sparse) regime is recovered for large (small)
values of z. Each dot represents an average taken
over an ensemble of 103 configurations (explicitly
sampled from the HCM) and is accompanied by the
corresponding 95% confidence interval.

Fig. 7 | Impact of isolated hyperedges on the HCM ensemble. More in detail,
trends of hN0i=L ¼ p0, i.e., the probability for the generic hyperedge to be isolated
in the projection, P(N0 > 0), i.e., the probability of observing at least one, isolated
hyperedge in the projection, and ∣LCC∣/N, i.e., the percentage of nodes belonging
to the largest connected component (LCC), are repesented as functions of
the connectance ρ, respectively, in (a–c). Evaluating the first two in

correspondence of pHCM
p ’ 0:001 (vertical line), returns the values ≃ 0.766 and

≃ 1. The dense (sparse) regime is recovered for large (small) values of p. Each dot
represents an average taken over an ensemble of 103 configurations (explicitly
sampled from the HCM) and is accompanied by the corresponding 95% con-
fidence interval.
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The percolation threshold. The probability for the generic hyperedge to be
isolated in the projection, now, reads

pα0 �
YN
i¼1

1� piα 1�
YL

β ¼ 1

β≠α

ð1� piβÞ

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼
YN
i¼1

ð1� piαÞ þ piα
YL

β ¼ 1

β≠α

ð1� piβÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð57Þ

that, in the sparse regime, can be approximated as

pα0 ’
QN
i¼1

½ð1� piαÞ þ piαe
�ki �. Adopting the strategy described in the pre-

vious paragraphs, i.e., that of requiring that the expected value of the total
number of nodes shared by any hyperedge with any other hyperedge
amounts to 1 - in symbols, hσi ¼ PL

α¼1hσαi=L ¼ 1 - we found

that pHCM
p ’ 0:001: since hN0i ¼

PL
α¼1 p

α
0 , evaluating hN0i=L ¼PL

α¼1 p
α
0=L ¼ p0 and P(N0 > 0) in correspondence of the percolation

threshold returns respectively the values 0.766 (see Fig. 7a) and ≃ 1 (see
Fig. 7b). For what concerns the hypergraph connectedness, the same con-
clusion drawn in the case of the RHM holds true, as the percolation
threshold allows for a larger number of disconnected nodes (3/4 of the total
versus 1).

Analogously, the mesoscale structure individuated by the
percolation threshold consists of a large connected component constituted
(see Fig. 7c).

Solving the HCM on real-world hypergraphs
In order to test our benchmarks on real-world configurations, we have
focused on a number of data sets taken from Austin R. Benson’s website
(https://www.cs.cornell.edu/~arb/data/), i.e., the contact-primary-
school, the email-Enron and the NDC-classes ones.

Although the parameters defining the HCM must be numerically
determined by solving the system of equations induced by the like-
lihood maximisation, when the system under analysis is sparse they
can be approximated as described in Supplementary Note 1 of
the Supplementary Information. Such an approximation leads to the
expression

piα ’ xiyα ¼
k�i h

�
α

T� ; 8 i; α ð58Þ

that, as Supplementary Fig. 1 in the Supplementary Information shows, is
quite accurate for each data set considered here—in fact, one can safely
assume that xi ’ k�i =

ffiffiffiffiffiffi
T�p

, ∀ i and h�α=
ffiffiffiffiffiffi
T�p

, ∀ α.

‘‘Hypergraph to graph’’ projection
The canonical formalism that we have adopted leads to factorisable dis-
tributions, i.e., distributions that can be written as a product of pair-wise
probability distributions; this allows the expectation of several quantities of
interest to be evaluated analytically.

