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Hyperedge overlap drives explosive
transitions in systems with higher-order
interactions

Federico Malizia1,2,8, Santiago Lamata-Otín 3,4,8, Mattia Frasca 5,
Vito Latora 2,6,7 & Jesús Gómez-Gardeñes 3,4

Recent studies have shown that novel collective behaviors emerge in complex
systems due to the presence of higher-order interactions. However, how the
collective behavior of a system is influenced by the microscopic organization
of its higher-order interactions is not fully understood. In this work, we
introduce a way to quantify the overlap among the hyperedges of a higher-
order network, and we show that real-world systems exhibit different levels of
intra-order hyperedge overlap. We then study two types of dynamical pro-
cesses on higher-order networks, namely complex contagion and synchroni-
zation, finding that intra-order hyperedge overlap plays a universal role in
determining the collective behavior in a variety of systems. Our results
demonstrate that the presence of higher-order interactions alone does not
guarantee abrupt transitions. Rather, explosivity and bistability require a
microscopic organization of the structure with a low value of intra-order
hyperedge overlap.

In the last two decades network science has largely contributed to
understanding how collective behaviors emerge in complex systems.
Representing and characterizing the intricate pattern of interactions
among the constituents of a complex system as a graph1,2 has allowed
to investigate how the system’s structure affects its dynamics3. A large
variety of dynamical processes, ranging from percolation4 to
synchronization5, epidemics6 and social cooperation7, has been con-
sidered and explored. This burst of activity in the so-called structure-
function problem has led to the discovery of novel microscopic
mechanisms that trigger and control collective behaviors.

One of the most significant phenomena studied in this line of
research is the emergence of explosive transitions. Here, explosive
refers to abrupt phase transitions resulting from microscopic dyna-
mical mechanisms that depend on the underlying topology in such a
way to hinder the formation of a macroscopic state8,9. Initially intro-
duced for sharp (yet continuous) percolation processes10–12 where, for

instance, the probability of linking two nodes depends on the size of
the components present in the systems, explosive transitions have
since been observed in synchronization dynamics13–15, e.g., in networks
of phase oscillators in which the natural frequency of a node increases
with its degree, and contagion dynamics with transmission probability
between an infected and a susceptible depends on the states of the
surrounding nodes16–18. These studies have unveiled different scenar-
ios of abrupt transitions, covering discontinuous behavior with13,17 or
without9,19,20 bistability (hysteresis), but always relying on the syner-
gistic coupling between network structure and dynamics.

Recently, explosive transitions have attracted increasing interest
in the context of higher-order networks21–24, a framework going
beyond (pairwise) networks to capture how interactions in groups of
more than two units influence collective behaviors25–33. Within this
framework, first-order transitions with an associated bistable region
are often observed, with examples spanning social contagion25–27,
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synchronization28–30, and game theory33–35. Battiston et al. highlighted
this ubiquity in their perspective paper, asserting that higher-order
interactions provide a general pathway to explosive transitions36.
Moreover, Kuehn and Bick provided a general mathematical frame-
work to study the conditions under which the nature of the transition
changes from first-order to second-order, or viceversa37. In particular,
they showed that the emergence of first order transition, when clas-
sical models are generalized by incorporating additional effects, such
as non-pairwise interactions, is not surprising but rather a universally
expected effect.

In the early stages, studies of dynamical processes on higher-
order networks focused on understanding how the nature of the
transitions changes by tuning thenumber and strengthof higher-order
interactions. Firstly, models of social contagion in homogeneous sys-
tems with uncorrelated higher-order interactions were considered. It
was found that discontinuous transitions occur exclusively when the
strength of higher-order interactions exceeds a critical threshold25,27,28.
However, subsequent research38–40 revealed that the strength of the
interactions is not the sole determinant of behavioral changes in social
systems. Remarkable examples include the dynamical influence of
heterogeneity in the node participation within groups (analyzed
through group size distributions)40, and the role of giant higher-order
components (HOC)41 in the stability of social contagion processes,
even in absence of pairwise interactions42.

Higher-order networks have usually been modeled either as
hypergraphs with uncorrelated hyperedges, or as simplicial com-
plexes. These models are at the two opposite ends of a continuous
spectrumof possible structures, as a simplicial complex can be seen as
a hypergraph with the constraint, known as inclusion (or downward
closure), that, when an interaction exists between a set of nodes, all
interactions involving all possible subsets of nodes also exist. For
example, if in a simplicial complex we have a simplex of dimension 2,
that is the three nodes are involved in a three-body interaction, then,
the simplicial complex also contains the three underlying pairwise
interactions (links). However, in empirical data the inclusion property
is satisfied for some of the three-body interactions but not for all of
them43,44. Various works have explored how higher-order interactions
shape collective dynamics differently in hypergraphs and simplicial
complexes45–48,48,49. In particular, Burgio et al. have studied how the
dynamics of a contagion process depends on the extent to which
interactions satisfy the downward closure. They found that when two-
body interactions are highly nested in three-body interactions, the
epidemic threshold is reduced, but smaller outbreaks occur.

