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Higher-order interactions play an important role in complex contagion processes. Mean-field approximations
have been used to characterize the onset of spreading in the presence of group interactions. However,
individual-based mean-field models are unable to capture correlations between different subsets of nodes,
which can significantly influence the dynamics of a contagion process. In this paper, we introduce a pair-
based mean-field approximation that allows to study the dynamics of a SIS model on simplicial complexes
by taking into account correlations at the level of pairs of nodes. Compared to individual-based mean-
field approaches, the proposed approximation yields more accurate predictions of the dynamics of contagion
processes on simplicial complexes. Specifically, the pair-based mean-field approximation provides higher
accuracy in predicting the extent of the region of bistability, the type of transition from disease-free to endemic
state, and the average time evolution of the fraction of infected individuals. Crucially, for the pair-based
approximation we were able to obtain an analytical expression for the epidemic threshold, that elucidates the
dependency on the parameters of the model. Through comparison with stochastic simulations, we show that
our model correctly predicts that the onset of the epidemic outbreak in simplicial complexes depends on the
strength of higher-order interactions. Overall, our findings highlight the importance of accounting for pair
correlations when investigating contagion processes in the presence of higher-order interactions.

1. Introduction

Complex networks have been used to describe a large variety of dy-
namical processes involving interacting units, such as epidemic spread-
ing [1,2], social contagion [3], random walks [4], and synchroniza-
tion [5], among many others. However, networks have inherent limita-
tions as they can only capture interactions between pairs of units [6,7].
Consequently, they cannot be employed to study complex systems char-
acterized by interactions occurring in groups of three or more units [8].
In such cases, more sophisticated mathematical structures, such as
hypergraphs [9] and simplicial complexes [10], are required. The inclu-
sion of higher-order interactions has proved that these interactions give
rise to novel collective phenomena in various dynamical processes [11],
including diffusion [12,13], percolation [14], synchronization [15-17],
and evolutionary games [18].

In particular, the framework of higher-order networks has proven
to be essential in modeling social contagion processes, such as opinion
formation, rumor spreading, or the adoption of novelties, where the
exposure to multiple sources is needed to trigger the transmission [19].
Recent studies of social contagion in hypergraphs [20] and simpli-
cial complexes [21] have revealed that higher-order interactions may
radically change the characteristics of the spreading process. In the
presence of higher-order interactions, the transition to an endemic state
in SIS models can become discontinuous and a bistable regime where
a disease-free and an endemic state co-exist can appear [20,21]. This
behavior is closely connected to the microscopic organization of higher-
order interactions as diverse structures may exhibit different types of
transitions [22].
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Most models for the analysis of social contagion processes with
higher-order interactions rely on individual-based mean-field
approaches, assuming that the individuals are homogeneously mixed
and interact with each other at random. However, this assumption may
lead to an oversimplified approximation, as it overlooks the dynamic
correlations that arise within the underlying structure. For example,
infected individuals are more likely to come into contact with other
infected individuals [2]. In the context of complex networks, to obtain
a more precise description of the spreading process, one can consider
more sophisticated approximations. For instance, pair-based models
can be employed [23-26]. In these models, the system dynamics is not
characterized at the level of nodes but at the level of node pairs. That
is, they do not follow the temporal evolution of the expected number
of individuals in a given state, they analyze instead how the expected
number of edges in a given state evolves in time.

Despite their increased complexity, pair-based models provide an-
alytical insights into epidemic dynamics, yielding closed-form expres-
sions for epidemic thresholds across diverse connectivity patterns and
epidemiological frameworks [27,28]. Their versatility extends from
homogeneous [29] to heterogeneous networks [30], while offering
crucial guidance for intervention strategies including vaccination [31],
contact tracing [32], and real-world epidemic control [33-35]. How-
ever, deriving pair-based mean-field models for spreading processes on
structures with higher-order interactions remains challenging.

In this work, we focus on the complex contagion process introduced
in Ref. [21], namely an SIS process in the presence of three-body
simplicial interactions. We develop a mean-field model of the process
based on a description at the level of node pairs, and we show that
it reproduces the results of stochastic simulations of the process better
than an individual-based mean-field model [21].

Recently, several novel approaches have been proposed to study and
capture the emerging behavior in contagion processes in the presence
of higher-order interactions. These methods include quenched group-
based model [36], group-based approximate master equations [37],
quenched pair approximation [38] and triadic approximation [39].
In particular, the authors of Ref. [38] have proposed a discrete-time
model relying on a Markov-chain. The system dynamics is expressed in
terms of joint probabilities of the microscopic states of the links and
the nodes, and is thus described by a set of N + L master equations,
where N is the number of nodes and L the number of links. In our
work, instead, we consider a framework that is continuous-time and
with a number of governing equations that does not depend on the
number of nodes and links. More recently, the authors of Ref. [39]
have introduced a mean-field triadic approximation, which allows to
describe higher-order contagion processes by associating state variables
not only to nodes and pairs of nodes but also to groups of three nodes.
This model correctly predicts key features of complex contagion, in-
cluding the epidemic threshold and the stationary density of spreaders,
and works for both simplicial complexes and hypergraphs. One of
the main limitations of [36-39] is that they rely on the assumption
that two three-body interactions (hyperedges or simplices) share at
most one node. This can be a too strong assumption in structures
with high clustering. The mean-field approximation we introduce in
this paper stops at the level of pairs, but it allows one to properly
account for correlations arising in motifs involving three and four nodes
within a simplicial complex. Despite being limited to the case where
higher-order interactions are represented by simplicial complexes our
work provides a complementary approach to existing models, and
can provide further insights into contagion processes in presence of
higher-order interactions.

The paper is organized as follows. In Section 2 we provide the
basic ideas and methods behind individual-based and pair-based mean-
field approximations of the SIS model on networks. In Section 3 we
focus instead on the case of the SIS model on simplicial complexes.
We review the individual-based mean-field approximation proposed in
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Ref. [21], and we introduce our mean-field pair-based approximation
of the simplicial SIS model.

In Section 4, we show the advantages of a pair-based mean-field
approximation compared to an individual-based one in reproducing the
results of stochastic simulations of the simplicial SIS model. Further-
more, we derive an analytical expression of the epidemic threshold
in the pair-based approximation, that elucidates how the onset of
the epidemic outbreak also depends on the strength of higher-order
interactions. Finally, in Section 5 we summarize and discuss the main
results obtained.

2. Mean-field SIS models

In this section, we focus on the case of simple contagions, i.e. pro-
cesses where transmission occurs exclusively through pairwise interac-
tions. We discuss the two standard mean-field approximations for the
SIS model on networks. Specifically, we describe the individual-based
and the pair-based mean-field, highlighting the mathematical approach
used to derive mean-field models at the individual- and pair-based
levels. This will lay the groundwork for revisiting the individual-based
approximation for the simplicial SIS model studied in Ref. [21] and for
introducing our pair-based approximation in Section 3.2.

2.1. Individual-based mean-field SIS model

We begin by characterizing the processes governing the transition
of an individual from one state to another in the standard SIS model. In
this model, an individual can be either susceptible (S) or infected/infec-
tious (I), and can transit from one compartment to another as infection
or recovery takes place. A susceptible individual (S) becomes infected
(S—I) after interacting with an infectious individual (I), who acts a
mediator of the transition. The infection mechanism is, hence, a two-
body nonlinear process. Infected individuals (I) recover after a given
period of time, becoming once again susceptible (I-S). Contrarily to
the infection mechanism, recovery is described by a one-body linear
process. Formally, we can express these transitions in terms of two
kinetic equations

S+1 i I+1
" , (€9)]
I - S

where f and u are the transition rates for the infection and the recovery
processes, respectively.

