
Hyperedge Overlap drives Synchronizability of Systems with Higher-Order interactions

Santiago Lamata-Otı́n,1, 2, ∗ Federico Malizia,3, ∗ Vito Latora,4, 5, 6, † Mattia Frasca,7, ‡ and Jesús Gómez-Gardeñes1, 2, §
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The microscopic organization of dynamical systems coupled via higher-order interactions plays a pivotal
role in understanding their collective behavior. In this paper, we introduce a framework for systematically
investigating the impact of the interaction structure on dynamical processes. Specifically, we develop an hy-
peredge overlap matrix whose elements characterize the two main aspects of the microscopic organization of
higher-order interactions: the inter-order hyperedge overlap (non-diagonal matrix elements) and the intra-order
hyperedge overlap (encapsulated in the diagonal elements). This way, the first set of terms quantifies the extent
of superposition of nodes among hyperedges of different orders, while the second focuses on the number of
nodes in common between hyperedges of the same order. Our findings indicate that large values of both types
of hyperedge overlap hinder synchronization stability, and that the larger is the order of interactions involved,
the more important is their role. Our findings also indicate that the two types of overlap have qualitatively dis-
tinct effects on the dynamics of coupled chaotic oscillators. In particular, large values of intra-order hyperedge
overlap hamper synchronization by favouring the presence of disconnected sets of hyperedges, while large val-
ues of inter-order hyperedge overlap hinder synchronization by increasing the number of shared nodes between
groups converging on different trajectories, without necessarily causing disconnected sets of hyperedges.

I. INTRODUCTION

In recent decades, the study of the structural organization
of complex systems and its influence on their collective be-
havior has raised increasing attention. This surge of inter-
est has been driven by advances in complex network sci-
ence, which aims to elucidate emergent phenomena arising
from the microscopic interactions encapsulated in the form of
a graph [1, 2]. More recently, network science has focused
on higher-order, or group, interactions, recognizing their sub-
stantial impact on the dynamics and emergent properties of
interacting systems [3–5]. Research in this area spans fields
as diverse as ecology [6], social contagion [7–9], game the-
ory [10–12] and synchronization [13–17].

The exploration of dynamical systems with higher-order in-
teractions began with the development of basic models de-
signed to capture the influence of groups on the emergent
phenomena [7, 15]. In order to facilitate analytical deriva-
tions, the structures under consideration were either random
hypergraphs, a natural extension of random graphs to higher-
order interactions, or random simplicial complexes. The latter
group structures introduce a downward closure, meaning that
all interactions involving subgroups of nodes of an existing
interaction must also be present in the structure [3].

After the initial models of hypergraphs were introduced,
subsequent research evolved towards more elaborate represen-
tations of higher-order interactions. [18–26]. Early findings in
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this direction revealed that the interaction strength alone does
not dictate behavioral changes in social systems [19–21]. In-
stead, factors such as the group size distributions and the het-
erogeneity in node participation in groups were shown to be
relevant. Thereafter, the effects of different degrees of relax-
ation of the downward closure in simplicial complexes were
explored. Studies by Kim et al. [23] and Burgio et al. [24]
showed that the inclusion level among different-sized inter-
actions influences the nature of the transition to active states
in the context of social contagion. In addition, Zhang et
al. [22] investigated the impact of higher-order interactions
on synchronization of Kuramoto oscillators, finding that hy-
pergraphs favour synchronization more effectively than sim-
plicial complexes. Moreover, Malizia et al. [18] examined the
correlations among hyperedges of the same size, showing how
the nature of the transition towards emergent collective states,
such as synchronization or epidemic outbreaks, varies from
first to second order depending on the overlap among hyper-
edges of the same size.

All the previously mentioned works were inspired to the
structural features observed in real higher-order structures. In-
deed, at a microscopic level, real higher-order systems ex-
hibit considerable complexity in terms of overlap of hyper-
edges [18, 27–29]. Specifically, Lee et al. [28] quantified
this property by introducing the overlapness, a metric mea-
suring the ratio between the number of nodes belonging to
hyperedges with and without repetitions, showing that this ra-
tio greatly varies between real-world datasets. Deepening in
this heterogeneity, Landry et al. [27] employed a set of met-
rics to show that some real-world structures resemble simpli-
cial complexes whereas others show an organization closer to
that of random hypergraphs. Finally, Malizia et al. [18] intro-
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duced a measure, namely the intra-order hyperedge overlap,
to quantify the overlap between hyperedges of the same size
and showed a wide range of values for this metric in real-
world datasets.

In this paper, we take into account both the extent of the
downward closure (which marks the difference between sim-
plicial complexes and random hypergraphs) and the overlap
among hyperedges of the same order of interactions. We char-
acterize the former by means of the inter-order hyperedge
overlap and the latter in terms of the intra-order hyperedge
overlap. To this aim, we introduce a general framework to
characterize the hyperedge overlap of higher-order structures:
the overlap matrix. Equipped with this framework, our work
aims to address three main questions: (i) the hierarchy of the
importance of the two kinds of overlaps in synchronization
dynamics, (ii) the distinct and combined effects of intra-order
and inter-order overlaps, and (iii) the consistency of each type
of overlap’s influence on different dynamical systems.

The rest of the manuscript is organized as follows. In Sec. II
we introduce the overlap matrix. In Sec. III we illustrate the
model for synchronization dynamics and highlight the signifi-
cance of the spectrum of eigenvalues of the Laplacian matrix.
Thereafter, in Sec. IV we analyze the effect of hyperedge over-
lap on synchronization dynamics of coupled nonlinear oscilla-
tors. In particular, in Sec. IV A we consider a general scenario
with 2-body, 3-body and 4-body interactions and analyze the
stability of the synchronous state for structures where the ele-
ments of the overlap matrix take values at the extremes of their
range of definition. Our findings indicate that an increase in
the overlap leads to a decrease in synchronizability. Further-
more, we elucidate a hierarchy of importance among the two
types of overlap. Finally, in Secs. IV B and IV C, we consider
the simplest case of a structure with non trivial inter-order and
intra-order hyperedge overlap, namely a structure with inter-
actions up to 3−body. We observe that both overlaps signifi-
cantly influence the spectrum of eigenvalues of the Laplacian
matrix, and have a qualitatively distinct impact on the stabil-
ity of synchronization. In particular, we find that, for a given
order, there is a close relation between intra-order hyperedge
overlap and the connectedness of the set of hyperedges. Fi-
nally in Sec. V we round off the article by discussing the main
findings and some possible directions for future research.