To better understand the intricate interplay between structure
and dynamics, in this work, we focus on another important, but still
unexplored, aspect of the microscopic organization of the nodes in
groups. Namely, we will explore how the dynamics of a system is
influenced by the way in which group interactions of the same order
are correlated, e.g., in the particular case of triads, by how the three-
body interactions in a network overlap between each others. To
quantify such correlations, we introduce a novel metric, that we call
the intra-order hyperedge overlap of orderm, measuring the number
of nodes shared among hyperedges of the same order m. Equipped
with this metric, our work aims to address three main questions: (i)
whether overlaps between interactions of the same order are indeed
present in real complex systems, (ii) how different levels of intra-order
hyperedge overlap drive the emergence of explosive transitions, and
(iii) to what extent the effects of overlap are general, in the sense that
they apply to different types of dynamical processes, e.g., synchroni-
zation and contagion, which are two of the most studied dynamics in
complex systems.

Our results section is organized as follows. In the first subsection,
we introduce our metric and we use it to explore real-world systems
from various domains, including human face-to-face interactions and
brain connectomes, whichwill be particular relevant for the dynamical

processes considered in the following sections. We find that hyper-
graphs describing real-world systems exhibit a wide range of values of
intra-order hyperedge overlap. For this reason, in the second and third
subsections we investigate the effects of a tunable level of intra-order
hyperedge overlap on the emergence and properties of the collective
behavior of a system. In the second subsection, we focus on one of the
most studied social dynamics involving groups, namely complex
contagion. Here, we show that a low intra-order hyperedge overlap
leads to explosive transitions characterized by a bistable region, where
both an active and an absorbent state coexist. Conversely, hyper-
graphs with an intra-order hyperedge overlap larger than a critical
value can only exhibit continuous transitions. To show that these
results extend beyond complex spreading to other dynamics, in the
third subsection we study synchronization of coupled dynamical sys-
tems with higher-order interactions. Synchronization is a collective
behavior that emerges in various social and biological complex sys-
tems. E.g. it is relevant to explain brain functioning, both in healthy
(e.g., vision50, movement51, and memory52,53) and in pathological (e.g.,
epilepsy54–60) conditions. We consider here an extension, with higher-
order interactions, of the Kuramoto model61, a system of coupled
oscillators that has also been used to study synchronization of the
brain at the cortical level62–64. Similarly to the case of complex con-
tagion,we alsofind that the natureof the transition froman incoherent
to a synchronized state in the Kuramoto model can be tuned by the
value of the intra-order hyperedge overlap. Namely, we switch from
explosive to smooth transitions as the intra-order hyperedge overlap
of the underlying hypergraph increases. Overall, our results show that,
not only the presence of higher-order interactions, but also the intri-
cate way in which they coordinate, shapes the emergence of collective
behaviors in complex systems.

Results
Quantifying intra-order correlations in higher-order networks
We model a system with higher-order interactions as a hypergraph
H = ðN , EÞ, where N is the set of N = jN j nodes and E is the set of
hyperedges, describing the E = jEj interactions in groups of two or
more nodes. Each hyperedge e 2 E is a subset of the nodes inN and is
characterized by its order, m, which is defined in terms of its cardin-
ality, ∣e∣, as m = ∣e∣ − 1. So hyperedges of order 1 represent pairwise
interactions, interactions ingroupof 3nodes correspond tohyperdges
of order 2, and so on. For each node i, EðmÞ

i is the set of hyperedges ej of
orderm such that i ∈ ej, and kðmÞ

i is its generalized degree of order m,
defined as the cardinality of the subset EðmÞ

i , i.e., kðmÞ
i = jEðmÞ

i j65. For each
order m, we can also define an adjacency tensor A(m) whose generic
element aðmÞ

i0, ..., im
= 1 if the m-hyperedge containing nodes i0, …, im

exists, and zero otherwise. From the definition of the adjacency tensor
of orderm, we candefine the generalized density ofm-hyperedges,δ(m)

as the ratio between the number of 2-hyperedges that are present in
the hypergraph and the number of possible 2-hyperedges:

δðmÞ =
1

ðm+ 1Þ!
P

i0, i1 , ..., im
aðmÞ
i0, i1 , ..., im

N

m+ 1

� � : ð1Þ

The hyperedges to which node i belongs determine which nodes
interact or not with i, and thus which nodes influence or not its
dynamics. In the case of a simple graph, each link of node i connects it
to a distinct neighbor. Conversely, in a hypergraph, a node i with two
ormore hyperedges of orderm ≥ 2 can share one ormore neighboring
nodes with different hyperedges. Figure 1a–c shows three different
configurations for a node with four 2-hyperedges. The extent of
overlap of the hyperedges of i varies, resulting in diverse microscopic
structures ranging from the non-overlapping case in Fig. 1a to the
extreme case of maximal intra-order hyperedge overlap in Fig. 1c. To
measure the local overlap among hyperedges of ordermwe introduce
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the node intra-order hyperedge overlap T ðmÞ
i of a node i, defined for

kðmÞ
i >1 as:

