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ABSTRACT

Modelling epidemics using contact networks provides a significant improvement over classical compart-
mental models by explicitly incorporating the network of contacts. However, while network-based models
describe disease spread on a given contact structure, their potential for inferring the underlying network
from epidemic data remains largely unexplored. In this work, we consider the edge-based compartmental
model, a compact and analytically tractable framework, and we integrate it within dynamical survival analy-
sis to infer key network properties along with parameters of the epidemic itself. Despite correlations between
structural and epidemic parameters, our framework demonstrates robustness in accurately inferring contact
network properties from synthetic epidemic simulations. Additionally, we apply the framework to real-
world outbreaks—the 2001 UK foot-and-mouth disease outbreak and the COVID-19 epidemic in Seoul—
to estimate both disease parameters and network characteristics. Our results show that our framework
achieves good fits to real-world epidemic data and reliable short-term forecasts. These findings highlight the
potential of network-based inference approaches to uncover hidden contact structures, providing insights
that can inform the design of targeted interventions and public health strategies.

KEYWORDS: epidemics; inference; contact networks.

1. INTRODUCTION
The spread of infectious diseases is inherently tied to the structure of human interactions. Network
theory provides a powerful framework for understanding how diseases propagate by capturing
the complex web of contacts between individuals [1–5]. Studies have highlighted how structural
properties such as heterogeneity [6–10], communities [11–14], clustering [15–18], and degree
correlations [19–22] play a significant role in shaping epidemic dynamics.
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Epidemic models have traditionally been used to describe and predict disease spread based
on assumptions about the underlying contact structure [2, 23]. Ultimately, their applicability to
real-world processes depends on the availability and quality of data [24]. These models range in
complexity, from classical mass-action approaches, where populations are assumed to mix homo-
geneously [25], to sophisticated network-based frameworks that explicitly incorporate individual-
level connectivity patterns [26–28]. Simpler models offer easier tractability but may overlook
key structural features, while more complex models provide richer descriptions but require more
detailed input data [24, 29–31]. Finding a balance between these aspects is essential for effective
epidemic modelling [32].

A particularly elegant and efficient modelling framework is the edge-based compartmental
model (EBCM), which provides a compact yet powerful representation of epidemic processes
on networks [33–35]. Unlike standard compartmental models where incorporating heterogeneity
significantly increases model complexity, EBCM encodes network structure and characteristics
through probability-generating functions, allowing epidemic dynamics to be described with only
a few parameters and a reduced number of equations.

In many real-world scenarios, direct measurements of contact networks are unavailable or incom-
plete. Although collecting data from contact networks is feasible in certain cases, such as sexually
transmitted infections [36–39], it remains challenging for respiratory diseases [40–42]. While
epidemic models are often used to simulate outbreaks given a known network structure, inferring
the structure of the contact network from observed epidemic data represents an equally important
challenge [43–47]. Since spreading dynamics inherently reflect network properties, they can be
used to extract valuable information about the underlying structural information. Various methods
have been proposed to reconstruct networks from data, including likelihood-based optimization
approaches [48–52] and Bayesian inference techniques [53–57]. However, these methods often
require detailed temporal data or strong prior assumptions, making them difficult to apply in
real-world epidemic surveillance [58].

An alternative approach, Dynamical Survival Analysis (DSA), has been introduced to estimate
epidemic parameters using infection and recovery time distributions [59]. Originally developed for
mass-action models [60, 61], DSA was recently extended to network-based models [62], enabling
parameter estimation while incorporating some aspects of network structure. However, existing
applications remain limited in their ability to fully capture the heterogeneity of contact networks.

In this paper, we integrate the DSA approach with the EBCM [33] to develop a Bayesian frame-
work for inferring both disease and network parameters from epidemic data. This extends previous
works [63], shifting from identifiability analysis to active inference in both synthetic and real-world
scenarios. The manuscript is structured as follows: Section 2.1 introduces the EBCM framework,
and Section 2.2 details the Bayesian inference procedure. Section 3 presents validation on synthetic
and real data, specifically the first wave of COVID-19 in Seoul and the 2001 foot-and-mouth disease
epidemic in the UK. Finally, Section 5 discusses the implications of our findings.

2. METHODS
In this section, we outline the methodologies that form the foundation of our inference framework.
First, we introduce the EBCM, which provides a compact representation of SIR processes on
networks. This model serves as the backbone for describing the epidemic dynamics in structured
populations.