II. HYPEREDGE OVERLAP

In a complex system, interactions may involve two or more
units. Two-body or pairwise interactions can be modelled by
networks, whereas, to represent multi-body or higher-order in-
teractions, hypergraphs and simplicial complexes can be used.
A hypergraph H = (N , E) is defined as a pair of two sets: the
set N that is composed of N = |N | nodes, and the set E
that contains a number E = |E| of hyperedges. A hyperedge
e ∈ E of order m, shortly an m-hyperedge, is defined as a
subset of m+1 nodes in N with m = |e| − 1. Thus, for each
order m, the m-hyperedges capture the interactions of groups
of size m + 1. This way, pairwise interactions involving two
nodes correspond to hyperedges of order 1, interactions be-

tween three nodes are represented by hyperedges of order 2,
and so on for larger groups. A simplicial complex is a spe-
cial case of hypergraph subject to the inclusion property (also
known as downward closure), which means that all the pos-
sible subgroups of nodes appearing in a hyperedge are also
connected by hyperedges of the structure.

A. Characterizing nodes and their interactions

To characterize the microscopical organization of hyper-
graphs, we first need to introduce a few definitions. We begin
by characterizing the structure of group interactions of each
node i by defining E(m)

i as the set of hyperedges e of order m
to which node i belongs. The number of hyperedges of order
m to which i belongs to is the so-called generalized degree
of node i, namely k

(m)
i , and corresponds to the cardinality of

E(m)
i , that is, k(m)

i = |E(m)
i | [30].

Next, in order to encode the information about the inter-
actions at all orders, we consider a set of adjacency tensors
A(m) with m = 1, . . . ,M , where M is the highest order
of group interactions in the structure. This way, we have
that a(m)

i,j1...,jm
= 1 if there exists an m-hyperedge that con-

tains nodes i, j1 . . . , jm, and a
(m)
i,j1...,jm

= 0 otherwise. For
each order m we also consider a generalized Laplacian matrix
L(m) [31] with entries given by:

l
(m)
ij = mk

(m)
i δij − b

(m)
ij . (1)

where b
(m)
ij represents the number of connections of order m

in which both i and j appear, that is:

b
(m)
ij =

1

(m− 1)!

N∑
j2,...,jm

a
(m)
i,j1,j2,...,jm

. (2)

B. Characterizing the structure of hyperedges

In classical graphs, nodes can be connected only in pairs,
via links (1-hyperedges). Thus, if, as usual, there are no mul-
tiple links connecting the same pair of nodes, each link of a
node connects it with a different neighbor. However, when a
structure has higher-order interactions, a node i may be con-
nected to the same node j via different hyperedges. Quanti-
fying the number of repeated neighbors among hyperedges,
namely their degree of overlap, is fundamental to understand
the microscopic organization of different structures.

Random hypergraphs and simplicial complexes [3] exem-
plify the variability in the degree of overlap between hyper-
edges of different orders. In fact, in random hypergraphs, hy-
peredges are uncorrelated, meaning that in the thermodinamic
limit, N → ∞, the probability that two nodes share more than
one hyperedge becomes negligible. Contrarily, in simplicial
complexes, where the inclusion property holds, when a set of
nodes conforms a hyperedge, all possible subsets of nodes are
also linked by hyperedges, and so the overlap is large.
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FIG. 1. Inter-order and intra-order hyperedge overlap as fundamental components of the overlap matrix. (a)-(c): Three configurations
of seven nodes, nine 1−hyperedges and two 2−hyperedges displaying different levels of inter-order hyperedge overlap: (a) I(1,2) = 0; (b)
I(1,2) = 0.5; (c) I(1,2) = 1. (d)-(f): Three configurations with four 2−hyperedges displaying different levels of the intra-order hyperedge
overlap for node i (k(2)

i = 4): (d) T (2)
i = 0; (e) T (2)

i = 0.5; (f) T (2)
i = 1. (g)-(h): Schematic representation of the overlap matrix for

hypergraphs with M = 3. Panel (g) shows a configuration with maximal overlap and panel (h) shows a configuration with minimal overlap.

Repeated neighbors can be found either considering two
hyperedges of the same order or of different orders. The two
cases are dealt with different measures, in the following indi-
cated as inter-order and intra-order hyperedge overlap.

1. Inter-order hyperedge overlap

To quantify the extent of overlap between interactions of
order m and those of order n, with m < n, we consider
the set of possible m−cliques within the n-hyperedges, de-
noted as F(E(n)). Then, we count how many of those m-
cliques correspond to actual m−hyperedges of the structure,
i.e. |E(m) ∩ F(E(n))|. At this point, we define the inter-order
hyperedge overlap I(m,n) as the fraction of existing m-cliques
over the number of possible m−cliques, namely:

I(m,n) =
|E(m) ∩ F(E(n))|

|F(E(n))|
, (3)

The former expression spans from (when there are no
m−hyperedges that correspond to one of the possible
m−cliques in the set of n-hyperedges) to I(m,n) = 1 (when
all the possible m−cliques within the n-hyperedges are m-
hyperedges).

As an example, Fig. 1(a)-(c) shows three different con-
figurations for a hypergraph of seven nodes with nine 1-
hyperedges and two 2-hyperedges. Here, the extent of the
inter-order overlap between 1-hyperedges and 2-hyperedges,
i.e, m = 1 and n = 2, varies from the fully non-overlapping
case shown in panel (a) to the extreme case of maximal hy-
peredge overlap shown in panel (c). In particular, we have in
Fig. 1(a) |F(E(2))| = 6 and |E(1)∩F(E(2))| = 0, resulting in
I(1,2) = 0. In Fig. 1(b) the inter-order hyperedge overlap in-
creases to I(1,2) = 0.5 since |E(1)∩F(E(2))| = 3. Finally, in
Fig. 1(c) the maximal overlap (I(1,2) = 1) is obtained consid-
ering that |E(1) ∩ F(E(2))| = |F(E(2))| = 6. For the sake of
illustration, the example of Fig. 1 refers to a structure having
only 1-hyperedges and 2-hyperedges.

2. Intra-order hyperedge overlap

To take into account the case where repeated nodes appear
in hyperedges of the same order, we consider the local intra-
order hyperedge overlap defined in [18]:

T
(m)
i = 1− S(m)

i − S(m),−
i

S(m),+
i − S(m),−

i

, (4)
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where S(m)
i represents the number of unique neighbors of a

node i that are found in its k(m)
i hyperedges of order m ≥ 2,

and S(m),−
i (S(m),+

i ) indicates the minimum (maximum) pos-
sible value for the number of such nodes (the expressions for
S(m),−
i and S(m),+

i are analytically derived in [18]). The
quantity T

(m)
i spans between T

(m)
i = 0 indicating that there is

minimum overlap between the m−hyperedges to which node
i belongs, and T

(m)
i = 1 corresponding to the maximum over-

lap.
As an example, in Fig. 1(d)-(f) three configurations where

the node i has the same number of 2−hyperedges (k(2)i = 4)
are shown. In Fig. 1(d) the overlap between the hyperedges
is minimum, since S

(2)
i = S

(2),+
i = 8. In Fig. 1(e) the

node intra-order hyperedge overlap is, instead, T (m)
i = 0.5 as

S
(2)
i = 6, S(2),+

i = 8, and S
(2),−
i = 4. Finally, the full over-

lap case is depicted in Fig. 1(f), where S
(2)
i = S

(2),−
i = 4.