Let us start by considering the matrix, introduced in4, reading

W ¼ I � IT � K ð59Þ

withK being the diagonal matrix whose i-th entry reads ki; according to the
definition above, it induces a projection of a hypergraph onto a weighted

graph, whose generic entry

wij ¼
XL
α¼1

IiαIjα � δijki ð60Þ

returns the number of hyperedges both i and j belong to - more explicitly,
wij ¼

PL
α¼1IiαIjα, i ≠ j and wii ¼

PL
α¼1IiαIiα � ki ¼

PL
α¼1Iiα � ki ¼ ki

�ki ¼ 0. In other words,W represents the object most closely resembling a
traditional adjacency matrix. The null models discussed so far can be
employed to calculate 〈wij〉, i ≠ j that, in a perfectly general fashion, reads

hwiji ¼
XL
α¼1

hIiαIjαi ¼
XL
α¼1

hIiαihIjαi ¼
XL
α¼1

piαpjα; ð61Þ

as we said, the total number of hyperedges shared by node i with any other
node in the hypergraph (in a sense, its ‘strength’’ - see also Fig. 8) can be
computed as

σ i ¼
XN
j ¼ 1

j≠i

wij ¼
XN
j ¼ 1

j≠i

XL
α¼1

IiαIjα ð62Þ

whose expected value reads

hσ ii ¼
XN
j ¼ 1

j≠i

hwiji ¼
XL
α¼1

piα½hhαi � piα�: ð63Þ

As further confirmed by Supplementary Fig. 1 in the Supplementary
Information, the approximation provided by Eq. (58) allows us to pose
hσ iiHCM ’ k�i

PL
α¼1ðh�αÞ2=T�, ∀ i. Interestingly, as Fig. 9a shows, theHCM

overestimates the extent to which any two nodes of the email-Enron

Fig. 8 | Graphical representation of the ‘hypergraph to graph’ projection. Notice
that while the degree of each node (i.e., the number of hyperedges that are incident to
it) reads {ki} = (3, 3, 3, 3, 4, 1), the sigma of each node (i.e., the total number of
hyperedges shared by it with any other node or, equivalently, the strength on the
projection) reads {σi} = (8, 8, 9, 6, 10, 3) and the kappa of each node (i.e., the number
of nodes it shares an hyperedge with or, equivalently, the degree on the projection)
reads {κi} = (5, 4, 5, 4, 5, 3).

https://doi.org/10.1038/s42005-025-02182-2 Article

Communications Physics |           (2025) 8:284 10

https://www.cs.cornell.edu/~arb/data/
www.nature.com/commsphys


data set overlap: in words, such a real-world hypergraph is more com-
partmentalised than expected.

Let us, now, extend the concept of assortativity to hypergraphs. To this
aim, we consider the quantity named average incident hyperedges degree,
defined as

knni ¼
XL
α¼1

Iiαhα
ki

¼ σ i þ ki
ki

¼ σ i
ki
þ 1 ’ σ i

ki
ð64Þ

and representing the arithmetic mean of the degrees of the hyperedges
including node i. An analytical approximation of its expected value can be
provided as well:

hknni i ’
XL
α¼1

piα½hhαi þ 1� piα�
hkii

¼ hσ ii þ hkii
hkii

¼ hσ ii
hkii

þ 1 ’ hσ ii
hkii

: ð65Þ

Disparity ratio and degree in the projection
More information about the patterns shaping real-world hypergraphs
can be obtained upon defining the ratio fij =wij/σi, i ≠ j that induces the
quantity

Yi ¼
XN
j¼1
j≠i

f 2ij ¼
XN
j¼1
j≠i

w2
ij

σ2i
; ð66Þ

known as disparity ratio and quantifying the (un)evenness of the distribu-

tion of the weights constituting the strength of node i over the κi ¼

PN
j¼1
ðj≠iÞ

Θ½wij� �
PN
j¼1
j≠i

aij links characterising its connectivity - since aij = 1 if

nodes i and j share, at least, one hyperedge, κi is the degree of node i in the
projectionof thehypergraph (seealsoFigs. 8 and9b). Since,under theRHM,

wij~Bin(L, p
2), wefind that haiji ¼ 1� ð1� p2ÞL, i.e., the expected value of

aij coincideswith the probability of observing a non-zero overlap.Under the
HCM, instead, wij � PoissBin ðL; fpiαpjαgLα¼1