The dynamics of the SIS model on network can be investigated using
different approaches [1,2].

A commonly employed strategy is to perform stochastic simulations
of the kinetic equations (1). While stochastic simulations can provide
statistically exact results and can be implemented for very large sys-
tems [40,41], mean-field approaches offer complementary advantages.
They allow for analytical insights into the relationship between model
parameters and emerging collective behavior, facilitating the derivation
of general theoretical results such as epidemic thresholds and phase
transition conditions [1,2]. For this reason, it is common to use a deter-
ministic representation of the process that focuses on population-level
quantities, such as the density or the expected number of individuals
in a given state. This deterministic approach assumes homogeneous
mixing: interactions between individuals are treated as uniform and
independent of the network structure, so that each individual can be
considered statistically equivalent to any other. This hypothesis allows
us to describe the dynamics of the system in terms of a so-called
mean-field model.

The SIS process in homogeneous mixing is described by the follow-
ing equations

(8) = w{I)-pK(ST)

(Y = —u(I)+pK(ST) ° @
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Fig. 1. Pictorial representation of infection processes among susceptible (in blue) and infected (in red) individuals in SIS models. (a) Infection of a node connected to an infected
node through a link. This is the only infection process occurring in the individual-based SIS model. (b) Infection of a pair of nodes. In a pair-based description of contagion in a
SIS model, the disease can be transmitted to one of the nodes of a pair by the other node of the pair or by other infected nodes not belonging to the pair. (c) Simplicial infection
of a node by a group interaction with two infected nodes. (d) Infection of a pair of nodes in the presence of group interactions. The infection processes depicted in panel (d)
arise in the pair-based description of the simplicial SIS model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

where (S) and (I) represent the densities of susceptible and infected
individuals, respectively, (ST) is the density of edges in the state (S, I),
i.e., a susceptible individual in contact with an infectious one (note
that pairs are unordered, meaning that we do not distinguish (S, I)
from (I, .5)), while k is the average number of contacts. The densities of
individuals in state S and I are given by (S) = [S]1/N and (/) = [I] /N,
where [S] and [I] are the expected number of susceptible and infected
individuals, respectively, and N = [S] + [I] is the total number of
individuals in the population. Consequently, (.S) and (I) are not inde-
pendent and satisfy the conservation relation (S) + (I) = 1. As can be
easily checked, the terms on the right hand sides of Egs. (2) sum to zero,
so that () + (I) = 0. The density (SI) is defined as (SI) = [SI]/kN,
where [ST] represents the expected number of edges in state (S, I).
Note that kN = 2L, where L is the total number of edges within the net-
work, assuming it to be undirected. The two terms in the equation for
(I') represent the decrease in the density of infectious individuals due to
recoveries, and the increase due to infections, respectively. The first de-
pends on the transition rate ¢ and on the density of infected individuals,
while the second is given by the transition rate g, the average degree k
and the edge density (ST). The transition from susceptible to infected
through the interaction with an infected individual is depicted in panel
(a) of Fig. 1, from which one can derive the interaction terms appearing
in (2). System (2) is exact but not closed, as the equations governing
the dynamics of (S) and (I) depend on the quantity (S7). To obtain a
closed system of equations, one may apply the law of mass action, as-
suming statistical independence at the level of individuals. This means
to assume that infected individuals are randomly distributed in the
network, so the probability that a neighbor is infected is simply given
by (I') and does not depend on the state of the node itself. Under this
assumption, we can approximate the fraction of edges in state (S, I) as

(S1) = (ST, (3

and substituting this expression in Egs. (2), we obtain a closed form for
the mean-field SIS model
(S) W(I) = B(SKI)
(I) —pu{I) + P(SKI)

(€3]

2.2. Pair-based mean-field SIS model

Assuming that infected individuals are randomly distributed in the
network may be a too rough approximation, as it does not account for

the dynamic correlations that exist within the contact network (e.g., in-
fected nodes are more likely to come into contact with other infected
nodes) [1]. To provide a more accurate description of the SIS dynamics
on a network, we can consider a pair-based model, incorporating these
dynamic correlations. In practice, one has to characterize the system
dynamics at the level of pairs of nodes, describing how the expected
number of edges in a given state evolves in time. With reference to
Fig. 1, the equations describing the SIS process at the level of pairs of
nodes are

(8= W)= pK(ST)
(Iy=" —u(I)+ pK(ST)
(S8)=" 2u(ST) =28k = 1(SST) ®)
(SIy=" u(IT)y = pu(ST) + plk = 1)(SST)  ~
' — Bk = 1(IST) - p(ST)
(ITy=  =2u{IT)+2p(k — \)(IST)+2p(ST)

where (I.ST) represents the density of (both open and closed, and un-
ordered) triplets in state (I,S,I), and is defined as (ISI) =
[IST]/(k(k — 1)N), with [1.ST] being the expected number of triplets
in that state.’ Note that the term k(k — 1) corresponds to the average
number of triplets connected to each node. Indeed a node with &
neighbors is at the center of k(k—1)/2 unordered triples. (.S) and (I) can
be obtained from (S.S), (ST) and (II) through marginalization, namely
(S)=(SS)+(SI)and (I) = (SI)+(II). Additionally, (SS), (SI) and
(IT) are not independent, as they are linked through the conservation
relation (S.S)+2(ST)+(II) = 1. It can be easily checked that, similarly
to Egs. (2), also Egs. (5) satisfy (S)+ (1) = 0. Moreover, Eqgs. (5) satisfy
(SS) + (ST) = (8), (SI) + (UT) = (1), where we used the relation
(SSI)+(IST)=(STI).

Note that, with respect to the individual-based approximation, the
pair-based SIS model contains a higher number of terms. This reflects
the higher number of possible states and transitions that a pair can
undergo compared to a single node.

To illustrate the terms in Egs. (5), let us focus on the equation
governing the dynamics of (ST). The first two terms are related to
recoveries: the first represents the increase in the density (SI) due to
the recovery of one of the nodes of the pairs in state (I, I); the second

1 Note that factors 2 in the equations come from the fact that pairs of nodes
are unordered [26].
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models the decrease in (ST) due to the recovery of the infected nodes
of the pairs in state (S, ), i.e., the transition from (S, ) to (S,.5).
The remaining three terms encode the transitions due to infections,
as graphically represented in panel (b) of Fig. 1. In particular, the
first term captures the increase in (S7) due to the infection of one
of the nodes of the pairs in (5,.5), while the second represents the
decrease in (S7) due to the infection of the susceptible nodes of the
pairs in state (.S, I). Both transitions are due to the interactions with a
third (infectious) node, among the (k — 1) remaining neighbors of the
susceptible nodes. Note also that the three nodes involved in the process
can be arranged in two possible motifs, namely an open triangle, i.e., a
wedge, or a closed one. This point will turn out to be crucial when
considering the closure of the system. Finally, the last term corresponds
to the decrease of (ST) due to the infection of the susceptible nodes in
the pairs in state (S, I). In this case, however, the transition is due to
the infected nodes of the pair, and not to a third node.