T ðmÞ
i = 1� SðmÞ

i � SðmÞ,�
i

SðmÞ, +
i � SðmÞ,�

i

, ð2Þ

while, for kðmÞ
i ≤ 1, we set T ðmÞ

i =0 since no neighbors can overlap. In Eq.
(2) SðmÞ

i is the number of unique neighbors of node i in interactions of
order m, whereas SðmÞ,�

i (SðmÞ, +
i ) accounts for the minimum (max-

imum) number of unique neighbors, in interactions of order m, that i
can have. Note that the expressions for the quantities SðmÞ, +

i and SðmÞ,�
i

depend on the node generalized degree kðmÞ
i , and are discussed in

Methods. The node intra-order hyperedge overlap in Eq. (2) takes its
minimum, i.e., T ðmÞ

i =0, when none of the neighbors is shared with
other hyperdeges of orderm, while it takes its maximum, i.e., T ðmÞ

i = 1,
when each neighbor is shared by two or more hyperedges of orderm.
For the three configurations in Fig. 1a–c, where m = 2, Eq. (2) gives
T ð2Þ
i = 1, T ð2Þ

i =0:5, and T ð2Þ
i =0, respectively. Finally, to characterize the

degree of intra-order hyperedge overlap at the global scale of the
whole hypergraph we average T ðmÞ

i over all the nodes:

T ðmÞ =

P
ik

ðmÞ
i T ðmÞ

iP
ik

ðmÞ
i

: ð3Þ

Note that, due to its normalization, also the quantity T ðmÞ takes values
in the range [0, 1].

To show that real-world systems can exhibit different levels of
intra-order hyperedge overlap, we have analyzed 39 hypernetworks
describing interactions in social and biological systems. Of these, 39
hypernetworks 7 have been constructed from high-resolution face-to-
face contact data collected in various social contexts66–72, whereas 12
have been built upon biological data from the brain connectomes of
different animals73–79 (more details on the datasets and how they are
processed are described in the Methods section). The remaining 20
hypernetworks describe higher-order relations in different
systems80–87, ranging from coauthorship in scientific papers80,81 to
relations derived fromusers’ actions on verywell-knownwebsites83,85,87

(more details on these datasets can also be found in the Methods
section). Figure 1d reports the average generalized density δ(2) and the

intra-order hyperedge overlap T ð2Þ for each of these hypernetworks.
The results show that the values of T ð2Þ span the whole range [0, 1]. In
particular, we find that hypernetworks with the same low value of δ(2)

can display very different values of the intra-order hyperedge overlap
T ð2Þ. This is an indication of the independence of the two metrics δ(2)

and T ð2Þ in sparsenetworks. E.g., for δ(2) = 0.2 × 10−4 (see vertical dashed
line), we observe that the intra-order hyperedge overlap T ð2Þ of real-
world systems can vary from values close to 0 to values as large as 0.8.
Similar conclusions can be drawn from the inset in Fig. 1d, where we
report the average generalized degree hkð2Þi =Pik

ð2Þ
i =N and the intra-

order hyperedge overlap T ð2Þ for each of the hypernetworks.
We will now show that this diversity of T ð2Þ plays a crucial role in

shaping the overall collective behavior of a system. To investigate in a
systematic way the effect of the intra-order hyperedge overlap on
dynamical processes, we introduce a method to construct hyper-
graphs with a tunable value of T ð2Þ, given a fixed regular degree dis-
tribution. We start from a configuration with maximum intra-order
hyperedge overlap, i.e., T ð2Þ = 1, obtained by letting each node to share
the same number of neighbors at each order of hyperedges (in parti-
cular, 1-hyperedges and 2-hyperedges). Then, the value of T ð2Þ is tuned
by rewiring a fraction of the existing 2 − hyperedges, without changing
neither the nodes generalized degree kð2Þ

i , nor the average generalized
degree 〈k(2)〉, nor the generalized density δ(2) (more details on the
construction are provided in the Methods section). In this way, we
obtain hypergraphs with a fixed regular degree distribution, and thus
fixed 〈k(2)〉 and δ(2), but with different degrees of intra-order hyperedge
overlap T ð2Þ, as illustrated by the vertical dashed line in Fig. 1d.