Þ, hence

haiji ¼ 1�
YL
α¼1

ð1� piαpjαÞ: ð67Þ

Let us also notice that

Yi ¼
1
κi

ð68Þ

in caseweights are equally distributed among the connections establishedby
node i, i.e.,wij = aijσi/κi, i≠ j.Any larger value signals an excess concentration
of weight in one ormore links. An analytical approximation of the expected

value of the disparity ratio of node i can be provided as well:

hYii ’
XN
j¼1
j≠i

hw2
iji

hσ2i i
: ð69Þ

Contrary to what has been previously observed, the expected value of
the disparity ratio cannot always be safely decomposed as a ratio of expected
values, not even if the ‘full’’ HCM is employed. In fact, while this approx-
imation works relatively well for the contact-primary-school data
set, it does not for the email-Enron and the NDC-classes ones (see
also Supplementary Fig. 3 in the Supplementary Information). For this
reason, the expected value of the disparity ratio has been evaluated by
explicitly sampling the ensemble of incidence matrices induced by the ‘full’
HCM. In any case, as Fig. 9c shows, such a null model underestimates the
disparity ratio characterising each node of the email-Enron data set: in
words, the empirical overlap between any two nodes is (much) less evenly
‘distributed’ than expected. A similar conclusion can be drawn by con-

sidering hκii ¼
PN

i¼1 1�QL
α¼1ð1� piαpjαÞ

h i
: as Fig. 9b shows, the degree

of the nodes in the projection tend to be significantly smaller than expected,
meaning that hyperedges concentrate on fewer edges than expected. This
observation is in line with recent works showing the encapsulation and
‘simpliciality’’ of real-world hypergraphs42,43.

Eigenvector centrality
Centralitymeasures for hypergraphs have been defined as well. An example
is provided by the cliquemotif eigenvector centrality (CEC), defined in44 (see
also Supplementary Note 3 of the Supplementary Information): CECi

corresponds to the i-th entry of the Perron-Frobenius eigenvector ofW. As
Fig. 9d shows, theHCMunderestimates theCECaswell: such a result canbe
understood by considering that the HCM constrains only the degree
sequences, hence inducing an ensemblewhere connections are ‘distributed’’
more evenly thanobserved, an evidence letting the nodesoverlapmore, thus
causing the entries of 〈W〉 to be overall larger and less dissimilar, as well as
those of its Perron-Frobenius eigenvector.

Confusion matrix
Let us, now, consider the set of indices constituting the so-called confusion
matrix (see also Supplementary Note 4 of the Supplementary Information).
They are intended to quantify the capability of a given network model in
reproducing microscopic properties, such as the position of 1s and 0s by
explicitly comparing their empirical location with the one expected under
the chosen model. They are named true positive rate (TPR), i.e., the per-
centage of 1s correctly recovered by a given method, whose expected value
reads

hTPR i ¼
XN
i¼1

XL
α¼1

Iiαpiα
T

; ð70Þ

Fig. 9 | Scatter plots between the empirical and the
expected values for the email-Enron dataset.
More in detail, {σi} vs. fhσ iiHCMg (a), {κi} vs.
fhκiiHCMg (b), {Yi} vs. hfYiiHCMg (c), and {CECi} vs.
fhCECiiHCMg (d). The HCM overestimates the
extent to which any two nodes overlap, as well as the
CEC; the disparity ratio, instead, is underestimated
by it. These results can be understood by considering
that the HCM just constrains the degree sequences,
hence inducing an ensemble where connections are
‘distributed'' more evenly than observed.
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specificity (SPC), i.e., the percentage of 0s correctly recovered by a given
method, whose expected value reads

h SPC i ¼
XN
i¼1

XL
α¼1

ð1� IiαÞð1� piαÞ
NL� T

; ð71Þ

positive predictive value (PPV), i.e., the percentage of 1s correctly recovered
by a given method with respect to the total number of 1s predicted by it,
whose expected value reads

hPPV i ¼
XN
i¼1

XL
α¼1

Iiαpiα
hTi ; ð72Þ

accuracy (ACC), measuring the overall performance of a given method in
correctly placing both 1s and 0s, whose expected value reads

hACC i ¼ hTP i þ hTN i
NL

: ð73Þ

Results on the confusionmatrix of anumber of real-worldhypergraphs
reveal that the large sparsity of the latter onesmakes it difficult to reproduce
theTPRand thePPV (see also SupplementaryTable 2 in the Supplementary
Information); on the other hand, the capability of theHCM(both in its ‘full’’
and approximated version) to reproduce the density of 1s—and, as a con-
sequence, the density of 0s—ensures the SPC to be recovered quite precisely,
in turn ensuring the overall ACC of the model to be large (for an overall
evaluation of the performance of the HCM in reproducing real-world
hypergraphs, see also Supplementary Table 3 in Supplementary Note 5 of
the Supplementary Information).