Next, we present the complete inference process, detailing how these methods are integrated
to estimate both epidemic and network parameters from observed outbreak data. Specifically, we
employ Dynamic Survival Analysis (DSA) to construct the likelihood function, leveraging its ability
to handle censored and aggregated epidemic data. Moreover, we describe the Robust Adaptive
Metropolis (RAM) algorithm, a Markov Chain Monte Carlo (MCMC) technique designed for
efficient exploration of the parameter space. RAM adapts to the local structure of the posterior
distribution, improving convergence and robustness in high-dimensional settings. Together, these
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methods form a comprehensive framework for inferring epidemic dynamics and network structures
from real-world outbreak data.

2.1 Edge-based compartmental model
We consider a Susceptible-Infected-Recovered (SIR) epidemic process, where individuals can be
in one of three states: susceptible (S), infected (I), or recovered (R). Infection occurs at rate β
along a link between a susceptible and an infected node, while infected nodes recover independently
of the network at rate γ . In this study, we employ the EBCM [33], which provides a compact
and analytically tractable representation of epidemic dynamics on contact networks. The EBCM
assumes that disease transmission occurs on a network generated by the configuration model (CM)
[64, 65], which is characterized by a degree distribution P(k). The key idea behind EBCM is to
track the probability that a randomly chosen node remains susceptible rather than explicitly tracking
individual infection events.

A central variable in the model is θ(t), defined as the probability that a randomly selected
neighbor of a test node u has not transmitted the disease to u by time t. From now on, we omit
the obvious time dependence. Given that a node u has degree k, the probability that it remains
susceptible is su(k, θ) = θk. Thus, the overall fraction of susceptible nodes in the population is
given by:

S(t) =

∑
k

P(k)θk
= 9(θ), (1)

where9(θ) represents the probability generating function (PGF).
If a fraction ρ of the population is initially infected at t = 0, we modify this expression as

S(t) = 9̂(θ) =
∑

k P(k)S(k, 0)θk, where S(k, 0) is the probability that a node with degree k is
initially susceptible. Since initially infected nodes are selected at random, it follows that S(k, 0) =

1 − ρ. To fully characterize the system, we decompose θ into three probabilities, namely θ =

ψS + ψI + ψR, where ψS, ψI , and ψR denote the probabilities that a randomly selected neighbor
of node u is, respectively, in the susceptible state at time t; infected but has not yet transmitted
the disease to u by time t; or recovered without having transmitted the infection to u during their
infectious period. Note that θ̇ = −βψI , where β represents the rate at which an infected partner
transmits the disease to the test node. Furthermore, we can express ψI = θ − ψS − ψR, which
leads to θ̇ = −β(θ − ψS − ψR). Additionally, we express ψR and ψS as ψR = ψR(0) +

γ (1 − θ)/β and ψS = ψS(0)9̂ ′(θ)/⟨k⟩, where 9̂ ′(θ) denotes the derivative of the probability
generating function (PGF) with respect to θ . Additionally, the average degree can be defined as
⟨k⟩ =

∑
k kP(k)S(k, 0) which is also equivalent to the derivative of the PGF evaluated at θ =

1. Finally, ψR(0) and ψS(0) are the probabilities of the test node being initially connected to a
recovered or susceptible node respectively. Further details on the derivation of these expressions
can be found in the supplementary material or in the original papers [1, 33]. By expressingψR and
ψS as functions of θ , we can redefine θ̇ as a differential equation that depends only on θ ,β ,γ , and the
initial condition. With these considerations, the model is fully described by the following system of
equations:

dθ
dt = −βθ + βψS(0) 9̂

′(θ)
⟨k⟩ + γ (1 − θ)+ βψR(0),

dR
dt = γ (1 − S − R), S = 9̂(θ).