System (5) is exact but not closed, as the equations governing the
dynamics of (S.S), (SI) and (/I) depend on the quantities (I.S1) and
(SST). Therefore, various approximations of the densities of the triplets
have been proposed to close the system at the pair level. Here, we use
one of the most common and studied closures [1], which consists of
writing the probability that a triplet is in a given state as the product
of the probabilities that its edges are in a certain state, normalized by
the probabilities that the nodes in common to the pairs of edges are in
a particular state. A key point of this closure is to distinguish between
open and closed triangles. In the first case, the three nodes, namely x,
y, and z form a wedge, that is, node y is linked to nodes x and z, but x
and z are not connected. In the second case, there is a link also between
x and z (we call this configuration, shortly, a triangle).

Let us first consider the case in which three nodes x, y, and z
forming a wedge are in states A, B, and C, respectively. We can write
the density of wedges in state (A, B,C) as
(AB){(BC)

(B 7
where (AB) = P(AB) and (BC) = P(BC) are the probabilities that links
(x,y) and (y, z) are in states (A, B) and (B, C), respectively, while (B) is
the probability that node y is in state B. This formula can be obtained
as follows. (ABC") is given by

(ABCM) » (6)

(ABC") = P(ABn BC) = P(BC)P(AB|BC)

where P(AB|BC) denotes the conditional probability that x and y are
in states A and B, given that y and z are in states B and C. Since x and
z are not connected, we can approximate the conditional probability as

P(AB|BC) ~ P(AB|B) = P(AB)/P(B)

Combining these two relations we obtain Eq. (6). When the network
has few short cycles, i.e., few closed triangles, one can use (ABC) ~
(ABC") and Eq. (6) that, in this case, give an accurate approximation
of the probability that a triplet of nodes is in state (A, B, C). However,
this closure fails to describe the epidemic dynamics on networks where
the number of closed triplets is not negligible [1,23], as it overlooks
the correlation between nodes x and z.

Let us now consider the case when the three nodes form a closed
triangle. Here, to approximate the density of triangles in state (A, B, C)
the so-called Kirkwood superposition [42], namely
(AB)(BC)(AC)

(AXBXC)
can be used.? Note that, if we assume the dynamics of nodes x and z

to be uncorrelated, i.e., (AC) = (A)(C), the approximation for (ABC?)
recovers the one for (ABC").

(ABC%) ~ @

2 The formula can be understood as follows: P(ABNBCNCA) =
P(ABN BC|CA) P(CA). Now P(AB N BC|CA) = P(AB|BC n CA)-P (BC|CA).

We can write P(AB|BCNCA) = and use the approximation

P(A)P(B)’
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The final step is to calculate the probability that a generic triplet
of nodes is in state (4, B, C), namely (ABC), as a function of (ABC")
and (ABC#4). To this aim, we consider the global clustering coefficient
¢ € [0, 1], representing the fraction of closed triangles over all triplets
in the structure, that we can calculate in a statistical meaning as

_ 3E(T)

$= Nk(k—1)
where N is the number of nodes, k is the average number of links,
and E(7) represents the expected number of triangles, which depends
on the structure considered. At this point, we can calculate (ABC)
as [1,23]:

(8)

(ABC) = (1 — p){ABC™) + p(ABC?). 9

Note that the densities (ABC”) and (ABC*) are defined as (ABC") =
[ABC"| /(k(k — 1)(1 — $)N) and (ABC4) = [ABC?]/(k(k — D$N),
where [ABC"] and [ABCA] are the expected number of wedges and
of triangles in state (4, B, C), respectively.

Summing up, we consider Eq. (9) to close the compartmental models
at the pair level. In particular, we will approximate the densities (S.ST)
and (IST) as:

2
(SSTy = (1 —¢) (SSYST) +¢(SS)(SI)
($) ($)2(1) 10
(SI?  (SDHXIT) :

(IST) ~ (1 - @)

+
() (SKI)?
Egs. (5) along with the expressions (10) constitute a closed approxima-
tion for the pair-based mean-field SIS model.

3. Mean-field simplicial SIS models

In this section, we consider the case of complex contagion. We
focus on the simplicial contagion model, and we begin by describ-
ing an individual-based approximation of such model [21]. Then, we
introduce our novel pair-based mean-field approximation of simpli-
cial contagion that extends the pair-based approximation on networks
discussed in Section 2.2 to the case of simplicial complexes.

3.1. Individual-based mean-field simplicial SIS model

We now discuss the individual-based mean-field simplicial SIS
model presented in [21]. We first describe the processes ruling the
transition of an individual from one state to another. Compared to the
SIS process on networks (see (1)), there is a further way in which an
individual can transit from one compartment to another. Specifically, a
susceptible individual (S) can become infected (S—I) through a three-
body interaction, in which the other two individuals are infectious. In
this higher-order interaction, two infected individuals at the same time
act as mediators of the transition. We can represent the processes of
the simplicial SIS model in terms of kinetic equations

B

S+I 5 I+1
S+I+1 % 14141 an
1 5 s

where f and f, are the transition rates for the two-body and the
three-body infection process, respectively, while u is the recovery rate.

We now derive a model that describes the system dynamics in
terms of population-level quantities. In this framework, we consider
each three-body interaction to also include all possible pairwise inter-
actions among the three nodes. This represents the essential feature of

P(AB) . . . .
———— . Substituting in the previous expression
P(A) P (B)

one has P(AB n BC|CA) = —L 4B P(BO)
P(APB) PO
P(ABN BCnCA) = P(AB)P(BC)P(CA)/(P(A)P(B)P(C)).

P(AB|BCNCA) =

from which it follows
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simplicial complexes, known as their inclusion property or downward
closure [43], which makes them a very special case of hypergraphs.
Under the homogeneous mixing hypothesis, the exact equations for the
simplicial SIS model are given by

. k(k — 1)¢po
) = (k=1

(1=

where 6 € [0,1] is the fraction of triangles that are effectively 2-
simplices, i.e., they represent a three-body interaction. Compared to
Egs. (2), these equations present an additional term, i.e., f4k(k —
1)¢6(1.S14)/2, which takes into account the infections of susceptible
nodes due to the simultaneous interaction with two infected individu-
als, as shown in panel (c) of Fig. 1.

System (12) may be closed by applying the law of mass action,
starting from the assumption that infected individuals are randomly
distributed in the simplicial complex [21]. Accordingly, the density
(ST) is approximated as in Eq. (3), while (I.SI4) is approximated as

u(I) = BK(ST) — B4 (IS1%)
k(K= 1)¢5 12)

(D) + PR(ST) + py =22 (IS TY)

(ISTA) m (IN(S)XI). @13)

We can therefore write the individual-based mean-field model for
the simplicial SIS model as

(8) =" w(I) = BK(SY(I) = Paka(SII)
(Iy=" —u(I) + BE(SKI) + Pak s(SHIY

where k, = k(k — 1)¢6/2 represents the average number of 2-simplices
connected to each node.

The system can be analytically investigated in terms of two param-
eters, A = kf/u and A, = k,p,/u, representing the rescaled infectivity
on 1-simplices, i.e., links, and on 2-simplices, respectively. In particular,
the steady-state solutions of Egs. (14) and their stability can be studied
as a function of 4 and 4. The analysis [21] shows that, when the
higher-order interactions are weak, i.e., when 1, < 1, the system
behaves similarly to the SIS model on networks, described by Eq. (2):
for A < 1 the disease-free equilibrium (7)* = 0 is the only solution,
while for 4 > 1 a stable endemic state (I)* # 0 exists.