Community detection
Communities are commonly understood as densely connected groups of
nodes. Representing an hypergraph via its incidence matrix allows this
statement to bemademore precise from a statistical perspective: in fact, the
nullmodels discussed so far can be employed to test if any twonodes share a
significantly large number of hyperedges - hence can be clustered together,
should this be the case. In other words, it is possible to devise a ‘validation
procedure’’ that filters the projection described by the matrix W by
removing the entries that do not satisfy the requirement above.

To this aim, we can adapt the recipe proposed in24 to project bipartite
networks and summarised in the following. One, first, computes

p�value ðw�
ijÞ ¼

X
x ≥w�

ij

f ðxÞ ð74Þ

for each pair of nodes; f(x) depends on the chosen null model: in case the
RHMis employed, it coincideswith the Binomial distributionBin(x∣L, p); in
case the HCM is employed, it coincides with the Poisson-Binomial
distribution PoissBin ðxjL; fpiαpjαgLα¼1

Þ. Second, one implements the FDR
procedure, designed to handle multiple tests of hypothesis45: in practice,
after ranking thep-values in increasing order, i.e., p value1≤p-value2≤⋯≤p-
valuen, one individuates the largest integer î satisfying the condition

p�valuêi ≤
ît
n

ð75Þ

where n =N(N− 1)/2 and t is the single-test significance level, set to 0.01 in
the present analysis. Third, one links the (pairs of) nodes whose related p
value is smaller than the aforementioned threshold.

Figure 10 shows the partitions returned by the Louvain algorithm run
on the validated projections: as noticed elsewhere24,46,47, the detection of
mesoscale structures is enhanced if carried out on filtered topologies.

Conclusions
Our paper contributes to current research on hypergraphs by extending the
constrained entropy-maximisation framework to incidence matrices, i.e.,
their simplest, tabular representation. Differently from the currently-
available techniques9, our methodology has the advantage of being analy-
tically tractable, scalable and versatile enough to be straightforwardly
extensible to directed and/or weighted hypergraphs.

Beside leading to results whose relevance is mostly theoretical (i.e., the
individuation of different regimes for higher-order structures and the esti-
mationof the actual impact of empty andparallel hyperedgeson the analysis
of empirical systems), our models prove to be particularly useful when
employed as benchmarks for real-world systems, i.e., for detecting patterns
that are not imputable to purely random effects. Specifically, our results
suggest that real-world hypergraphs are characterised by a degree of self-
organisation that is absolutely non-trivial (see also SupplementaryNote 5 of
the Supplementary Information).

This is even more surprising when considering that our results are
obtained under a benchmark such as the HCM, i.e., a null model con-
straining both the degree and the hyperdegree sequences: since it

Fig. 10 | Validated vs. non-validated ‘hypergraph
to network’’ projections of empirical datasets. a–c
projections of the contact-primary-school,
email-Enron andNDC-classes data sets onto
the layer of nodes. d–f validated counterparts of the
aforementioned projections: any two nodes are
linked if they share a significantly large number of
hyperedges. Communities have been detected by
running the Louvain algorithm.
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overestimates the extent to which any two nodes overlap—a result whose
relevance becomes evident as soon as one considers the effects that higher-
order structures have on spreading and cooperation processes48–50—our
future efforts will be directed towards the analysis of benchmarks con-
straining non-linear quantities such as the co-occurrences between nodes
and/or hyperedges.

Data availability
All the data used for the analysis are freely available at https://www.cs.
cornell.edu/arb/data/.

Code availability
The authors will provide the code used for the analysis upon request.
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