To assess the level of intra-order hyperedge overlap across
the entire hypergraph, we calculate the weighted average of
T

(m)
i throughout all nodes:

T (m) =

∑
i k

(m)
i T

(m)
i∑

i k
(m)
i

. (5)

3. The overlap matrix

To characterize the hyperedge overlap in an hypergraph
with interactions up to order M , we should consider all the
M − 1 measures of intra-order overlap, and all the M(M −
1)/2 measures of inter-order overlap. For a compact repre-
sentation of such measures, we introduce the overlap matrix
O = {o(m,n)} that embodies all the possible types of overlap
of different order, as follows:

O =


0 I(1,2) I(1,3) . . . I(1,M)

I(2,1) T (2) I(2,3) . . . I(2,M)

I(3,1) I(3,2) T (3) . . . I(3,M)

...
...

...
. . .

...
I(M,1) I(M,2) I(M,3) . . . T (M)

 . (6)

Note that since, as mentioned above, T (m)
i is only defined for

m ≥ 2 we have set the (1, 1) entry of the overlap matrix equal
to 0 in order to capture that 2-body (pairwise) interactions do
not overlap at all.

In Fig. 1(g)-(h), for the case M = 3, we exemplify the con-
figurations yielding maximal (panel (g)) and minimal (panel
(h)) values of the entries of the overlap matrix. We note that,
as the overlap measures are not independent each other, not all
extreme values can be reached. Specifically, when there is a
non-zero inter-order overlap with m- and n-hyperedges, then
for the set of m-hyperedges we can never find T (m) = 0. In
particular, in the case when I(m,n) = 1, the number of unique
neighbors that a node i can have through hyperedges of order
m (S(m)

i ) depends on the number of unique neighbors that a

node i has through hyperedges of order n (S(n)
i ) as:

S
(m)
i = S

(n)
i +m

(
k
(m)
i −X

)
, (7)

with X being the number of different interactions of order
m that the node i can have with the neighbors through hy-
peredges of order n, X =

(
S

(n)
i
m

)
. Therefore, the minimum

intra-order hyperedge overlap of a node i with S
(n)
i unique

neighbors through hyperedges of order n (called T
(m)
i |

k
(n)
i

) is
given by:

T
(m)
i |

k
(n)
i

= 1−
S
(n)
i +m

(
k
(m)
i −

(
S

(n)
i
m

))
− S(m),−

i

S(m),+
i − S(m),−

i

.

(8)
Note also that there is another interdependence between

the overlap measures constraining the values that it is pos-
sible to obtain. In fact, to reach I(m,n) = 1, one must
have that k

(m)
i ≥ X . To illustrate this, let us consider

m = 2 and m = 3, and derive the analytical expressions
for T (3) = 0 and T (3) = 1. In the case of minimum
intra-order hyperedge overlap, we use in Eq. (8) the fact that
S
(3)
i = S

(3,−)
i = ⌈y(3)⌉ [18], where y(3) is the solution of

y(3)
(
y(3) − 1

) (
y(3) − 2

)
= 6k

(3)
i . In the case of maximum

intra-order hyperedge overlap, instead, in Eq. (8) we consider
that S(3)

i = S
(3,−)
i = 3k

(3)
i . The outcome of this analysis

is illustrated in Fig. 2(a)-(b). The red dots indicate the mini-
mum 2-hyperedge connectivity required to have I(m,n) = 1

for a given k
(3)
i , and the color code represents the minimum

possible value of 2-hyperedge intra-order overlap in terms of
both generalized connectivities (k(2)i , k(3)i ). Let us notice that
the minimum intra-order hyperedge overlap of 3-hyperedges
needs larger values of 2-hyperedges connectivity than in the
case of maximum intra-order overlap. These constraints be-
come increasingly complex with the introduction of additional
orders of interaction.

III. MODEL OF DYNAMICAL SYSTEMS COUPLED
THROUGH A HYPERGRAPH

Now we turn our attention to the model of dynamical sys-
tems coupled through hypergraphs, focusing on the stability
analysis of synchronous (homogeneous) solutions. Let us start
by considering the following generic system of N oscillators
coupled via m-body interactions with m = 1, . . . ,M [16]:

ẋi = f(xi)

+

M∑
m=1

σ(m)
∑

j1,..,jm

a
(m)
ij1...jm

g(m)(xi, xj1 , . . . , xjm) ,

(9)

where xi is the n−dimensional state vector associated to each
node i, and f(xi) describes the local dynamics, assumed iden-
tical for all units. The functions g(m) capture the coupling
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(a) (b)

FIG. 2. Constraints between elements of the hyperedge overlap matrix. Minimum T
(2)
i of a node i with generalized connectivity k

(2)
i and

k
(3)
i provided I(2,3) = 0. Panel (a) shows the case where T (3) = 1 and panel (b) shows the case where T (3) = 0. The red dots represent the

minimum k
(2)
i required to have I(2,3) = 0.

mechanisms between units at each order m of interaction,
whereas the constant parameters σ(m), m = 1, . . . ,M rep-
resent the coupling strengths associated to these interactions,
and a

(m)
ij1...jm

are the entries of the corresponding adjacency
tensor A(m).