(2)

Typically, we assumeψR(0) = 0 andψS(0) = 1−ρ. Solving Equations (2) provides the evolution
of S(t), I(t), and R(t). Moreover, the basic reproductive number (R0) of the EBCM is defined as

R0 =
β

β + γ

⟨k2
⟩ − ⟨k⟩
⟨k⟩

, (3)
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Table 1. Details of the probability generating
functions used throughout the papera,b

Poisson Negative binomial

Parameter(s) µ (r,µ)

9(x) eµ(x−1)
(

r
r+µ(1−θ)

)r

9 ′(x) µeµ(x−1) µ

(
r

r+µ(1−θ)

)r + 1

aThe parameterµ for both distributions corresponds to the
average degree given by

∑
k kP(k)

bTable comparing the probability generating functions
(PGFs) and their derivatives for Poisson and Negative
Binomial degree distributions. It includes the associated
parameters and analytical forms of9(x) and9 ′(x) used in
the study.

where ⟨k2
⟩ − ⟨k⟩ =

∑
k k(k − 1)P(k)S(k, 0), corresponding to the derivative of the PGF evaluated

at θ = 1. For simplicity, from now on, we apply a change of variableµ ≡ ⟨k⟩.
In this study, we consider two different degree distributions, which are summarized in Table 1

along with their parameters and probability generating functions. The Poisson distribution is char-
acterized by a single parameterµ, which defines both its mean and variance, resulting in a relatively
homogeneous degree distribution. In contrast, the Negative Binomial distribution, parametrized by
µ, which represents the average degree, and r, which, together withµ, determine the variance of the
distribution. In particular, smaller values of r lead to greater overdispersion. This flexibility makes
the Negative Binomial distribution well-suited for modeling both homogeneous and heterogeneous
network structures.

2.2 Statistical inference framework
Accurate parameter estimation in epidemic modelling usually relies on optimizing a likelihood
function that reflects both the underlying transmission dynamics and the nature of the available
data. A common approach involves fitting model-generated epidemic curves to observed data by
minimizing discrepancies between them. However, this method is highly sensitive to noise, biases,
and incomplete datasets, which can compromise inference accuracy. To address these challenges,
we employ the Dynamic Survival Analysis (DSA) framework [59, 66–68], which provides a more
robust approach by directly incorporating individual transition times between epidemic states into
the likelihood function.

DSA was developed to overcome the limitations of traditional inference methods in infectious
disease epidemiology by integrating dynamical systems theory with survival analysis techniques.
Unlike conventional approaches that rely on aggregate epidemic curves, DSA leverages the mean-
field ordinary differential equations (ODEs) governing population-level dynamics to model the
probability distributions of transition times, such as the time of infection or recovery. This for-
mulation allows DSA to construct likelihood functions for individual-level trajectories, making
it particularly effective in handling censored, truncated, or incomplete data. In this framework,
the susceptible fraction of the population, S(t), is reinterpreted as a survival function, satisfying
S(0) = 1. More generally, when a fraction ρ of individuals is initially infected, we introduce three
rescaled survival functions, which are defined as

S̃(t) =
S(t)

1 − ρ
= 9(θ), Ĩ(t) =

I(t)
1 − ρ

, and R̃(t) =
R(t)

1 − ρ
. (4)

By substituting Equation (4) in the system of equations for the EBCM, as given by Equations (2),
we have
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˙̃S(t) =
dS̃
dθ

dθ
dt = 9 ′(θ)θ̇ = 9 ′(θ)

[
− βθ + β(1 − ρ) 9̂

′(θ)
⟨k⟩ + γ (1 − θ)

]
.

˙̃R(t) = γ Ĩ(t) and Ĩ(t) = 1/(1 − ρ)− S̃(t)− R̃(t),

(5)

where, at t = 0 we have S̃(0) = 1, Ĩ(0) = ρ/(1 − ρ) and R̃(0) = 0.
DSA interprets the susceptible curve as an improper survival function representing the time of

infection for a randomly chosen initially susceptible individual. That is, S̃(t) = P(TI > t), where
the random variable TI denotes the infection time. The density function of TI is given by −

˙̃S(t),
which is improper since limt→∞ S̃(t) = P(TI = ∞) > 0. We define P(TI = ∞) = 1 − τ , where
τ represents the final epidemic size. To obtain a proper survival function, we condition it on a final
observation time T ∈ (0, ∞) and the final epidemic size τ at time T. The resulting probability
density function fτ (t) on the interval [0, T] is then given by:

fτ (t) = −

˙̃S(t)
τ

. (6)

Note that DSA does not require knowledge of recovery times. However, if these times are available,
they can be incorporated to enhance the quality of inference. Let TR represent the time of recovery
of an infected individual. Given the infection time TI , the infectious period TR − TI follows an
exponential distribution with rate γ . Using Equation (6) and the density of the infectious period,
we can define the density of the recovery time TR as:

g(t) =

∫ t

0
fτ (u)γ e−γ (t−u)du. (7)

Equation (7) represents the convolution of the density of the infection time fτ (t) and an exponential
distribution with rate γ , corresponding to the density of the infectious period. In practice, solving
the system of ODEs (5) with respect to the observed recovery times is computationally more
convenient.