In addition, the phase transition at 4 = 1 is continuous. Instead,
when the higher-order interactions are strong, i.e., A, > 1, the system
shows a different behavior. For A smaller than 4, = 24/4; — A4, only
the disease-free equilibrium exists; for 4. < 4 < 1, the disease-free
equilibrium and an endemic state coexist in a bistable regime, with the
initial fraction of infected individuals determining whether the system
reaches one equilibrium or the other: If the initial fraction of infected
individuals is larger than a critical mass [21], the system evolves
towards the endemic state; if not, the spreading cannot be sustained,
and the system evolves towards the disease-free equilibrium. Finally,
for 4 > 1, the endemic state is the only stable equilibrium. Differently
from the SIS model on networks, when 1, > 1 the phase transitions
occurring at A = 4, and A =1 are discontinuous.

(14

3.2. Pair-based mean-field simplicial SIS model

In this section, we derive the pair-based mean-field simplicial SIS
model. To this aim, we have to account for all ways a pair of nodes
in a simplicial complex can transit from one state to another. Besides
those related to recoveries and two-body infections (see Section 2), the
transitions determined by three-body infections (illustrated in panel
(d) of Fig. 1) should also be considered. Remarkably, two of these
transitions depend on the state of 4-node motifs, and occur when the
2-simplex shares with the edge of interest a single node. The remaining
one depends instead on the state of a 3-node motif, and corresponds
to the case where the focal edge belongs to the 2-simplex. In the first
two cases, infections occur when the shared node is susceptible and the
other nodes of the 2-simplex are infected, while the other node in the
pair can be either susceptible or infected. Both the densities of edges
in states (S,.5) and (S, I) are, hence, affected by this infection process,
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| = s o5

| = L s

Fig. 2. Graphical representation of the three possible microscopical configurations
of four-node motif states (1,1,S,S) (on top) and (I,I,S,I) (bottom) that contain
a single 2-simplex at the state (I,S,I), as defined in Eq. (15). Square brackets refer
to the expected number of the configurations containing only one 2-simplex, which
are obtained through the relation [ABC4D| = Nk,(k - 2)[(1 — ¢)>(ABCAD), + 2¢(1 —
¢){(ABCAD), + ¢*(ABCAD),].

with a rate that is function of g, and the density of 4-node motifs in
the aforementioned states. To simplify, we only consider 4-node motifs
that only contain a unique 2-simplex. As shown in Fig. 2, there are three
possible motifs that contribute to this infection process. They differ for
the number of links (zero, one or two) that connect the node external to
the 2-simplex to the infected nodes of the 2-simplex. Hereby, we denote
as (I1S4S),, (I1S4S),, and (I1S4S), the densities of these motifs in
state (I, I, S, S), while we denote as (I 1S41), (I1S4I),, and (I1.S*I),
the density of motifs in state (1, I, .S, I). Using the clustering coefficient
¢, we can write the density of quadruplets of nodes in states (I, I, S,.S)
and (I,1,S,1) as

(ITS4S) = (1-¢)*IISAS),
+2(1 — PP TS4S),
+@X(I1SAS),
(I1S41) = (1-¢)*(I1ST), as

+2(1 = Q)T TSAT),
+¢*(TTSAT),

Next, to evaluate the terms in the model equations that quantify the
transitions involving the state of 4-node motifs, we need to calculate
the average number of motifs in which the pair of nodes is not part
of the 2-simplex. As each node is connected to k links on average,
the average number of motifs composed by a 2-simplex connected to
a link is k(k — 1)¢p6(k —2)/2. Indeed, the average number of 2-simplices
connected to a node is k(k — 1)¢p5 /2, while the fourth node of the motif
has to be chosen among the (k — 2) remaining neighbors of the node.

We now turn our attention to the three-body infection process
involving 3-node motifs. In this case, the focal edge is part of the 2-
simplex, and the only possible transition is the one from state (.S, I) to
state (I, I). In fact, both the two other nodes of the 2-simplex have to
be in the infectious state to yield a simplicial contagion, as expressed
by the second kinetic equation (11). Similarly to the previous case, the
overall contribution present in the model will depend on the infection
rate f,, on the density of 2-simplices in state (I, I,.S), which we denote
as (I1S%), and on the average number of triangles an edge is part of.
In particular, the latter is given by (k — 1)¢p6 = 2k 4/k, where the factor
2 comes from the fact that each 2-simplex has two edges pointing to a
node.

Finally, we can write the equations governing the simplicial SIS
model at the pair-level

(8= WI)y = BI(ST) — Buky(1STA)
(Iy=" —u(I) + PI(ST) + Prhy(ISTA)
(SSY= 2u(SI) =28k — 1)(SSI)
— 26,54 (k = 2(I1S4S)
(SIy=" W(II) = pu(ST)+ p(k — 1)(SST)
— Bl — 1XIST) = B(ST) : (16)
+, 52 (k = 2)(ITS4S) - 20, *2(1ST4)
—ﬁA%(k —2)(I1S%T)
ITy=  =2u(I1)+2p(k — )(ISI) +2p(SI)

+4P4SAISTA) + 25,54 (k — 2(I1ST)
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We remark here a property of the model. As for the SIS process
on networks, in the simplicial SIS contagion recovery is a 1-body
mechanism and there are 2-body infections, so the dynamics of m-
body variables in both the individual-based and the pair-based (exact)
models depend on m-body and (m+ 1)-body quantities. For instance, the
dynamics of (1) (1-body variable) depends on (I) itself and on (ST) (2-
body). In the simplicial SIS process, however, there is a further 3-body
infection mechanism at play. Consequently, the equations governing
the evolution of the m-body variables in the individual-based and the
pair-based models are determined by (m+2)-body quantities too. Hence,
the dynamics of (/) (1-body variable) depends not only on (7} itself and
on (ST) (2-body), but also on (I.ST4) (3-body).

Similarly to what we have done for Egs. (5), we now close Egs. (16)
at the level of pairs. We use the approximations for the triplet densities
(ABC) at the pair level given by Egs. (6), (7), and (9). For the densities
of the 4-node motifs, we rely on the closures introduced in [44] (see
Egs. 15), re-adapting them to the simplicial case. Specifically, we
consider

agy, = SDIIINSS)
IS8 = oy
(1sts), - SDUSSHID
(S
1sts), - SSHSDHID)
(S an
(I1S4I), = M ’
" S
&
IS s
A STYNIT)
WIS = sy

which represent all the closures at the level of pair state variables for
the 4-node state depicted in Fig. 2. It is worth noting that this is an
approximation, as the 4-node state should depend on the dynamical
correlations of the 3-node state variables [44]. Moreover, by closing the
system at the level of pairs and considering the relation in Eq. (7) to
express the state of closed triangles, the conservation relations that are
exact for the system before the closure, i.e., up to Egs. (16) ((S)+(I) =
L, (SS)+(SI)=(S), (SI)+ (II)=(I)), are no longer valid [24].

Summing up, Egs. (16) along with the expressions (6), (7), (9), and
(17) constitute a closed approximation for the pair-based mean-field
simplicial SIS model. Notice that, while the individual-based model
in Section 3.1 can be easily extended to the more general scenario
of hypergraphs [20] where correlations among three- and two-body
interactions are not considered, the pair-based approximation above
only applies to the case of simplicial complexes, which satisfy the
inclusion property.

4. Results

In this section, we analyze the pair-based approximation of the
simplicial SIS model. We first present an analytical derivation of the
epidemic threshold. Then, we compare the predictions of the pair-based
model with the results of stochastic simulations on synthetic simplicial
complexes. We show that the pair-based simplicial SIS model is able
to predict the behavior of the epidemic threshold, the nature of the
phase transitions, i.e., continuous or discontinuous, and the temporal
evolution of the spreading process.