To guarantee the existence and invariance of a synchronous
solution of the type x1 = ... = xN = xs, we assume that the
coupling functions are non-invasive, i.e.:

g(m)(x, x, ..., x) ≡ 0, m = 1, . . . ,M. (10)

However, this is not enough for the stability of the syn-
chronous solution that requires further conditions, as it de-
pends on the interplay between the local dynamics and the
structure of interactions between units. To unveil this inter-
play and determine the conditions for synchronization stabil-
ity, as in [16] we start by considering a small perturbation
around the synchronous state, i.e., for each node i we con-
sider δxi = xi − xs. When interactions between units are ex-
clusively pairwise, the former perturbations can be expressed
as a linear combination of the eigenvectors of the network
Laplacian matrix L(1), denoted as ηi. The dynamics of the
component η1 (corresponding to the zero eigenvalue λ1 = 0)
is responsible for the motion along the synchronous mani-
fold, while the dynamics of the remaining components corre-
sponding to ηi (i = 2, ..., N ) represent the modes transverse
to the synchronization manifold. The linear stability of the
synchronous state requires that the dynamics of these N − 1
transverse modes damp out. This condition can be checked
by studying the maximum Lyapunov exponent associated to
the transverse modes. In the presence of higher-order inter-
actions, the transverse modes are usually intertwined, and the
study of synchronization stability has to be performed on a set
of linear equations in a number equal to the size of the struc-
ture (the number of nodes). Nevertheless, for a large class of

coupling functions, the dynamics of the transverse modes can
be decoupled, allowing the calculation of the stability condi-
tions from a single parameter variational equation, having the
same dimension of the dynamical system at work in each (iso-
lated) node. This decoupling can be achieved by considering
the class of diffusive-like coupling functions, for which

g(m)(xi, xj1 , ..., xjm)

= h(m)(xj1 , ..., xjm)− h(m)(xi, ..., xi) , (11)

under the assumption of natural couplings [16], i.e.

h(m)(x, ..., x) = h(1)(x) ,m = 1, . . . ,M. (12)

Under these conditions, the parametric equation characteriz-
ing the dynamics of the transverse modes, and therefore the
synchronization stability of system (9), reads:

η̇ =
[
Jf(xs)− αJh(1)(xs)

]
η. (13)

where Jf(xs) and Jh(1)(xs) represents the Jacobian matrix of
the local dynamics and the coupling functions, respectively,
both calculated around the synchronous solution xs. From
this equation we compute the maximum Lyapunov exponent
as a function of the parameter α, namely the master stability
function Λmax = Λmax(α) characterizing the stability of syn-
chronization [32]. In more detail, synchronization stability re-
quires that the master stability function takes negative values
in correspondence of the points α = {λ2(L̄), . . . , λN (L̄)},
where L̄ is the effective Laplacian [16, 31], defined as:

L̄ =

M∑
m=1

σ(m)L(m). (14)
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(a)

(b)

(c) (d)

FIG. 3. Synchronization in a hypernetwork of Rössler oscillators (a)-(b): Master stability function calculated for different coupling func-
tions. (a) Class II system given h(1)(xj) = [0, y3

j , 0]
T and h(2)(xj , xk) = [0, y2

j yk, 0]
T . (b) Class III system given h(1)(xj) = [x3

j , 0, 0]
T and

h(2)(xj , xk) = [x2
jxk, 0, 0]

T . (c)-(d): Phase diagram of a system of coupled Rössler oscillators, displaying the synchronization error in terms
of the 1−hyperedge and 2−hyperedge coupling strength E(σ(1), σ(2)). (c) Class II system given in accordance with (a). (d) Class III system
in accordance with (b). The red lines correspond to the theoretical predictions of the synchronization threshold given by the MSF approach. In
both panels the structure has N = 100, k(1) = 6, k(2) = 3, and has zero hyperedge overlap (I(1,2) = 0, T (2) = 0).

The eigenvalues λn(L̄), with n = 1, . . . , N , of the effective
Laplacian matrix (which is, by construction, positive semi-
definite) are labeled throughout the manuscript in ascending
order of magnitude, i.e. 0 = λ1(L̄) < λ2(L̄) ≤ . . . ≤ λN (L̄).

The properties of the master stability function Λmax =
Λmax(α) determine the class of the system of coupled oscilla-
tors. Specifically, as discussed in [17, 33, 34] one can identify
three classes of systems:

• Class I systems: Λmax is always positive, regardless of
α. Consequently, the system remains incoherent.

• Class II systems: As shown in Fig. 3(a), Λmax crosses
the α-axis once at αc. For synchronization stability, it
is required that λ2(L̄) > αc.

• Class III systems: As shown in Fig. 3(b), the master
stability function crosses the α-axis at two points, α1

and α2. In this case, the stability region is bounded by
two conditions: λ2(L̄) > α1 and λN (L̄) < α2.

In this paper, we consider a system of N coupled Rössler
oscillators that, depending on the coupling functions used in
(9), can yield either a class II or class III system. The indi-
vidual dynamics of a node i, f(xi), with xi = (xi, yi, zi) are
described by the following systems of equations:

ẋi = −yi − zi ,
ẏi = xi + ayi ,
żi = b+ zi(xi − c) ,

(15)

where the parameters are fixed to a = 0.2, b = 0.2, and
c = 9, so that the isolated dynamics is chaotic. A class II sys-
tem is obtained for instance when g(1)(xi, xj) = h(1)(xj) =

[0, y3j , 0]
T and g(2)(xi, xj , xk) = h(2)(xj , xk) = [0, y2j yk, 0]

T ,

that is, when the nodes are coupled by their second component
y:

ẋi = −yi − zi ,

ẏi = xi + ayi + σ1

N∑
j=1

a
(1)
ij (y3j − y3i )

+σ2

N∑
j=1

N∑
k=1

a
(2)
ijk(y

2
j yk − y3i ) ,

żi = b+ zi(xi − c) ,

(16)

Conversely, a class III system is obtained for instance when
g(1)(xi, xj) = h(1)(xj) = [x3

j , 0, 0]
T and g(2)(xi, xj , xk) =

h(2)(xj , xk) = [x2
jxk, 0, 0]

T , such that the oscillators are cou-
pled through the variable x:

ẋi = −yi − zi + σ1

N∑
j=1

a
(1)
ij (x3

j − x3
i )

+σ2

N∑
j=1

N∑
k=1

a
(2)
ijk(x

2
jxk − x3

i ) ,

ẏi = xi + ayi ,
żi = b+ zi(xi − c) ,

(17)

To monitor synchronization among the chaotic units we use
the following synchronization error:

E(t) =

 1

N(N − 1)

N∑
i,j=1

||xj − xi||2
 1

2

, (18)

which vanishes in the case of complete synchronization, and
takes large values for incoherent behavior. In particular, we let
system (16) or (17) evolve for a transient of duration tr = 750
and, afterwards, calculate the average of the error defined as:

⟨E⟩ = 1

T

∫ tr+T

tr

E(t)dt (19)
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FIG. 4. Influence of the hyperedge overlap on the spectrum of
the effective Laplacian. Spectrum of the effective Laplacian for
two regular higher-order structures with N = 100, k(1) = 6,
k(2) = 6 and k(3) = 4. In the maximum overlap structure
{T (2), T (3), I(1,2), I(1,3)I(2,3)} = {1, 1, 1, 1, 1}, and in the ran-
dom structure {T (2), T (3), I(1,2), I(1,3)I(2,3)} ≈ {0, 0, 0, 0, 0}.

for a time window of duration T = 750.
In Fig. 3(c) and 3(d) we illustrate an example of synchro-

nization in a system of N = 100 Rössler nodes interacting in
a random hypergraph with k(1) = 6, k(2) = 3, I(1,2) = 0,
and T (2) = 0. In particular, the average error ⟨E⟩ is studied
as a function of the two coupling strengths σ1 and σ2, that is,
⟨E⟩ (σ1, σ2). Panel (c) shows the results for the class II sys-
tem, while panel (d) for the class III system. The values of the
average error ⟨E⟩ (σ1, σ2) obtained from the numerical simu-
lations are color-coded, while the red lines represent the the-
oretical predictions of the boundaries of the region where the
synchronous solution is stable. Numerical simulations are in
agreement with the theoretical predictions based on the master
stability function approach.