Finally, the normalized density of the recovery time is given by:

g̃(t) =
g(t)∫ T

0 g(t)dt
. (8)

One of the advantages of the DSA method is the ability to build various likelihood functions based
on the observed data. Let N be the size of the population and M be the initial number of infected
individuals at the beginning time t = 0, and usually N >> M. We have K individuals out of
N, who are infected by time T and t1, t2, . . . , tK represent the time of infection for each infected
individual. If L individuals have recovered by time T out of a total of K + M infected, let r1, r2, ., rL
denote the time of recovery. If we can observe the time of infection and recovery exactly for each
individual, then we can define the infectious period, wi = ri − ti or wi = ri for initially infected,
i = 1, 2, . . . , L respectively. Also, we could have L̃ infected individuals who have not recovered by
time T, ϵj = T − tj or ϵj = T, j = 1, 2, . . . , L̃, denote the censored infectious period respectively.

Given random samples of time of infection, t1, t2, . . . , tK ,the log likelihood function is given by:

ℓ1 = K log(τ )+ (N − (M + K)) log(1 − τ)+

K∑
i=1

log( fτ (ti)). (9)
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The log likelihood function for the infectious period, w1, w2, . . . , wL is given by

ℓ2 = L log(γ )− γ

L∑
j=1

wj. (10)

The log likelihood function for the time of recovery, r1, r2, . . . , rL is given by

ℓ3 =

L∑
j=1

log(g̃(rj)). (11)

Finally, we can define the log likelihood for the censored infectious period, ϵ1, ϵ2, . . . , ϵL̃;

ℓ4 = −γ

L̃∑
k=1

ϵk. (12)

In some cases, we only know the number of infected individuals, K, by a given time, T, but lack
information about the total population size N. This situation is common in real epidemic scenarios,
where data about the segment of the population at risk of infection is often unavailable. For such
cases, the likelihood ℓ1 can be reformulated as: ℓ1 =

∑K
i = 1 fτ (ti), excluding terms related to

the total population size. With this formulation, we can analyze the dynamics of the proportion of
infected, susceptible, and recovered individuals. Furthermore, it is possible to estimate an effective
population size using the following equation

Neff =
K

1 − ST
. (13)

Depending on the data and particular context, we can use any of the four likelihoods described above
or a combination of them. For example, suppose we just observe K infections before a cut-off time
T, then we could just use ℓ1 (9). If, besides the infection times, we also observe L recovery times
but not the specific nodes who underwent these changes, then we could use the combination of
ℓ1 + ℓ3, see Equations (9) and (11). However, if the data is available at the node level and we
have pairs of infection and recovery times for each node, we could use the combination ℓ1+
ℓ2, see Equations (9) and (10), since we can calculate the infectious period for each node. The
likelihood functions described above do not explicitly incorporate the network parameters, making
it impossible to derive closed-form solutions for their maximum likelihood estimates. To address
this limitation, we adopt a Bayesian approach, which allows us to sample from the posterior
distribution and derive point estimates from it. To construct the sample, we employ a Markov Chain
Monte Carlo (MCMC) method, specifically the Robust Adaptive Metropolis (RAM) algorithm.
The RAM algorithm is more efficient than the standard Metropolis-Hastings algorithm [69], as it
dynamically adjusts the variance-covariance matrix of the proposal distribution to maintain an opti-
mal acceptance rate during the Metropolis steps. We assign vaguely informative prior distributions
(little information is given about the parameters to be estimated) to the model parameters: a Gamma
distribution, Gamma(a, b), for the β and γ parameters, which is defined as

Gamma(x, a, b) ∼
baxa−1e−bx

0(a)
, (14)

where0(a) represents the gamma function. Additionally, for the parameter ρ in the SIR model, we
assume a Beta distribution, Beta(a, b), where, in this context, a = 1 and b = 1 are chosen from a
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Figure 1. Graphical representation of the inference process. The procedure starts with epidemic data D as
input for the Robust Adaptive Metropolis (RAM) algorithm, which employs the likelihood function
derived from the DSA framework (see main text). The RAM algorithm generates a Markov chain of
parameter samples, forming the posterior distribution. From this distribution, we obtain parameter
estimates using two approaches: credible intervals and point estimates, as detailed in the main text.

uniform distribution. Additionally, we assign a non-informative Gamma prior to the parameters of
the degree distribution based on the support of these parameters.