Effect of intra-order overlap on complex contagion
In order to investigate how the microscopic organization of group
interactions affects the dynamics of complex systems,we focus on two
different types of dynamical processes on hypergraphs, namely com-
plex contagion and synchronization of phase oscillators. As the first
case study, we consider a Susceptible-Infected-Susceptible (SIS) com-
partmental model, which has been widely used tomimic the spread of
ideas through social contagion in hypergraphs25,27. In this framework,
each node of the hypergraph represents an individual that can be
either susceptible (S) or infected (I). The transition from the state S to I
occurs when a susceptible individual enters in contact with infected

Fig. 1 | Intra-order hyperedge overlap in synthetic and real-world systems.
a–c Examples of three configurations with different levels of node intra-order
hyperedge overlap for a node i with generalized 2-degree kð2Þ

i =4: a T ð2Þ
i = 1;

b T ð2Þ
i =0:5; c T ð2Þ

i =0. d Intra-order hyperedge overlap T ð2Þ and generalized density
δ(2) of real-world hypernetworks. The dashed vertical line corresponds to the den-
sity of the synthetic hypernetworkswith tunable T ð2Þ thatwe have used to study the

effects of overlap on dynamical processes. Diamonds, circles and square refer
respectively to hypernetworks constructed from face-to-face contacts (CD), brain
connectomes (BC), and other systems (RH). Information on each hypernetwork can
be found through its label’s code in Supplementary Table I–III. The inset shows the
relation between the intra-order hyperedge overlap T ð2Þ and the average general-
ized degree 〈k(2)〉.
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ones, via a pairwise or a three-body interaction. More specifically, a
susceptible individual can become infected, with probability β(1),
through a 1-hyperedge (a link) with an infected individual, and with
probability β(2), through a 2-hyperedge (an interaction in a group of
three) with two other infected nodes. As in the standard SIS model, an
infected individual can recover with probability μ. In absence of
higher-order interactions, the SIS model undergoes a continuous
transition from an absorbent state with a vanishing stationary fraction
of infected individuals, ρ⋆ = 0, to an active state with ρ⋆ ≠088. In pre-
vious works25,40, it has been shown that the presence of higher-order
interactions changes the nature of the transition from continuous to
discontinuous, hence leading to the emergence of a region of bist-
ability, where both the absorbent and active states co-exist. Here, we
show that this does not occur for any hypergraph given a fixed inter-
action strength, but strongly depends on the level of intra-order
hyperedge overlap.

Figure 2 shows the results of stochastic simulations of the SIS
model on hypergraphs with tunable intra-order hyperedge overlap.
Figure 2a reports the fraction ρ⋆ of infected individuals in the sta-
tionary state as a function of T ð2Þ and of the rescaled transmission
probability λ(1) = 〈k(1)〉β(1)/μ, while keeping the rescaled transmission
probability through 2-hyperedges fixed to λ(2) = 〈k(2)〉β(2)/μ = 3. The
phase diagram of Fig. 2a was obtained by averaging M = 200 simula-
tions, half of which started with a small fraction of infected individuals
ρ(0) = 0.01, and the other half with ρ(0) = 0.8.Weobserve the presence
of three phases, with a region of bistability that only appears for small
values of T ð2Þ. An example of the explosive transition associated to
bistability is shown in Fig. 2b, which illustrates ρ⋆ vs. λ(1) for T ð2Þ =0:1.
The three phases merge at a tricritical point, leading to the dis-
appearanceof thebistability. Beyond this point, the transition fromthe
absorbent to the active phase is continuous. As an example, Fig. 2c
illustrates the continuous behavior of ρ⋆ vs. λ(1) in a hypergraph with
T ð2Þ =0:8. In this case, the high overlap of the hyperedges of a node
reduces the effectiveness in propagating its infected state.

Effect of intra-order overlap on synchronization
To gain a deeper insight on how hyperedge overlap affects the emer-
gence of collective states, we consider synchronization as a second
case study. Specifically, we investigate a system of Kuramoto

oscillators61 coupled with both pairwise and three-body interactions.
The Kuramoto model has been proposed to study synchronization
dynamics in biological systems, from pacemaker cells to crowds of
fireflies89, but has also been used to analyze synchronization in the
brain at the cortical level62–64, an emergent phenomenon that plays an
important role inmany brain functions50–60,90. When implemented on a
network the Kuramoto model assumes that each node i (i = 1,…, N) of
the network is a phase oscillator and is characterized, at time t, by its
phase θi(t). In the case when the oscillators are coupled through
pairwise and three-body interactions, the equations governing the
time evolution of the oscillator phases read91,92:

_θi =ωi +
σð1Þ

hkð1Þi
XN
j = 1

að1Þ
ij sinðθj � θiÞ

+
σð2Þ

2!hkð2Þi
XN
j = 1

XN
k = 1

að2Þ
ijk sinðθj +θk � 2θiÞ, i= 1, . . . ,N

ð4Þ

where ωi is the natural frequency associated to oscillator i, which is
randomly sampled from a uniform distribution. The quantities σ(1) and
σ(2) represent the coupling strength for pairwise (order 1) and three-
body (order 2) interactions, respectively, while að1Þ

ij = 1 if there is a link
between node i and j, and að2Þ

ijk = 1 if the hypergraph has a hyperedge
containing i, j and k. We remark that various extensions of the
Kuramotomodel to hypernetworks, mainly differing for the functional
form of the higher-order interactions, have been presented29,30,91. Note
that the version of the Kuramoto model with three-body interactions
in Eq. (4) that we adopt in our study is the one introduced in ref. 91. In a
similar way to the original Kuramoto model on networks, the
synchronization transition is captured by the order parameter defined
as:

rðtÞ=N�1
XN
j = 1

eiθj ðtÞ
�����

����� ð5Þ

ranging from 0 (incoherence) to 1 (full synchronization). With only
pairwise interactions, and in the absence of additional ingredients9, a
continuous synchronization transition takes place when the coupling
strength σ(1) exceeds a critical value, σð1Þ

c
93.