The class II case, depicted in Fig. 3(c), displays a region of
incoherence in correspondence of low values of the two cou-
pling strengths. As at least one of the two coupling strength is
increased, we find a region where synchronization is stable.
The transition from incoherent behavior to synchronization
also appears in Fig. 3(d) for the class III system (but shifted
according to α1 7→ αc). However, in this case, there is also
another transition, observed for large values of the coupling
strengths, where synchronization stability is lost and the sys-
tem behaves again in an incoherent way. As expected, we note
that the region of stability is unbounded for the class II system
and bounded for the class III system.

For the sake of brevity, hereafter we only analyze the
class III scenario, since the class II behavior straightforwardly
arises when relaxing the constraint on the last eigenvalue. In
fact, every consequence of the constraint λ2(L̄) > α1 is also
applicable to the constraint λ2(L̄) > αc, via a shift α1 7→ αc.

Note that the significance of the second eigenvalue of the
Laplacian extends beyond the dynamical systems of coupled
chaotic oscillators. In the higher-order model of Kuramoto
oscillators sharing identical natural frequencies, it governs the

rate at which the system recovers its collective state after a
perturbation [31], with larger values of λ2(L̄) resulting in
faster convergence to the equilibrium state.

In the rest of the paper, we will refer to the second eigen-
value of the effective Laplacian matrix in Eq. (14) as the al-
gebraic connectivity, generalizing the notion for systems with
only pairwise interactions. Overall, the spectrum of the ef-
fective Laplacian matrix is important for characterizing the
dynamics of numerous systems [34].

IV. RESULTS

Once introduced the essential tools to carry out our analy-
sis, in this section we focus on how the microscopic arrange-
ment of higher-order interactions, driven by the overlap ma-
trix defined in Eq. (6), influences the stability of synchronous
states.

A. Effect of hyperedge overlap on the spectrum of the effective
Laplacian matrix

In this section, we investigate the impact of hyperedge
overlap on synchronization stability by examining its influ-
ence on the spectrum of the effective Laplacian matrix. To
this end, we consider structures with interactions up to or-
der M = 3, i.e. encompassing two-body, three-body and
four-body interactions. Furthermore, in Eq. (14) we assign
equal relevance to the interactions across all orders by setting
σ(m) = γ(m)/k(m) and γ(m) = 1 (m = 1, 2, 3). To simplify
our notation, we define λ̃n ≡ λn(L̄) for this scenario, and
keep λn(L̄) for the general case of γ(m) ̸= 1.

We begin analyzing two configurations where the overlaps
take values at the extremes of the interval of definition. In
Fig. 4 we compare the spectrum of the effective Laplacian ma-
trix of a random hypergraph, displaying almost zero overplap,
o(m,n) ≈ 0, ∀ m,n ≤ 3, with that of a hypergraph designed
to have maximum overlap (o(m,n) = 1, ∀ m,n ≤ 3 but
m = n = 1). Both structures share the same number of nodes
(N = 100) and the same generalized degree distributions,
specifically k(1) = 6, k(2) = 6, and k(3) = 4. Beyond the first
eigenvalue that, being zero by definition, is the same in both
cases, the plots reveal significant differences in the two spec-
trums. In more detail, we find a large discrepancy in the al-
gebraic connectivity, λ̃2, which is much larger for the random
hypergraph. This corroborates the findings reported in [22],
where it is shown that random hypergraphs facilitate synchro-
nization to a greater extent than simplicial complexes, which,
in fact, correspond to structures with o(m,n) = 1, ∀m,n but
m = n = 1 (note that in [22] a system of coupled phase-only
oscillators where synchronization only depends on the alge-
braic connectivity is considered). Regarding the rest of the
spectrum we observe that, in the random structure, the value
of eigenvalues increases smoothly as the rank progresses. In
contrast, in the maximum overlap scenario, the spectrum, after
a first increase, undergoes an abrupt shift between the eigen-
values λ̃20 and λ̃21. Moreover, for λ̃ > λ̃20, the eigenvalues
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(b)(a)

FIG. 5. Hyperedge overlap and spectrum of the effective Laplacian. (a) Space of parameters {T (2), T (3), I(2,3)} for hypergraphs with
M = 3. In the corners, the color code represents the value of the second eigenvalue of the effective Laplacian given γ = 1, namely λ̃2.
(b) Spectrum of the effective Laplacian for regular higher-order structures at the extreme positions in the {T (2), T (3), I(2,3)}-space. The
considered hypergraphs have N = 100, k(1) = 2, k(2) = 6 and k(3) = 4 except for the {1, 0, 1} one, which has k(2) = 12. In all cases, the
hypergraphs have {I(1,2), I(1,3)} ≈ {0, 0}.

are larger than the corresponding ones in the random hyper-
gaphs. This is a consequence of the mesoscale organization
that is necessary to achieve a maximum intra-order overlap
configuration. More specifically, to have a regular hypergraph
with k(2) = 6 and k(3) = 4 and maximum intra-order hy-
peredge overlap for both orders m = 2 and m = 3, i.e.,
T (2) = T (3) = 1, the nodes must be arranged on 20 subsets
of 5 nodes, with each of these subsect being fully connected
by 3- and 4-body interactions. Consequently, the 20 smallest
eigenvalues of the spectrum correspond to the first effective
eigenvalue of each subset of 5 nodes, while the next 20 ones
correspond to the effective algebraic connectivity of each sub-
set of 5 nodes. The small value of the first (which would be
zero in the absence of pairs) and the large value of the second
indicate that, while synchronization stability is hindered on a
global scale, there is a tendency towards local synchroniza-
tion.