4.1. Epidemic threshold for the pair-based mean-field simplicial SIS model

To derive the epidemic threshold, we consider the initial phase of
the spreading. At this stage, the population is almost entirely made up
of susceptible individuals, and we can determine the condition under
which an outbreak can occur by looking at when the density of infected
individuals grows. By replacing the density of triangles (I.ST4) in the
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second of Egs. (16) by the approximation in Eq. (7), we can write the
dynamics of (/) as:

2
(1) ==utn)+ pels) + ks T
iy (B SD) Bks LSOV o
AT T s\ ) ‘
Moreover, by defining the quantity R as
_PkSD ﬂAkA;<@>2@_ (19)
= e wlnm ) m Tt
we can rewrite this equation as
(I = w(DHR. (20)

The quantity u(I') remains non-negative throughout the entire spread-
ing process. Therefore, R > 0 represents the condition under which
contagion can occur at the early stage of the process. Conversely, if
R < 0, the contagion dies out. We assume that the values of all the
parameters in R, namely u, 8, f, and k, are known. Hence, in order to
assess whether an outbreak can occur or not, we only require further
information about the quantities % and YL at the early stage of
the contagion process. Therefore, it is convenient to define the new
variables [23,45]

{81y, _{n
- (-
which take finite (possibly non-zero) values even in the limit + —
0, when ((S),(I),{(SS),{(SI),{II)) — (1,0,1,0,0), and are able to
capture the early time correlation between susceptible and infected
nodes. Compared to the dynamics of (I), (SI) and (II), the two new
quantities IT and ¥ are fast variables [45], meaning that they quickly
converge to a quasi-equilibrium state, which we denote as (17, ¥). The
equations governing the time evolution of these fast variables, and all
the details about their derivation can be found in Appendix A. The
introduction of the quasi-stationary states (11,%) allows us to study
the behavior of R at the early stage of the contagion. Specifically, by
defining the rescaled infection rates A = kf/u and A, = k,f,/u, we can
express Eq. (19) at the disease-free state equilibrium as

(21

R =AM+ 1,017 —1 . (22)

Given the condition for the epidemic outbreak, R > 0, we can ex-
press the critical value A* above which the disease-free equilibrium is
unstable as:
P A 17

= = .

The complexity of the model makes formulating an exact closed-
form solution for the quasi-stationary states (/1,%) in terms of the
model parameters not analytically tractable. However, the values of
(I1,%) can be numerically estimated (see Appendix A). More impor-
tantly, an approximate analytical expression for the stationary states of
the fast variables which holds at the critical value A* can be derived. In
turn, this makes it possible to derive an approximate analytical expres-
sion for A*. Assuming that 4, is small and ¢ = 0, the quasi-stationary
states (IT,%) can be approximated as

23)

’ (24)

This approximation assumes that IT ~ 1 — ¥. Note that the condition
II(t) = 1 =¥ () holds only approximately, since the system of Egs. (16)
is no longer exact under the closure in Eq. (7). By substituting the
approximate solutions in Eq. (24) for the quasi-stationary states (I, ¥)
into Eq. (23) and ignoring all the terms of order /li and higher, we
obtain an approximate expression for the critical 1* as

k k-2

B (25)



F. Malizia et al.

Chaos, Solitons and Fractals 199 (2025) 116776

als 1.5 1.5 1.5
(k=6,kp=3) (k=9,kp=3) (k=12,kp = 3) (k=15,kp = 3)
1.0- 10
* *
~< ~<
0.5 = Pair-based 0.5 1
O RegSC
0.0 T T 0.0 T T
0 2 4 0 2 4 6
An
b 1.5 1.5
(k=9,kp=1)
1.0- 1.0
* *
~ ~
0.5 = Pair-based 0.5 1
O RSC
0.0 T T 0.0 T T 0.0 T T 0.0 T T
0 6 0 6 0 2 4 6 0 2 4 6

2/\A

A

Fig. 3. Comparison of the epidemic threshold A* as predicted by Eq. (25) (black solid lines) with simulation results with different values of (k,k,) in Regular Simplicial Complexes

(black squares in panel a) and Random Simplicial Complexes (black circles in panel b).

A detailed analysis of this approximation is provided in Appendix
A. Eq. (25) shows that the epidemic threshold, and so the stability
of the disease-free equilibrium, depends on the presence of higher-
order interactions. When 1, = 0, i.e., when there are no higher-order
interactions, the epidemic threshold in Eq. (25) coincides with that of
the SIS pair-based mean-field model on traditional networks [1]. As
the strength of higher-order interactions increases, i.e. as 1, increases,
the value of 1* decreases linearly. This indicates that, in presence of
higher-order interactions, the system becomes more susceptible to an
epidemic outbreak, highlighting the critical role of these interactions in
the contagion. Additionally, Eq. (25) predicts that the impact of higher-
order interactions on the epidemic threshold depends on the degree
of pairwise connectivity. Specifically, for sparser simplicial complexes,
higher levels of connectivity in the pairwise interactions reduce the
susceptibility of the system to outbreaks. As we will show in the next
subsection, this result is agreement with the numerical simulations of
the simplicial SIS model on synthetic simplicial complexes. In contrast,
the individual mean-field approximation of Section 3.1 predicts an
epidemic threshold equal to that of the standard SIS model with only
pairwise interactions, i.e., A* = 1 [21], independently from the value
of A4. Notice that the introduction of fast variables allows us to carry
out the linear stability analysis of the disease-free steady state via
the numerical evaluation of the leading eigenvalue of the Jacobian
matrix of the system given in Egs. (16). In Appendix B, we show that
the leading eigenvalue becomes zero exactly at 1 = i*, where A* is
given by Eq. (23). However, due to the complexity of the system, the
linear stability analysis alone would have prevented us from obtaining
a closed-form expression for A*.

4.2. Comparison with stochastic simulations

We now compare the predictions of the pair-based mean-field ap-
proximation with the results of stochastic simulations of the simplicial
SIS model on synthetic simplicial complexes. These complexes are
generated using two distinct random models: (i) a Regular Simplicial
Complex [46] (Reg SC), in which each node has the same number
of 2- and 3-body interactions, and (ii) a higher-order generalization
of the Erd6s—-Rényi random network model [21], namely the Random
Simplicial Complex (RSC).

First, we examine the validity of our expression for the epidemic
threshold, given by Eq. (25), then we analyze the time evolution of the
fraction of infected individuals, p(¢) = (I(¢)), with particular focus on

the steady-state value p* as a function of the model parameters A and
Ay

To assess the validity of Eq. (25), we perform stochastic simulations
on different Regular Simplicial Complexes (Reg SCs), constructed using
the methodology in [46]. In this way we have structures with an
intra-order hyperedge overlap parameter set to zero, indicating that
hyperedges of the same order at each node do not share any common
nodes [22]. Specifically, we consider four different structures, all con-
sisting of N = 2000 nodes with k, = 3 and different values of degree k =
{6,9,12,15}. We then run simulations on four different Random Simpli-
cial Complexes (RSC), all consisting of N = 2000 nodes with (k) ~ 1,
and with different values of (k), that is, (k) ~ {4,5,7,9}. For each
structure, we conduct M = 500 simulation runs, initializing the system
with an infection density of p(0) = 0.001. We calculate the thresholds
A* from the simulations as the smallest value of 4 for which a non-zero
average value of the steady-state infection density, p*, is obtained. We
then compare these values of A* with those predicted by Eq. (25).