Fig. 2 | Effect of intra-order hyperedge overlap on complex contagion. a Phase
diagram for the SIS model on a hypergraph with N = 1000 nodes and average
generalized degrees k(1) = 5 and k(2) = 6. The value of 2-hyperedge infectivity is set to
λ(2) = 3, while the value of the recovery rate isfixed to μ =0.05. Three phases emerge
as a function of λ(1) and of the hyperedge overlap T ð2Þ: an absorbent phase with

ρ⋆ = 0, an active phase with an endemic stationary state ρ⋆ ≠ 0, and a bistability
phase, where the stationary state depends on the initial conditions. Two cuts of the
diagram: panel b, for T ð2Þ =0:1, shows an explosive transition, while panel c, for
T ð2Þ =0:8, shows a continuous transition. Note that in panel b the solid and dashed
lines respectively correspond to ρ(0) = 0.01 and ρ(0) = 0.8 initial conditions.
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As in the case of the SIS dynamics, we have studied this model on
hypergraphs with tunable intra-order hyperedge overlap. Figure 3
shows the results of the numerical integration of Eq. (4) for σ(2) = 3 and
for various values of σ(1) and T ð2Þ. For each set of parameters, we per-
formM = 200 simulations, half with a narrow (Δθ =0.02) and half with
a wider (Δθ = 2π) distribution of initial phases. For each simulation, we
let the system evolve a transient time tr and calculate
hri= 1

Δt

R tr +Δt
tr

rðtÞdt, where Δt → ∞. We then consider the median of 〈r〉
over all runs.

The phase diagram in Fig. 3a reporting 〈r〉 as a function of T ð2Þ and
σ(2) resembles that of the SIS model in Fig. 2a. Again, the region of
bistability is present for small T ð2Þ, but disappears for large values.
Figure 3b, e show 〈r〉 as a function of σ(1), respectively for T ð2Þ =0:06,
where the transition to synchronization is explosive, and for T ð2Þ =0:6,
where the transition is continuous. To gain a better insight into the
microscopic mechanisms underlying the two different transitions to
synchronization of Eq. (4), we introduce the following measure of
higher-order local synchronization:

hrloci=
1P

i= 1

P
j = 1a

ð1Þ
ij + 1

2!

P
j = 1

P
k = 1a

ð2Þ
ijk

� � ×
X
i= 1

X
j = 1

limΔt!1
að1Þ
ij

Δt

Z tr +Δt

tr

ei½θj ðtÞ�θiðtÞ�dt

�����
�����

 

+
1
2!

X
j = 1

X
k = 1

lim
Δt!1

að2Þ
ijk

Δt

Z tr +Δt

tr

ei½θj ðtÞ +θk ðtÞ�2θiðtÞ�dt

�����
�����
!
:

ð6Þ

This definition of 〈rloc〉 extends the one used for network edges94, since
it gathers the phase coherence between pairs of nodes connected by
links, aswell as among triplets of nodes connectedby 2-hyperedges.As
for the order parameter 〈r〉, full synchronization corresponds to
〈rloc〉 = 1, while complete incoherence yields 〈rloc〉 = 0.

Figure 3c, f show that the intra-order hyperedge overlap radically
changes the behavior of 〈rloc〉 as a function of σ(1). In agreementwith 〈r〉,
also 〈rloc〉 indicates that the transition is explosive forhypergraphswith
low intra-order hyperedge overlap, while it is continuous for hyper-
graphs with high intra-order hyperedge overlap. However, at variance
with 〈r〉, for large values of σ(1), 〈rloc〉 reaches the value 〈rloc〉= 1,meaning
that, even if the system is not globally synchronized, there is still a high
degree of local synchronization. The complete phase diagram for 〈rloc〉
as function of σ(1) and T ð2Þ is reported in Supplementary Fig. 1.

The high degree of local synchronization is a consequence of the
formation of synchronous clusters in the system, and depends on the
level of intra-order hyperedge overlap. This effect becomes evident
from the analysis of the average effective frequencies of the oscillators,
defined as:

h _θii=
1
Δt

Z tr +Δt

tr

_θiðtÞdt ð7Þ

whereΔt→∞. In Fig. 3d, g, we compare the effective frequencies h _θii in
hypergraphs with different levels of intra-order hyperedge overlap.
When T ð2Þ is small, as in Fig. 3d, the 2-hyperedges have few nodes in
commmon and this makes difficult the nucleation of synchronous
clusters. Consequently, the synchronization onset is abrupt and, as we
increase σ(1), the effective frequencies h _θii converge suddenly to their
mean value. Conversely, when T ð2Þ is large, as in Fig. 3g, the
2-hyperedges share multiple nodes, which promotes the formation
of synchronous clusters. The result is that, as σ(1) increases from zero,
wefind several groupsofnodes locked at the sameeffective frequency.
As σ(1) further increases, these groups smoothly merge together, until
the whole system becomes synchronized.