The two scenarios depicted in Fig. 4 illustrate configura-
tions in which all elements in the overlap matrix (6) are ei-
ther entirely ones or entirely zeros (except for the element
(1,1)). To better illustrate the interplay between different el-
ements of the overlap matrix, we now consider some config-
urations with various combinations of ones and zeros within
the structure of the overlap matrix. Note that, assuming that
the elements of O can only take binary values, there are
25 = 32 possible different overlap matrices. Here, we fo-
cus on eight of them obtained by varying only three elements
of the overlap matrix, namely, {T (2), T (3), I(2,3)}, while we
keep I(1,2) ≈ I(1,3) ≈ 0. These eight combinations are rep-
resented in Fig. 5(a), at the corners of a cube. The color code
is used to represent the magnitude of the algebraic connectiv-
ity λ̃2. Notably, the configurations at the corners {0, 0, 1} and
{1, 0, 1} are impossible to reach due to the aforementioned
constraints (Eq. (8)) between intra-order hyperedge overlaps
in case that the inter-order hyperedge overlap is maximum.

In Fig. 5(b), we show the spectrum of eigenvalues for the
six possible configurations analyzed. As shown, the spec-
trum of the configurations {0, 0, 0} and {1, 1, 1} exhibit a
behavior similar to that of the cases with minimum and
maximum hyperedge overlap, respectively, shown in Fig. 4.
As already noted, the lowest algebraic connectivity λ̃2 is
found for the structure with the highest degree of overlap
({1, 1, 1}), followed by the configuration with {1, 1, 0}. In
the maximum overlap structure {1, 1, 1}, the subsets of nodes
fully-connected by 2-hyperedges coincide with those fully-
connected by 3-hyperedges due to the downward closure. In
contrast, in the structure {1, 1, 0}, the subsets of nodes fully-
connected by 2-hyperedges and 3-hyperedges are intertwined,
so that the stability of the synchronous state (being a collec-
tive state shared by all nodes this represents global synchro-
nization) is fostered, but the tendency towards local synchro-
nization is hindered. The configuration {0, 1, 0} has random
3-body interactions, unlike the former {1, 1, 0}. For this rea-
son, this configuration also fosters global synchronization sta-
bility, since it leads the third lowest value of λ̃2. Furthermore,
the random 3-body interactions do not interfere with 4-body
interactions, which leads to a more clearly defined clustered
mesoscale configuration, resulting in eigenvalues of the sec-
ond group (those after the abrupt shift) larger than in the con-
figuration {1, 1, 0}. Finally, the configurations {1, 0, 0} and
{1, 0, 1} exhibit a similar spectrum, although the former dis-
plays a larger degree of inter-order hyperedge overlap, which
impairs stability of synchronization.

B. Isolated and combined effect of inter- and intra-order
hyperedge overlaps

In this section, we study the simplest scenario where inter-
and intra-order hyperedge overlaps can be defined, namely hy-
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FIG. 6. Inter-order and intra-order hyperedge overlap impact the conditions for synchronization stability. (a)-(c): Average λ̃2, λ̃N and
λ̃2/λ̃N in the {T (2), I(1,2)}-space over 100 sets of structures, each with N = 100 nodes and connectivity k(1) = 6 and k(2) = 3. The
contour lines in panels (a) and (b) correspond to γλ̃2 = α1 and γλ̃N = α2, respectively.

pergraphs with 2- and 3-body interactions (M = 2). In this
case, the overlap matrix is 2 × 2 and, thus, the only control
parameters are the inter-order hyperedge overlap T (2) and the
intra-order hyperedge overlap I(1,2). Here we want to con-
veniently adjust these two parameters to assess their isolated
and combined effects on the spectrum of the effective Lapla-
cian. This approach allows for a more comprehensive analy-
sis compared to the limited set of configurations with distinct
overlap values examined in Sec. IV A. In fact, in this case
we are able to tune the parameters to cover the full range of
possible values rather than considering only binary values of
overlap. To this aim, since random hypergraphs models do not
allow full control of the values of hyperedge overlap, we need
a synthetic model covering the full range of values [0, 1] for
both T (2) and I(1,2) (detailed information on the construction
of this synthetic hypernetwork can be found in Appendix A).
Note that, also in this case, to ensure equal relevance across
different orders, we set σ(m) = γ(m)/k(m) and γ(m) = 1 for
m = 1, 2. Finally, we mention that our results are averaged
over a number of 100 hypernetworks for each pair of values
in the {T (2), I(1,2)}-space. Each hypernetwork has N = 100
nodes, and generalized degrees k(1) = 6 and k(2) = 3.

We begin our analysis of the influence of the hyperedge
overlap on the stability of the synchronous state in these hy-
pergraphs by showing in Fig. 6(a) the algebraic connectivity
λ̃2 as a function of T (2) and I(1,2). The color code shows
values of λ̃2 depending almost symmetrically on both met-
rics, pinpointing that inter- and intra-order hyperedge overlap
have an equivalent and complementary impact. Furthermore,
the insights obtained from Fig. 4 and Fig. 5 are corroborated,
since in the case when both hyperedge-overlap metrics are at
their minimum value, namely when T (2) = I(1,2) = 0, the
second eigenvalue of the effective Laplacian is at its maxi-
mum.

As discussed in Sec. III, for class III systems, stability
of the synchronous state depends on λ2(L̄) and λN (L̄). In
particular, the condition for the algebraic connectivity reads

λ2(L̄) > α1. In the case that, γ(m) = γ, m = 1, . . . ,M , we
have that λ2(L̄) = γλ̃2. For this reason, in Fig. 6(a) we show
the contour lines corresponding to γλ̃2 = α1, namely the bor-
ders between the region of stability and instability. For each
γ, values of the inter- and intra-order overlap above the corre-
sponding contour line yield λ2(L̄) < α1, thus indicating that
the synchronous state is not stable. As expected, the stabil-
ity region increases as the parameter γ increases. The second
condition for synchronization stability, namely λN (L̄) < α2,
is analyzed in Fig. 6(b), showing the values of λ̃N for γ = 1
as a function of T (2) and I(1,2), as well as the contour lines
γλ̃N = α2 for three different values of γ. In this case, the
two overlaps exert a different effect on λ̃N , with large intra-
order hyperedge overlap resulting in the highest values. More-
over, the worst scenario for stability of the synchronous state
occurs for low values of the intra-order hyperedge overlap
and medium to high values of inter-order hyperedge overlap.
Nonetheless, the relative variation of λ̃N across the parame-
ter space is less pronounced than that observed for the second
eigenvalue λ̃2. This consideration is confirmed by the analy-
sis of the eigenvalue ratio λ̃2/λ̃N shown in Fig. 6(c), whose
dependency on the hyperedege overlap is similar to the one
observed for the second eigenvalue λ̃2 in Fig. 6(a).

C. The qualitative impact of intra-order hyperedge overlap

So far, in both Secs. IV A and IV B we have fixed the cou-
pling strengths σ(1) and σ(2). However, it is also important to
analyse the effect of the hyperedge overlap within a continu-
ous variation of these parameters. We carry out this analysis
for the two configurations with extreme values of the overlap,
namely

{
T (2) = 0, I(1,2) = 1

}
and

{
T (2) = 1, I(1,2) = 1

}
.