The results are shown in Fig. 3. Square symbols in Panel (a) indicate
simulation results on Regular Simplicial Complexes, black circles in
Panel (b) correspond to simulations on Random Simplicial Complexes,
while solid black lines in both panels represent predictions of our
model. Fig. 3 shows that the epidemic threshold A* decreases as the
strength of higher-order interactions (controlled by 1,) increases, for
both classes of simplicial complexes we considered. Furthermore, we
observe that higher-order interactions make sparser structures more
susceptible to outbreaks, whereas they have a weaker impact on sim-
plicial complexes with higher pairwise connectivity. This behavior is
in excellent agreement with the prediction of Eq. (25), which indi-
cates that the influence of higher-order interactions decreases with the
degree k. This is consistent with previous studies [47,48] reporting
that the impact of higher-order interactions is hindered by increased
overall connectivity. Finally, although we derived Eq. (25) under the
assumption of regular connectivity (which underpins the closure), it
nevertheless captures the general behavior of the system even in the
case of random structures, as shown in Fig. 3(b). While RSCs are
homogeneous structures with narrow degree distributions, they differ
from the perfectly regular case assumed in our theoretical derivation,
demonstrating the robustness of our mean-field approximation.

We now study the capability of our pair-based model to predict the
stationary density p*, as a function of the rescaled infectivity rates.
While for the individual-based approximation an analytical evaluation
of both the stationary density p* and the condition for the emergence
of a saddle-node bifurcation (which marks the onset of the bistability
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Fig. 4. Average fraction p* of infected nodes in the stationary state for the SIS model on a random simplicial complex (RSC) with N = 2000 nodes, k =20 and k, = 6. (a) Results
of individual (black dashed lines) and pair-based (black solid lines) mean-field approximations are compared to the stochastic simulations for three different values of infectivity
44. The blue dots represent the values of the stationary densities obtained from M = 100 iterations of the stochastic simulations with p(0) = 0.001, while the orange dots represent
the stationary densities obtained with p(0) = 0.8. (b) Phase diagrams reporting p* as a function of the two parameters A and 4,. In the upper and lower panel we show the results
of the stochastic simulations obtained by starting respectively with initial densities p(0) = 0.001 and p(0) = 0.8. The two solid white lines in the upper and lower panels indicate,
respectively, the epidemic threshold A* as predicted by Eq. (25) and the critical value of A, obtained via numerical integration with initial density p(0) = 0.8. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

region) can be carried out, for the pair-based approximation this is
not possible. Consequently, for the pair-based model, we obtain the
stationary density p* through numerical integration of Egs. (16) over a
sufficiently long time window, ensuring that the system has reached the
steady-state. To investigate the possible onset of a bistable behavior in
the pair-based approximation, for each parameter setting, we integrate
the model using two distinct initial conditions: a very low fraction of
initially infected individuals and a high (close to one) fraction. Having
fixed the initial fraction of infected individuals (), from which it fol-
lows (S)y = 1—(I),, we set the initial conditions of the pair variables as

(58)=(S);
(S1)o = (S)o{l)o (26)
(1), =(I);

Finally, to integrate the pair-based model, we need to evaluate ¢,
namely the fraction of closed triangles over all triplets in the simplicial
complex, which is an input parameter of Egs. (15). Henceforth, we
will only compare the predictions of our model with the results of
stochastic simulations obtained through a Random Simplicial Complex
(RSQ). Given that, for an RSC with N nodes, an average number of
I-simplices equal to k, and an average number of 2-simplices equal to
k,, the expected number of closed triplets is given by

N k N 2k,
IEm%<3>(N—1>“L<3><N—1>(N—2)’ @7
After some algebraic manipulations and using the definition in Eq. (8),
we can approximate the global clustering coefficient ¢ for the RSC as

KW -2 2k
o (N=D2k—1)  k(k=1)
We carry out stochastic simulations on a RSC with N = 2000 nodes,
k ~ 20 and k, ~ 6, setting p(0O)N randomly chosen nodes in the
infectious state. For each setting of the model parameters, we perform
M = 100 runs, each with a different instance of the RSC model, and

(28)

evaluate the stationary state p* as the average over the last 100 values
of p(r). We run the simulations with two different values of p(0), namely
p(0) = 0.001 and p(0) = 0.8.

We now illustrate our results by comparing the stationary density
p* obtained with the stochastic simulations, the individual-based, and
the pair-based model for different sets of parameters. Fig. 4(a) shows
p* as a function of the rescaled infectivity A for three different values
of A4. The outcome of the individual-based model is represented by a
dashed black curve, while that of the pair-based model by a continuous
black line. The results of the stochastic simulations with p(0) = 0.001
are depicted as blue dots, while those with p(0) = 0.8 as yellow dots.

We observe that both the individual-based and the pair-based ap-
proximations predict the existence of an interval of values of 4 for
which the system is bistable, and the transition from the disease-free
state, p* = 0, to an endemic equilibrium, p* > 0, is discontinuous.
However, the pair-based approximation, in general, better predicts the
behavior of the stochastic simulations compared to the individual-
based approximation. In particular, the individual-based model tends
to overestimate the stationary fraction of infected individuals, while
the pair-based model is in better agreement with the numerical sim-
ulations. Our analysis also shows that the pair-based approximation
better identifies the two epidemic thresholds delimiting the region of
bistability, while the individual-based model overestimates the width
of this region. The individual-based model, in fact, underestimates the
first threshold, representing critical point for the simulations starting
from a high fraction of infected individuals, and, at the same time,
overestimates the second threshold, representing the critical point for
the simulations starting from a low fraction of infected individuals.
In particular, the individual-based approximation predicts this second
transition at 4 = 1 for any value of 1,, whereas the stochastic simula-
tions display a discontinuity at values of 1 < 1 that depend on 4,. This
behavior is instead correctly reproduced by the pair-based mean-field
approximation. Moreover, the analytical expression of the epidemic
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Fig. 5. Region of bistability of the SIS model and temporal evolution of the fraction of infected individuals. (a) Phase diagram, in the parameter space (4, 1,), highlighting the
region of bistability obtained from the individual-based approximation (in orange) and the one derived from the pair-based approximation (in blue). (b) Temporal evolution of
the fraction of infected individuals p(t) for (4, 1,) = (0.3,3.5), which corresponds to the point marked with a black star in (a), for the individual-based (dashed line) and pair-based
(continuous line) approximations. (¢) Temporal evolution of the fraction of infected individuals p(¢) for (4,4,) = (0.95,3), which corresponds to the point marked with a black
diamond in (a), for the individual-based (dashed line) and pair-based (continuous line) approximations. In both panels (b) and (c), for each mean-field model we have illustrated
the temporal evolution from two distinct initial conditions, namely p(0) = 0.8 and p(0) = 0.001. The colored curves depict M = 100 realizations of the spreading process on a RSC,
with the colors representing the two different initial conditions of the simulations, namely p(0) = 0.8 (orange) and p(0) = 0.001 (blue). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

threshold in Eq. (25) accurately predicts the value of A at which the
phase transition in the numerical simulations occurs.

We now investigate the behavior of p* as a function of both 4 and
A4, comparing the results of the stochastic simulations on the RSC
with the predictions of the pair-based mean field. Fig. 4(b) shows the
results for p(0) = 0.001 (upper panel) and p(0) = 0.8 (lower panel).
The color represents the values of p* as obtained through the stochastic
simulations, while the solid white lines denote the transition to a state
with p* # 0, as predicted by the pair-based model. Specifically, in the
lower panel, representing the case where the initial density of infected
nodes p(0) is large, the white solid line corresponds to the leftmost
threshold of the region of bistability, which we here indicate as A..
Instead, in the upper panel, obtained from simulations with a small
p(0), the white solid line corresponds to the epidemic threshold A* in
Eq. (23). Also in this case, we observe that A* decreases as a function
of 1y, as predicted by Eq. (25). Moreover, 4, decreases faster than A*
as a function of 1, suggesting that the width of the bistable region
increases with the intensity of the three-body interactions. The depen-
dence of both thresholds on 4, is well reproduced by the pair-based
approximation of the simplicial SIS model.