Given a dataset D, our goal is to fit the data with the EBCM, which is characterized by the set
of parameters X = (β , γ , ρ,1). Here, we use the vector 1 to represent the parameters of the
probability generating function of the network’s degree distribution. Our objective is to infer the
parameter set X such that the output from the EBCM matches the observed data. To achieve this,
we utilize the RAM algorithm to generate one or more chains for the values of X, which allows us
to construct a sample of the posterior distribution. From this sample, we remove the burn-in and
apply a thinning procedure to reduce autocorrelation. The inference scheme is illustrated in the left
panels of Fig. 1.

Once a posterior distribution is obtained, we can find a point estimate for each parameter. This
can be done by either calculating the marginal mean, marginal median or taking the joint mode of the
posterior distribution, i.e. the point of highest probability in the full posterior. As shown in the top
right panel in Fig. 1. Either of these can be used in conjunction with the EBCM to produce one single
epidemic curve that can be compared to the data. However, to generate a credible interval around
this single epidemic curve, we take a subsample S from the full posterior and use each element to
solve the EBCM, thereby generating a set of solutions, as shown in the bottom right panel of Fig. 1.
These can used to generate the desired credible interval over a specified period of time.

In subsequent sections, we show the application of this workflow to estimate network and
epidemic dynamics parameters for two different scenarios. First, by the use of synthetic data
corresponding to a controlled case where ground truth is available. Second, we consider two
different datasets corresponding to real-world epidemics.

3. INFERENCE FROM SYNTHETIC DATA
We begin by analyzing synthetic data to verify the method’s accuracy and effectiveness in a con-
trolled environment. First, we consider 100 realizations of Gillespie simulations [70] withβ = 0.2,
γ = 1, on networks with 104 nodes exhibiting Poisson (POI(µ = 10)) and Negative Binomial
(NB(µ = 10, r = 1)) degree distributions. Since in a real epidemic process, complete data are
rarely available, we consider four possible scenarios which reflect varying data availability, which
are:

• ℓ1 + ℓ2: infection times (t1, t2, . . . , tK) and infection periods (w1, w2, . . . , wL)
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• ℓ1 + ℓ3: list of infection times (t1, t2, . . . , tK) and a decoupled list of recovery times
(r1, r2, . . . , rL).

• ℓ1: infection times only (t1, t2, . . . , tK).
• ℓ3: recovery times only (r1, r2 . . . rL).

Likelihood ℓ4 is not used for the synthetic data, as the cut-off time is set after the end of the
epidemic. However, this likelihood is used in Section 4.2.

Following the procedure outlined in Section 2.2, we fit our models to all stochastic realizations.
Initially, we consider the case where the data are fitted using the correct model. Specifically, data
from simulations on networks with a Poisson degree distribution were fitted using the Poisson
(Poi) model in the EBCM; we refer to this scenario as Poisson-Poi. Similarly, a match with the
Negative Binomial is denoted by Negbin-NB. We also consider model mismatch, where data from
networks with a Poisson degree distribution were fitted using the Negative Binomial (NB) model
(Poisson-NB), and vice-versa, that is Negbin-Poi.

For all four possible combinations (Negbin-NB, Poisson-Poi, Negbin-Poi, Poisson-NB), we used
the four different scenarios discussed above. Then, for each stochastic realization, we construct
a sample of the posterior distribution and calculated the marginal median of β , γ , and µ, and
computed the basic reproduction number as defined in Equation (3). The point estimates for β̂ ,
γ̂ , µ̂, R̂0 are obtained as the mean values of the distributions of the marginal medians. In Fig. 2,
we show the density of the marginal medians and their mean, i.e. point estimates, for these four
parameters and for both model match and mismatch. Additionally, we present these results for the
four different data availability scenarios presented above.