The results are shown in Fig. 7(a)-(b), which illustrates the
stability region predicted by the master stability function for
Eq. (17) in the parameter space (σ(1)−σ(2)). Remarkably, the
two configurations show different shapes for the stability re-
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FIG. 7. Intra-order hyperedge overlap may change the shape of the region of synchronization stability. (a)-(b) Region of synchronization
stability (black area) for a system of Rössler oscillators with h(1)(xj) = [x3

j , 0, 0]
T and h(2)(xj , xk) = [x2

jxk, 0, 0]
T . (a) Hypergraph with

{T (2), I(1,2)} = {0, 1}. (b) Hypergraph with {T (2), I(1,2)} = {1, 1}. (c) Average Ω in the {T (2), I(1,2)}-space over 100 sets of structures.
(d) Scatter plot (in blue) of the second eigenvalue of each of the sets of 2-hyperedges, that is, λ2(L

(2)), as a function of T (2). Fraction ϕ

of structures with a given T (2) and λ2(L
(2)) = 0 (in green). (e) Values of Ω in the {T (2), I(1,2)}-space. In all panels the structures have

N = 100, k(1) = 6, k(2) = 3.

gion, indicating a qualitatively distinct behavior associated to
the two systems. For the structure with minimum intra-order
hyperedge overlap, the synchronous state can be stable even
when σ1 is exceedingly small or zero, indicating the presence
of weak (or even null) pairwise interactions. We observe that
synchronization can be induced though a fine tuning of the
coupling strength associated to three-body interactions, σ2,
since there exist lower and upper bounds of this parameter
that guarantee synchronization stability. In contrast, for the
structure with maximal intra-order hyperedge overlap, the first
boundary (marking the transition from incoherent behavior to
synchronization) becomes almost vertical such that for low
values of σ1 synchronization becomes impossible to achieve.
The qualitative difference of the two scenarios can be exem-
plified by fixing a small value for σ1, e.g., σ1 = 10−4, and let-
ting σ2 increases from zero. This corresponds to move, in the
diagrams of Fig. 7(a)-(b), from the bottom to the upper part,
along the vertical line σ1 = 10−4. When the structure has no
intra-order correlations as in Fig. 7(a), there is a finite region
of stability, consistently with the typical behavior of class III
systems, whereas, when the degree of overlap in the structure
is larger as in Fig. 7(b), synchronization is impossible to ob-
tain regardless of the value of the coupling strength σ2. The
latter behavior resembles that associated with class I systems
on pairwise networks, for which the system dynamics remains
incoherent irrespectively of the strength of the interactions.

To shed more light on this important qualitative differ-
ence in the dynamical behavior, let Ω be the area of the
region of stability, namely the black region of Fig. 7(a) or
(b). More precisely, the quantity Ω is computed by inte-
grating the contour function of the stability region, denoted
as c(x, y), after a change of reference frame, from logarith-
mic scale σ(1), σ(2) ∈ [10−6, 100] (m = 1, 2) to linear scale

x, y ∈ [0, 1] :

Ω =

∫ 1

0

∫ 1

0

c(x, y)dxdy (20)

The average value of Ω, computed by considering 100 hy-
pergraphs for each pair of values of the intra-order and intra-
order hyperedge ovelap, is shown in Fig. 7(c). We notice that,
for high values of the intra-order hyperedge overlap, the con-
tour lines for Ω = 0.25 and Ω = 0.27 look similar to the
ones of the eigenvalue ratio shown in Fig. 6(c). Conversely,
for low values of intra-order hyperedge overlap, the contour
lines are nearly vertical, pinpointing that inter-order hyper-
edge overlap has a small impact. The change in the behaviour
seems to occur at a specific value of T (2)

c , which only depends
on the 2-hyperedges. These considerations are confirmed in
Fig. 7(d), which shows the algebraic connectivity of the gener-
alized Laplacian matrices restricted to 2-hyperedges, namely
λ2(L

(2)), for each of the sets of 100 structures considered
for each pair of values of the two hyperedge overlaps. For
structures having T (2) > T (2)

c , we find that λ2(L
(2)) = 0.

As for Laplacian matrices, the multiplicity of the zero eigen-
value corresponds to the number of connected components,
we conclude that, in this case, the structure obtained using
only the existing 2-hyperedges is not connected. Since set-
ting very small values of σ(1) (in the limit case, σ(1) → 0),
means to rely exclusively on the interactions associated with
the set of 2−hyperedges, stability of the synchronous state is
impossible to achieve.

On the contrary, when T (2) < T (2)
c , the values of the al-

gebraic connectivity exhibit a bimodal distribution between
the values λ2(L

(2)) = 0 (obtained in disconnected sets of
2-hyperedges) and the values λ2(L

(2)) ̸= 0 (obtained in con-
nected sets of 2-hyperedges). This bimodality is captured by
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FIG. 8. Connectedness of 2-hypererdges shapes the region of synchronization stability in real-world structures. (a)-(c) Hypergraph
from the Zachary Karate Club dataset, with an additional 2−hyperedege shown in blue. (a) Graphical representation of the structure. (b)
Region of synchronization stability (black area) for the original hypergraph. (c) Region of synchronization stability for the hypergraph with
the further 2−hyperedge added to reach full connectedness at the level of 2−hyperedges. (d)-(f) Hypergraph from the cat brain’s connectome.
(d) Graphical representation of the structure. (e) Region of synchronization stability for the original hypergraph. (f) Region of synchronization
stability for the hypergraph after isolation of a node, removing the 2−hyperedges to which it belongs. In all panels, a system of Rössler
oscillators with h(1)(xj) = [x3

j , 0, 0]
T and h(2)(xj , xk) = [x2

jxk, 0, 0]
T is considered. The red curves represent the theoretical prediction by

the master stability function approach, while the color code corresponds to the outcome of the numerical simulations.

the parameter ϕ (green-filled curve in Fig. 7(d)), which ac-
counts for the fraction of structures with a given T (2) and
λ2(L

(2)) = 0, and by the curve shown in Fig. 7(e). This
latter panel shows Ω as a function of the intra-order and inter-
order hyperedge overlap, clearly demonstrating the bimodal-
ity of the distribution of Ω for T (2) < T (2)

c . Within each of
the two modes, low (high) values of overlap enlarge (reduce)
the synchronization area. This is consistent what observed in
Fig. 6(c). Furthermore, we note that, although the bimodality
(as well as the value of T (2)

c ) depends on the rewiring pro-
cedure used to create the synthetic network under analysis, in
any case, to obtain the maximum intra-order overlap for an or-
der m, the set of m−hyperedges must be disconnected. Con-
versely, the random distribution of m-hyperedges is unlikely
to result in a disconnected set.