Next, we compare the region of bistability predicted by the
individual-based and pair-based approximations. Fig. 5(a) shows the
model behavior as a function of 4 and 14, with the orange and blue
areas indicating the region of bistability as predicted by the individual-
based and the pair-based approximation, respectively. The darker lines
represents the thresholds associated to the two approximations. Finally,
the gray area represents the region that in both models corresponds to
a single equilibrium, either disease-free p* = 0 or endemic p* > 0.
Since the pair-based approximation well predicts the dependence of
the critical points on 1, as shown in Fig. 4(b), then, Fig. 5(a) provides
another indication that the individual-based model overestimates the
width of the region of bistability, by simultaneously underestimating
A. and overestimating A*. Overall, these results demonstrate that the
pair-based approximation of the simplicial SIS process provides a better
description of the spreading process on simplicial complexes compared
to the individual-based mean-field approximation.

We conclude this section by illustrating in Fig. 5(b)-(c) the time
evolution of p(f) obtained from stochastic simulations on the RSC and
from the individual-based and the pair-based approximations for two
settings of (4, 4,), namely (4,4,) = (0.3,3.5) and (4,4,) = (0.95,3).

These values correspond to the points of the phase diagram in Fig.
5(a) marked with a star and a diamond, respectively. In both cases,
the individual-based approximation predicts the existence of two stable
equilibria, while the pair-based approximation a single one. Specifi-
cally, in the pair-based model, the steady-state equilibria correspond
to a disease-free state for (4,4,) = (0.3,3.5) and to an endemic state
for (4,4,) = (0.95,3), respectively. As shown in Fig. 5(b)-(c), the time
evolution of p(r) calculated from the stochastic simulations converges
to a single equilibrium point, independently from the system initial
conditions, as correctly predicted by the pair-based approximation.

5. Discussion and conclusions

In this work, we have derived a pair-based mean-field approxima-
tion of the simplicial contagion model and we have compared this
approximation to the individual-based approximation. The key point
of our derivation is the introduction of suitable approximations for
densities of motifs of three and four nodes, to obtain closed equations at
the level of pair of nodes. Consequently, our pair-based approximation
can account for the effect of clustering and dynamical correlations that
arise during a contagion process in the presence of both two-body and
three-body interactions.

For the simplicial SIS model, an evident hierarchy emerges: the state
of nodes depends on that of pairs and triples of nodes, the state of
pairs depends on triples and quadruples, and so on. This dependency on
larger motifs is curtailed using closures. In our model, variables at the
level of triples or quadruples of nodes are approximated by node and
pair-level variables. This leads to a “new” system that ideally preserves
some of the desirable properties of the original system, particularly the
conservation relationships at the level of nodes, namely, pairs, and so
on. Indeed, the conservation relations of the state variables (S)+(I) = 1
and (SS) + 2(SI) + (IT) = 1 allow to reduce system in Eq. (16) to
a restricted system of two equations. While it has been proved that
the pair-based model is exact before closing the system [24], Eq. (7)
does not preserve triple-level relationships, as it has been shown for
pair-based models of SIR processes [49]. While an improved closure
that preserves the conservation relations could be considered [32,45],
using it for the pair-based approximation of the simplicial contagion
model would have increased the system complexity without providing
further understanding of the system behavior. Moreover, the revised
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closure does not generally improve the agreement with the numerical
simulation of the network process compared to classical closures [1].
Therefore, to avoid negative state variables and to limit the propaga-
tion of this error while integrating the model, we considered the full
system of equations instead of the restricted one that uses conservation
relations.

In this work we also derived an analytical expression for the epi-
demic threshold in the pair-based mean-field approximation. In absence
of higher-order interactions, our formula correctly recovers the epi-
demic threshold for the classical SIS pair-based model on networked
systems [1]. Otherwise, it predicts that the system is more susceptible
to the epidemic outbreak in presence of higher-order interactions. Our
analysis also allowed us to show that, while in a hypergraph with
low correlations between two-body and three-body interactions the
epidemic threshold is not affected by the higher-order interactions [39],
in a simplicial complex — a specific type of hypergraph where an
interaction among a group of d units necessarily includes all interac-
tions among possible subgroups within that ensemble — it depends
on the strength of higher-order interactions. Additionally, our analysis
demonstrates that, when higher-order interactions are present, the
sensitivity of the system to outbreaks in simplicial complexes decreases
as pairwise connectivity increases.

Finally, we have compared the predictions of pair-based and
individual-based approximations to the numerical simulations of the
simplicial SIS model on synthetic random simplicial complexes. Our
results show that a pair-based approach offers a more accurate descrip-
tion of the higher-order SIS contagion process than an individual-based
one. This is evident in several different aspects, including the width of
the bistability region, the nature of the transition from a disease-free to
an endemic state, and the average time evolution of the fraction of in-
fected individuals. In particular, the pair-based approximation correctly
predicts that the epidemic thresholds depend on the higher-order infec-
tivity. We notice that, although based on a different approach to derive
the mean-field approximation, our conclusion on the dependence of the
epidemic threshold from the higher-order infectivity is in agreement
with [36,39] that show similar findings for epidemic processes occur-
ring on higher-order structures that adhere to the inclusion property of
simplicial complexes.

The pair-based approximation presented in our work is tailored
for systems with higher-order interactions that can be represented as
simplicial complexes. Although the model considered in this manuscript
is based on the SIS process, the proposed pair-based framework can
be extended to describe other epidemic dynamics, such as the SIR
model, or more refined models that include an incubation period or
additional infectious states, such as asymptomatic carriers. Hence, our
approach is relevant in contexts such as human face-to-face contacts,
which are well described in terms of simplicial complexes [50]. One
important direction for future work, although not straightforward,
is to extend our study to the more general case of hypergraphs. In
general, hypergraphs do not necessarily satisfy the inclusion property,
and incorporating dynamical correlations while maintaining analyti-
cal tractability in such structures may present significant challenges.
Nonetheless, the framework developed here for simplicial complexes
has proven valuable in identifying core features — such as the role of
higher-order motifs and the importance of dynamical correlations —
that must be taken into account when handling higher-order systems
in general. Another possible direction to explore is the inclusion of
both dynamical correlations and degree heterogeneity, so as to extend
mean-field models to a larger class of real systems.

CRediT authorship contribution statement

Federico Malizia: Writing — review & editing, Writing — original
draft, Visualization, Validation, Methodology, Investigation, Formal
analysis, Conceptualization. Luca Gallo: Writing — review & editing,
Writing - original draft, Validation, Methodology, Investigation, Formal

10

Chaos, Solitons and Fractals 199 (2025) 116776

analysis. Mattia Frasca: Writing — review & editing, Writing — original
draft, Validation, Supervision. Istvan Z. Kiss: Writing — review &
editing, Methodology. Vito Latora: Writing — review & editing, Writing
— original draft, Validation, Supervision. Giovanni Russo: Writing —
review & editing, Writing — original draft, Validation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Derivation of fast variable dynamics

In this appendix, we provide the details for the calculation of the
steady states of the fast variables IT and ¥, which is the main ingredient
in the derivation of the analytical expression for the epidemic threshold
given in Eq. (25).