As expected, the correct matches, Negbin-NB, first column, and Poisson-Poi, second column,
yield accurate estimations for all parameters and for all different likelihoods. In the presence of data
and model mismatch, we observe that fitting Poisson data with the Negative Binomial model (fourth
column) often yields reasonable results. This can be attributed to the flexibility of the Negative
Binomial distribution, i.e. one more free parameter compared to Poisson, which allows it to capture
both homogeneous and heterogeneous degree distributions. In contrast, fitting data generated with
the Negative Binomial with the Poisson model underperforms. This is especially evident in the
estimates forβ andµ in the first and third rows, where the EBCM with a Poisson degree distribution
tends to overestimate β and underestimateµ.

It is noteworthy that the mismatched Negbin–Poi model produced better estimates forβ andµ in
the ℓ1 +ℓ3 and ℓ3 scenarios. However, even in these cases, γ was substantially overestimated. These
qualitative observations are further supported by the larger bias and mean squared error (MSE) of
the estimates, as detailed in Supplementary Material (SM). For the estimation of γ , scenario ℓ1+ℓ2
uses the infectious periods as data. Since the infectious period directly reflects γ (the inverse of the
mean infectious period), this scenario yields highly accurate estimates, even for mismatched models
and data. By contrast, estimates of γ exhibit a larger bias in mismatched scenarios ℓ1 + ℓ3 and ℓ3,
where the recovery times are used instead, but they do not align with the infection times.

Interestingly, in the mismatch cases, in particular, see the panel on the third row and third column
in Fig. 2, we note that the estimates ofµ based on scenario ℓ1 + ℓ2 perform poorly when compared
to estimates based on scenarios ℓ1 and ℓ3. This, at first, is surprising since ℓ1 +ℓ2 provides the most
complete data. However, due to the model mismatch manifesting itself mainly in the infection part,
this is likely to lead to a better estimation ofγ , which in turn has a negative effect on the estimation of
β andµ. In contrast, in scenarios ℓ1 and ℓ3, the estimation ofµ improves at the expense of obtaining
less accurate estimates of γ . These observations are further supported by the MSE values presented
in SM, where this analysis is discussed in detail.

Even though accurate and precise estimations can be obtained using the marginal medians of the
posterior distributions, it is important to recognize that the posterior distribution is multivariate.
This means that the marginals are not always fully representative of the entire distribution, especially
when there is a correlation between parameters. When used for inference, network-based mean-
field models have been noted to exhibit correlations between the infectivity β and parameters of
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Figure 2. Distributions of the marginal medians for model parameters and the basic reproduction number
inferred from the DSA framework. Each row represents the distribution of a different inferred parameter.
The synthetic data were generated using either a Poisson or a Negative Binomial degree distribution, and
inference was performed using both distributions for comparison. Each column corresponds to different
inference cases: (a) and (b) show results where the data were fitted with the same degree distribution used
for generation—(a) for Negative Binomial and (b) for Poisson. (c) and (d) show cases where the data
were fitted using the opposite degree distribution—(c) for Negative Binomial data fitted with a Poisson
model and (d) for Poisson data fitted with a Negative Binomial model. This analysis highlights the impact
of assuming different degree distributions on parameter inference. The results are obtained by fitting 200
distinct realizations of Gillespie simulations with parameters β = 0.2, γ = 1, and an initial proportion
of infected individuals set to 10−4. Networks with a Negative Binomial (Negbin) degree distribution were
generated using parametersµ = 10, r = 1, while networks with a Poisson degree distribution were
generated withµ = 10.

the degree distribution, such as the average degree µ [62]. For this reason, we now investigate
the projections of the posterior distribution. We do this for Poisson-Poi case, and we consider the
scenario where the data is complete, i.e. ℓ1 + ℓ2. In Fig. 3a, we show the projection of the medians
of the marginals in the (β ,µ) space. We observe a strong inverse correlation between the infection
rate β and the average degreeµ.

Although we observe a considerable variance in both the average degree and the infection
rate, it’s important to highlight that most of the estimates of parameters are around the master
parameter used in the simulation. Furthermore, no correlation is observed when exploring the
(β , γ ) parameter space. As expected, the correlations between parameters can be mitigated by
fixing either the infection rate or the average degree. This approach leads to a posterior sample
without long tails, resulting in more accurate estimates. Further discussions on the process of fixing
parameters are provided in SM.