Discussion
In thiswork,we have investigated how themicroscopicorganization of
higher-order interactions affects the dynamical properties of a com-
plex system. To this aim we have purposely introduced a way to
measure the overlap of the group interactions to which a node parti-
cipates. Such an overlap is quantified by counting and properly nor-
malizing the number of shared nodes among hyperedges of the same
order. In this way, our metric allows for the differentiation of hyper-
graphs having the same number of hyperedges of any size, the same
generalized node-connectivity, but different microscopic organiza-
tion. Our intra-order overlapmetric ranges from itsminimal value of 0,
in structures where nodes have non-coincident neighbors in their
groups interactions, to its maximal value of 1, when the different
groupsof the same size share themaximumpossible number of nodes.
At variancewith themetric proposed by Yin et al.95, which, for pairwise
networks, extends the concept of clustering coefficient beyond three-
body motifs, our metric applies to structures with truly higher-order
interactions. Moreover, our metric can be used in all types of

Fig. 3 | Effect of intra-order hyperedge overlap on synchronization. a Phase
diagram for theKuramotomodelonahypergraphwithN = 1000nodes and average
generalized degrees k(1) = 5 and k(2) = 6. The coupling strength for three-body
interactions is set to σ(2) = 3. Three phases emerge as a function of σ(1) and T ð2Þ: an
incoherent phase with low values of 〈r〉, a synchronized phase with large 〈r〉, and a
bistability phase where the system can be synchronized or not depending on the
initial conditions.b–gTwo cuts of the diagram: panelsb–d, for T ð2Þ =0:06, showan

explosive transition, while panels e–g, for T ð2Þ =0:6, show a continuous transition.
Panels b and e illustrate the order parameter 〈r〉, while panels c and f the local
synchronization parameter 〈rloc〉. Panels d and g show the average effective fre-
quencies h _θii of the hypergraph nodes in the forward continuation branch. Note
that in panels b, c and e, f the solid (dashed) branch stands for the forward
(backwards) continuation.
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hypergraphs, unlike the framework by Kartun-Giles et al.96, which is
specifically tailored to the study of geometrical and topological
properties of simplicial complexes. Additionally, we focus on each
order (size) of hyperedges in a separate way, in contrast to the
approach by Lee et al.43 in which a single measure is evaluated for the
whole structure considering all hyperedges, regardless of their size.
Our metric also differs from the approach of refs. 97–99, since
counting the number of pairs of nodes appearing in two different
hyperedges corresponds to counting the number of cycles of the
possible shortest length, namely four, in a bipartite network con-
necting nodes and hyperedges. Finally, our metric is complementary
to other microscopic/local metrics of inter-order hyperedge overlap
and/or downward closure45–47, and to global approaches that instead
try to capture macroscopic features such as the presence of a giant
higher-order component42.

We have first used our measure to study hypergraphs describing
higher-order interactions in real-world complex systems. We found
that, together with a broad range of values ofmeasures of correlations
among hyperedges, such as nestedness and inter-order hyperedge
overlap (inclusion or simpliciality)43,44,100, complex systems also show a
diverse range of intra-order hyperedge overlap. This indicates that in
the real world the likelihood of two distinct hyperedges of the same
order sharing more than one node is not negligible and, therefore, the
waye.g., three-body interactions are organized and correlated canplay
an important role for the function and dynamics of a complex system.

Traditional random models for hypergraphs, however, do not
allow to take this aspect into account. In a synthetic random hyper-
graph, hyperedges are randomly assigned and the likelihood of two
distinct hyperedges of order two sharingmore thanone nodebecomes
negligible. This arises from the fact that the number of hyperedges
scales with the size of the structureOðNÞ, while the cardinality of these
hyperedges remains orders of magnitude smaller, i.e., Oð1Þ46,99. To
overcome this limitation, we developed amodel to construct synthetic
hypergraphs with fixed node hyperdegrees and a tunable value of the
intra-order hyperedge overlap. This allowed us to examine, in a con-
trolled and systematic way, the effects of intra-order hyperedge over-
lap in shaping the onset of collective phenomena in systems with
higher-order interactions. We have found that the hyperedge overlap
has the same effect on two different types of dynamical processes,
namely on complex contagion and on synchronization. In both pro-
cesses, it drives the emergence of collective behaviors and also
determines the nature of the transition, with lower values of overlap in
general facilitating explosivity and bistability. Examples of simulations
of these two dynamics on hypergraphs describing the structure of real-
world systems can be found in Supplementary Figs. 2 and 3. These
results open theway for further research to investigate the role of intra-
order hyperedge overlap in other dynamical processes where higher-
order interactions can play a role, such as in the dynamics of
ecosystems101, in evolutionary game theory33–35 in cluster
synchronization102,103 or in interacting contagion dynamics104,105. The
spatial nature of most of those systems suggests that interactions of
the same order can inherently overlap, thus providing a particularly
relevant case study for the analysis of the effect of correlations.