In the early stages of the spreading process, the fraction of infected
individuals, (I'), and the states of pairs involving infected individuals,
namely (ST) and (I/I), tend to zero. Consequently, the quantity R in
Eq. (19), which determines whether the contagion occurs or dies out,
is ill-defined. To resolve this issue, we consider the behavior of the
system during the early stages of infection, when the population con-
sists almost entirely of susceptible individuals. Under these conditions,
the local correlations of infected states surrounding newly infected
individuals develop at a much faster rate than the overall densities
of susceptible and infected nodes [23]. Additionally, after an initial
transient local correlations are expected to remain relatively constant
as long as the clusters of infected nodes developing around the initially
infected individuals (invading clusters) remain disconnected from each
other. Therefore, we define the variables

T N7}
I )

The quasi-stationary values of IT and ¥ can then be used to calculate
the condition for the epidemic outbreak, namely the critical value
in Eq. (22). This approach has been used to analytically determine
the epidemic threshold in clustered networks [23,45,51,52]. Here, we
extend this methodology to account for the presence of higher-order
interactions.

The equation governing the dynamics of IT and ¥ are derived from
the system in Eq. (16). To simplify the derivation and the tractability of
the model, we consider for both 4-motif states (I1.54S) and (IT1S4T),
the microscopical configuration where no closed triangles are present
in the motif, except the 2-simplex, namely

(29)

(I1S4S) = (1 — p*(I1S4S),

(ITSATYy ~ (1 = 9> (TTSAT)Y,.

Using the standard rule of differentiation and omitting the obvious
time dependency, we have

_ (SIS

(30)

(1)
I 2
iy @ B Wi 8L
D (1)

Around the disease-free state equilibrium ((S),({I),(SS),(SI),
(IT)) =(1,0,1,0,0), we obtain the following system of equations
[k =1 (1= @)= 11BIT + p¥ +[(k— 1) — k] pIT?
+ [PU= DG+ p 8 k=21 - 2~ 20,58 | 120 — p k11w
Y2011 — W — PRITY + [2/3 k=1 + 4ﬁA"7A] 129 — fk 1292,

11 =

(32)

Note that I1(¢) + ¥(¢) does not sum in general to 1 as the system of
Egs. (16) is no longer exact under the closure introduced in Eq. (7).
However, in Fig. 6(a) we show that the condition I1(r) + ¥(t) ~ 1
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Fig. 6. (a) Early stage of the dynamical evolution of the fast variable ¥ (green solid line) and ¥ + IT (red solid line), as obtained from numerical integration of the system in
Eq. (16). (b) Dynamical evolution of the density of infected individuals (black solid line) and of the fast variables I7 (green solid line) and ¥ (violet solid line), as obtained from
numerical integration of the system in Eq. (16). The dashed lines represent the quasi-stationary values IT and ¥ as obtained from numerical integration of the system in Eq. (32).
(c) Comparison between the critical value 4* obtained from the exact epidemic threshold in Eq. (23) (solid line) and the approximation in Eq. (34) (dashed line), for a Random
Simplicial Complex (RSC) with N = 2000, k = 20, k, = 6, and ¢ =~ 0.05. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

is consistent even before the variables have converged to their quasi-
stationary states.

Since the system in Eq. (32) is derived around the steady-state
equilibrium, the fixed points (I7,%) of the fast variables coincide with
the quasi-stationary states of the full system. However, due to the com-
plexity of the system, an exact closed-form solution for the equilibria as
functions of the model parameters is in general not analytically feasible.
Therefore, we can evaluate IT and ¥ by numerically integrating the
system in Eq. (32) across the entire set of model parameters and plug
in these values in the expression of the critical threshold in Eq. (23).
An example of the dynamical evolution of the fast variables IT and ¥,
obtained through numerical integration of Eq. (16), is illustrated in Fig.
6(b), along with the time evolution of the density of infected individ-
uals. Fig. 6(a) zooms in on the initial phase of the spreading, showing
how the fast variable ¥ (and II, consequently) rapidly converges to a
quasi-steady state.

We now show how to derive an approximate analytical expression
for the stationary states of the fast variables at the critical value A*,
as given in Eq. (23). We set ¥ = 0 in Egs. (32) and assume that
near the stationary states (17, %), the condition IT(r) ~ 1 — ¥ (¢) holds.
We consider the case where ¢ = 0 and A, is small, and apply an
asymptotic expansion of the quasi-stationary state ¥ around 4,, namely
¥ = ¥, + 44, + O(A2). Collecting all terms for ¥, and ¥,, we obtain
an approximate solution for the quasi-stationary states (I1,%¥) as:

’ (33)

By substituting this solution into Eq. (23), A* can be written as a
rational function depending on 4,. This can be further simplified by
expanding it as an asymptotic series in 14, and neglecting all the terms
of order 4% and higher, leading to 4* = Ay + 444, + O(42). This leads to
a simplified expression for the critical 1*, namely
k k-2
1M
In Fig. 6(c), we show a comparison between the exact condition for the
epidemic threshold in Eq. (23) and our approximation, in the case of
a RSC with N = 2000, k = 20, k4, = 6 and ¢ ~ 0.05. We observe that
Eq. (34) represents a good approximation of the epidemic threshold for
low values of 1,4, and gradually diverges from it for larger 4.

V-

(34)

Appendix B. Numerical computation of the epidemic threshold

In this appendix, we show how the critical value A*, as determined
by the condition in Eq. (23), is equivalent to the value obtained from
the largest eigenvalue of the Jacobian matrix of the system around the
disease-free state.
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Fig. 7. Comparison between the numerical values of R as given by Eq. (22) (black
solid line) and the maximum eigenvalue of the Jacobian of the restricted system (orange
line) as a function of A for four different values of A,. The model parameters are
N =2000, k =20, k, =6, u=0.05, ¢ ~0.05, and the values of [T and ¥ are obtained
through Eq. (32). Both conditions are equal to zero at the same critical value, A*. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

To streamline the calculations, we focus on the equations for (S),
(ST), and (SS) from Eq. (16). We further simplify the derivation em-
ploying the approximation in Eq. (30). Finally, we use the closures for
the triple states reported in Eq. (10) and for the four-node motif states
in Eq. (17). We can thus express the restricted system of equations
as given in Box I. The other variables of the system can be obtained
considering the conservation of state variables, namely (I) = 1 — (S)
and (IT) =1—-2(SI) - (SS).

To evaluate the stability of the disease-free state equilibrium, we
calculate the Jacobian of the system, denoting

[0 =(S) £ =(ST);  f;0)=(SS), (36)

where y = (S,S1,S5S).

We can express the terms of the Jacobian matrix J around the
disease-free state equilibrium y = (1,0,1) as given in Box II, where
we have used the relation given in Eq. (29) to avoid the presence of
ill-defined variables.

We focus on the condition at which the largest eigenvalue A, =
Apax(J) of the Jacobian matrix crosses the imaginary axis, namely
Apax > 0.

In Fig. 7, we compare the numerical evaluation of both R, defined
in Eq. (22), and A, for k = 20, k, = 6, u = 0.05, ¢ ~ 0.05 and
where the values of IT and ¥ are obtained through Eq. (32). Despite
exhibiting different behaviors, both conditions converge to zero at the
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Box II.

same value of A. This convergence demonstrates the reliability of the
relation obtained in Eq. (23) for evaluating the epidemic threshold in
the pair-based model.

Data availability

Data will be made available on request.
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