Lastly, we show that the two different behaviors discussed
above also appear in real-world structures. For the purpose
of exemplification, we use hypergraphs obtained from two
real-world datasets, namely the Zachary Karate Club [35]
and a cat’s brain connectome [36]. For both structures, we
consider three generic nodes i, j, and k to be connected by
an 2−hyperedge, each time we find in the original dataset a
clique involving them [16, 22]. This yields a structure having
I(1,2) = 1.

Fig. 8(a) shows the hypergraph obtained starting from the

Zachary Karate Club dataset, with the green triangles repre-
senting 2−hyperedges. The synchronization region predicted
by the master stability function for this hypergraph is depicted
in Fig. 8(b). Here, we observe that synchronization cannot be
obtained when the coupling strength associated to pairwise
interactions is small (e.g., σ1 → 0). This is due to the fact
that two nodes, highlighted by blue circles in Fig. 8(a), do
not belong to any 2−hyperedge. The introduction of an ad-
ditional 2−hyperedge (depicted in Fig. 8(a) as a blue trian-
gle) in the structure makes it connected also at the level of
2−hyperedges, resulting in a bounded region of synchroniza-
tion stability also when σ1 → 0 (Fig. 8(c)).

For the hypergraph obtained from the cat connectome
dataset (Fig. 8(d)) we find a different scenario since all nodes
are connected through 2−hyperedges. Consequently, the sys-
tem has a finite stability region for small σ1 (Fig. 8(e)). Fur-
thermore, upon isolating a node (highlighted with a blue cir-
cle) by removing the 2−hyperedges to which it belongs (blue
triangles in Fig. 8(d)), the set of 2−hyperedges is no longer
connected. Consequently, a change of a single 2−hyperedge
results into a loss of stability for the synchronous state when
σ1 → 0.
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V. DISCUSSION AND CONCLUSIONS

In this work, we have investigated the relationship between
the microscopic organization of higher-order structures and
the collective behavior in systems of coupled dynamical sys-
tems. To this end, we have introduced a general framework to
characterize the hyperedge overlap of higher-order structures:
the overlap matrix. This matrix has two types of elements: the
diagonal matrix elements, quantifying the hyperedge overlap
between interactions of the same order, and the non-diagonal
elements, quantifying the hyperedge overlap between interac-
tions of different orders. This framework offers a comprehen-
sive tool to analyze all types and orders of hyperedge overlap
within a structure, unlike other metrics that focus on a single
measure combining all previous aspects (and thus not allow-
ing to distinguish among them) [28], or solely on intra-order
[18] or inter-order correlations [27].

Throughout the paper, we have examined the impact of hy-
peredge overlap on the stability of synchronization in systems
of coupled dynamical systems. The stability is determined
by the effective Laplacian, a matrix encapsulating the struc-
ture and strength of interactions across all orders. Our find-
ings indicate that a high degree of hyperedge overlap ham-
pers the stability of synchronization. Hence, since a high de-
gree of overlap (in particular, inter-order) is associated with
hyperedges satisfying the downward closure, our result sug-
gest that random hyperedges promote stability more effec-
tively than simplicial complexes. Furthermore, our findings
pinpoint that large hyperedege overlap within an order of in-
teraction promotes the tendency towards local synchroniza-
tion. Moreover, a hierarchy among the elements of the overlap
matrix emerges, where higher-order overlaps are more critical
for synchronization stability. This occurs in two ways: first,
larger values of intra-order hyperedge overlap result in a clus-
tered organization at the mesoscale; second, in the case of
non-zero inter-order hyperedge overlap, larger values of intra-
order hyperedge overlap result in the lower orders of interac-
tions being overlapped to some extent.

By analyzing the behavior of coupled chaotic oscillators,
we have found that intra- and inter-order hyperedge overlaps
have a qualitatively distinct impact on the emerging dynamics.
This difference originates from the fact that, for a given order
of interactions, the set of hyperedges of that order must be
disconnected in order to reach the maximum value of intra-
order hyperedge overlap. Conversely, when the intra-order
hyperedge overlap is at its minimum, the probability that the
structure is disconnected is negligible. The lack of connect-
edness at the level of interactions of a given order interactions
makes impossible to fulfill the constraint associated to syn-
chronization stability when the interaction strength associated
to interactions of this order dominates over the the ones as-
sociated to the other interactions. These findings, which we
have first obtained on synthetic structures where all parame-
ters were tunable, have been then exemplified and confirmed
also in hypergraphs constructed from real systems.

Overall, our results underscore the significance of micro-
scopic organization for the dynamics of systems with higher-
order interactions, with particular reference to the analysis to

(a) (b)

(c) (d)

FIG. 9. Examples of synthetic structures with tunable hyperedge
overlap. Examples of structures with N = 20 nodes and connectiv-
ity k(1) = 6 and k(2) = 3 in four extreme scenarios: (a) I(1,2) = 1
and T (2) = 0; (b) I(1,2) = 1 and T (2) = 1; (c) I(1,2) = 0 and
T (2) = 0; (d) I(1,2) = 0 and T (2) = 1.

dynamical systems of coupled oscillators, elucidating the in-
dependent and combined effects of both types of overlap. Fu-
ture work could extend the analysis to more sophisticated sys-
tems such as pacemakers [37], coupled neurons [38, 39], or
higher-order nonlinear consensus dynamics [40, 41].
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APPENDIX A: SYNTHETIC STRUCTURES

In order to obtain sets of hypernetworks covering the
{T (2), I(1,2)}-space, we first generate a set of 2-hyperedges
with k

(2)
i = k(2) for i = 1, . . . , N , ensuring maximum intra-

order hyperedge overlap (T (2) = 1) using the procedure de-
scribed in [18]. Next, we apply a numerical rewiring to the
set of 2-hyperedges to minimize the intra-order hyperedge
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overlap while maintaining the same initial generalized degree,
thus obtaining sets of 2-hyperedges spanning the full range
T (2) ∈ [0, 1]. For each set of 2-hyperedges created, we con-
sider a set of 1-hyperedges (links), where all nodes share the
same number of neighbors k(1), that cover all the faces of the
2-hyperedges layer. This will result in hypernetworks with
maximized inter-order hyperedge overlap values for any given

scenario of T (2). Subsequently, we rewire the 1-hyperedges
to minimize the inter-order hyperedge overlap for each hyper-
network, creating an ensemble that covers the entire parame-
ter space of {T (2), I(1,2)}. In Fig. 9(a)-(d), we illustrate four
graphical examples of hypernetworks with different configu-
rations of both metrics.
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