Another promising avenue for future research is to explore the
combined effect on dynamics of intra-order hyperedege overlap and
other structural features both at the local46,47 and at the global scale42.
In particular, Burgio et al.47 have demonstrated how correlations
between different orders of interaction can also hinder bistability in
social contagion dynamics, while Kim et al.42 have shown that real
structures with a giant higher-order component, whose presence
necessitates somedegree of intra-order hyperedgeoverlap, ensure the
stability of the active phase of social contagion processes. Integrating
insights from these studies could enhance our understanding of the
emergence of collective behavior in complex systems with higher-
order interactions.

Regarding the limitations of our study, we must mention the
scarcity of data about real-world hypergraphs. This is a common issue
that affects the present development of research about dynamical
behaviors of coupled systems through higher-order interactions.
Accessing data on true higher-order interactions rather than relying on
their construction from pairwise contact information poses a chal-
lenge that network science must address in the coming years.

Overcoming the above experimental challenge will serve not only
to unveil the true higher-order skeleton of interactions of complex
systems, but also to be able to translate current theoretical results on
the dynamics emerging from group interactions into practical appli-
cations to biological, technological and social systems. In this sense,
our findings can serve as the starting point for the design of methods
to control the observed dynamics by manipulating the structure of
group interactions106–110. However, for practical applications, there is
still a theoretical gap to befilled, as the number of control actions to be
exercisedmay limit the feasibility of the approach.Onepossibleway to
mitigate this limitation could be the formulation of an optimization
problem, which explicitly tries to minimize the changes in the struc-
ture while meeting the objective of manipulating, for example by
minimizing or maximizing, the hyperedge overlap of the system.

Methods
Maximum andminimum number of unique neighbors of a node
The node intra-order hyperedge overlap T ðmÞ

i is constructed for each
node i by counting the number of unique nodes that belong to the set
of hyperedges EðmÞ

i to which node i participates. To properly normalize
the metric within the range [0,1], it is necessary to consider the mini-
mum, SðmÞ,�

i , and maximum, SðmÞ, +
i , number of unique neighbors that

node i can have through its kðmÞ
i hyperedges of order m (here kðmÞ

i
indicates the generalized degree of order m for the node i). Both
quantities can be analytically calculated for every generalized degree
kðmÞ
i of node i and for every order of the interactions m. In particular,

the maximum amount of unique nodes is given by

SðmÞ, +
i =mkðmÞ

i : ð8Þ

To obtain theminimumnumber of unique neighbors, SðmÞ,�
i , we follow

these steps. Let us, for a moment, indicate this minimum number with
n. These n unique neighbors are connected by a number kðmÞ

i of
hyperedges of orderm. At this point, n can be calculated by using the
following implicit relation

n

m

� �
= kðmÞ

i : ð9Þ

On the left hand side, we have the number of combinations of neigh-
boring nodes that can be built in groups of size m, and on the right
hand side the number of hyperedges of the focal node i. Since the
solution could give a non-integrer number, we take the upper integer,
as we need to consider the lowest number of nodes that is bigger than
the obtained required quantity. Thus, we have that Sð2Þ,�

i = dne. For the
casem = 2, Eq. (9) becomes the following second-order equation in the
unknown n:

n2 � n� 2kð2Þ
i =0, ð10Þ

whose only physically valid solution is given by

n =
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 8kð2Þ

i

q
2

:
ð11Þ

An illustration of two extreme configurations is presented in
Fig. 1a, c, wherewe consider the local intra-order hyperedge overlap of
a node i with a generalized 2-degree kð2Þ

i =4. In Fig. 1a, we show the
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configuration in which the number of unique neighbors of node i is at
its maximum, i.e., Sð2Þ

i =Sð2Þ, +
i =8, resulting in T ð2Þ

i =0. In contrast, in
Fig. 1c, we consider the configuration where the number of unique
neighbors of node i is at its minimum, i.e., Sð2Þ

i =Sð2Þ,�
i =4, leading

to T ð2Þ
i = 1.

Hypergraphs of real-world systems
Depending on the nature of the data, the 39 hypernetworks of real-
world systemswehave analyzed canbe classified in threemaingroups:
(i) FACE-TO-FACE CONTACTS (a total of 7 hypernetworks) obtained
from empirical experiments conducted in different social environ-
ments, namely a hospital68, a scientific conference67, a high school69, a
workplace66, a primary school70, aMalaui village71 and a university72. (ii)
BRAIN CONNECTOMES (a total of 12 hypernetworks) of humans and
other animals mapped through different acquisition techniques,
namely the human cerebral cortex73, the mouse visual cortex74, the
worm hermaphrodite C. elegans anterior section75,76, the worm adult
male C. elegans posterior nervous system77, the Norway rat cortex
connectome78 and the mouse brain connectome79 (iii) OTHER SYS-
TEMS (for a total of 20 hypernetworks) collected from the Austin R.
Benson’ repository (the link to the repository can be found in the data
availability section) and including two coauthorship datasets80,81, three
bill co-sponsorship datasets from the US congresspersons and
senators80,82–84, two datasets of questions answered by users on
StackOverflow and mathoverflow85, a dataset of products bought on
walmart shopping trips86, a dataset of products reviewed by users in
Amazon87, a dataset of hotels clicked on during a browsing session on
the trivago website83, a datasets of drugs used by patients80, a dataset
of classifications applied to drugs80, a dataset of substancesmaking up
drugs80, a dataset of drugs used by patients recorded in emergency
room visits80, three datasets of tags applied to question in online
websites80, and two datasets of users asking and answering questions
on threads in online websites80.

Considering that the original contact data datasets encoded tem-
poral face-to-face contacts and that the original brain connectome
datasets encoded weighted pairwise networks, a pre-processing was
required to construct the hypernetworks. Regarding the face-to-face
contact data, the original datasets have a temporal resolution, whereby
all pairwise face-to-face contacts detected by the sensors are recorded
at 20-second intervals (or at one-minute intervals, depending on the
dataset). To transform the temporal contact datasets into static
hypergraphs, following Iacopini et al.25 we initially construct a set of
static networks by aggregating all the contacts that occur within a static
temporal window of length Δt= 5. That way, the first network is con-
structed by aggregating all contacts occurring between time t = t0 and
t= t0 + Δt, while the second network is formed by aggregating all
contacts occurring between t = t0 + Δt and t = t0 + 2Δt. This process is
repeated for each subsequent network. Afterward, we build an static
hypergraph for each of the static networks by considering as hyper-
edges all the cliques of the aggregated network, since they are groups
that havebeen coincident in time. Next, webuid aweighted hypergraph
by counting the number of times that each clique is present on each of
the static hypergraphs. Finally, to extract the meaningful structure of
the interactions as a hypernetwork,we keep the 10%of hyperedgeswith
the highest weights. Regarding the brain connectomes, the networks
extracted from the datasets are all very dense pairwise and weighted
networks. Therefore, we have first created unweighted networks of the
most important relations among brain regions by only keeping the 10%
of connections with the highest weights. Afterwards, to build the
hypernetwork, following Zhang et al.45 we transformed all the cliques of
the unweighted network into hyperedges.

Synthetic hypergraphs
To construct synthetic hypergraphs with tunable intra-order hyper-
edge overlap T ð2Þ, we start from a configuration with maximum intra-

order hyperedge overlap, i.e., T ð2Þ = 1. Then, the value of T ð2Þ in the
model is tuned by rewiring a fraction of the existing 2-hyperedges. In
more detail, we start from a structure with a natively maximized value
of the intra-order hyperedge overlap, which we name the Locally
Overlapped Regular Simplicial Complex (LORSC). This is a special type
of hypergraph obtained with the following procedure. We first fix a
number N0 of nodes and the connectivity of the final strucutre k(1).
Then, we substitute each of the nodes with a set of k(1) nodes, and we
add links between these nodes so that to obtain fully connected
1-cliques within each set. Finally, in order to have a connected struc-
ture, we join each node with a randomly selected node belonging to
another clique. In this way, we obtain a structure with a number
N = kð1ÞN 0 of nodes, each of them having exactly k(1) 1 − hyperedges.
Once thebackboneof pairwise hyperedges is constructed,weconsider
as a 2 − hyperedge each of the closed triplets found in the structure.
Consequently, each node in the structure will not only have the same
number of 1 − hyperedges, i.e., k(1) but also the same number of
2 − hyperedges, i.e., k(2).

The next step in the construction of a structure with tunable
global intra-order hyperedge overlap T ð2Þ is to introduce rewiring,
such that to reduce the value of T ð2Þ. In more detail, at each iteration
we randomly select two 2-hyperedges from the set Eð2Þ. Afterward, we
select one node from each of the two previously random selected
2-hyperedges. Then, we swap the selected nodes and calculate T ð2Þ in
the original structure and in the structure after swapping. We keep the
change only if the global intra-order hyperedge overlap decreases or
remains unchanged, otherwise we proceed using the structure before
the swapping. By doing so,we are able to reduceT ð2Þ whilemaintaining
the value of the degree kð2Þ

i for all nodes. For more details on the
synthetic structures, as well as a graphical example of the structures
built, we refer the reader to Supplementary Fig. 4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The SocioPatterns datasets were downloaded from https://www.
sociopatterns.org/datasets, the Copenhagen dataset was down-
loaded from https://doi.org/10.6084/m9.figshare.7267433, the brain
connectome datasets were downloaded from https://neurodata.io/
project/connectomes/and the relational datasets were downloaded
from https://www.cs.cornell.edu/~arb/data/.

Code availability
The code is available at https://github.com/santiagolaot/hyperedge-
overlap.
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