Up to this point, we have focused on parameter estimation with their validity based on compar-
ison to their true values. However, another important consideration is to assess how the epidemic
curve, such as new infecteds or prevalence, generated using the EBCM with the point estimates
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Figure 3. DSA parameters estimation for each synthetic dataset. (a) Projection of the 250 median
estimates from the marginal posterior distributions of each dataset in the β–µ space. (b) Projection of the
median estimates in the γ –β space. (c) Epidemic curves from three selected datasets (gray lines)
alongside the corresponding curves obtained by solving the EBCM using the median parameter estimates
[pink, green, and orange points in panels (a) and (b)]. Despite variations in parameter estimates, the
model accurately reproduces the observed epidemic dynamics of the data. Panel (d) shows 50 of the 250
datasets (gray lines) with the solution of the EBCM obtained using the master parameters (dotted black
line) and the solution from the final point estimates from the marginal posteriors (red line). Results are
based on 250 synthetic epidemic datasets generated on a network with a Poisson degree distribution. The
true parameters used were β = 0.2, γ = 1,µ = 10, and ρ = 1 × 10−4. For inference, the cut-off time
was set to T = 25.

compares to the original outbreak data. To address this, we consider three different stochastic
realizations of the epidemic, see grey curves in Fig. 3c. We fit each of these separately with the
corresponding point estimates reported as the pink, green, and orange points in Fig. 3a and b.
The EBCM with these point estimates leads to excellent agreement with the original stochastic
realizations, see Fig. 3c and d.

4. INFERENCE FROM REAL-WORLD DATA
In this section, we further validate our methodology by analyzing real epidemic data from two
outbreaks. Based on the general procedure presented in Section 2.2, we apply it to two real epidemic
datasets. The first one is the 2001 Foot-and-Mouth Disease (FMD) epidemic in the United
Kingdom, which involved a highly contagious virus affecting farm animals. The second dataset
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captures the first wave of COVID-19 in Seoul, South Korea, documenting the onset of symptoms
and confirmation of infection for approximately 500 individuals over the first 82 days following the
appearance of the initial confirmed case.

For both datasets, we fit the EBCM using a probability-generating function corresponding to a
Negative Binomial degree distribution, chosen for its flexibility in modelling both homogeneous
and heterogeneous contact patterns. We adopt non-informative prior distributions, assigning β , γ ,
µ, and r a GAMMA(a, b) prior, where a is randomly selected from the parameter space and b is
fixed at 10−4. The initial number of infected individuals follows a BETA(1, 1) prior, representing
a uniform distribution and reflecting complete uncertainty about the starting conditions. A key
distinction from our analysis of synthetic data is that the total population size is unknown. As
discussed in Section 2.2, one approach is to estimate an effective population size using Neff =

K/(1 − S[T]) [66]. To obtain a denser posterior distribution, we performed multiple runs of the
RAM algorithm, varying the initial conditions of the chain for each run. Consequently, we find point
estimates for each parameter and evaluate the accuracy of the EBCM predictions by comparing them
to real-world epidemic data. To quantify the discrepancy, we use the mean squared error (MSE),
defined as

MSE =
1
T

T∑
d=0

(Ĵ(d)− J(d))2, (15)

where d denotes the day index, T is the cut-off time, Ĵ(d) represents the incidence predicted by the
EBCM, and J(d) corresponds to the epidemic incidence observed in the real-data.

Here, we compare the predictions of the EBCM with those obtained using the standard mass-
action (MA) SIR model [59]. The MA model is incorporated into the inference framework
described in Section 2.2 and serves as a benchmark for epidemic curve predictions. The governing
equations for the SIR MA model are given by:

ṡt = −σ stιt , ι̇t = σ stιt − γ ιt , ṙt = γ ιt , (16)

where γ is the recovery rate, and σ is the infection rate. It is important to note that σ differs from
the infection rate β in the EBCM: while β represents the per-contact transmission rate, σ describes
the infection rate per infectious individual.

Unlike the EBCM, which explicitly accounts for the network structure, the MA model as-
sumes homogeneous random mixing, meaning it does not incorporate any connectivity pat-
terns. As a result, while the EBCM enables inference of both the epidemic dynamics and
the underlying contact structure, the MA model can only be used to predict the epidemic
curve. Consequently, our comparison is limited to the epidemic trajectory rather than network-
related properties. For parameter inference, we follow the same numerical procedure as outlined
earlier.

4.1 Foot-and-mouth disease data
In this section, we analyze the Foot-and-Mouth Disease (FMD) dataset, which provides daily
incidence data, J(d), representing the number of newly infected individuals per day over a 200-
day period. We focus on the first 82 days, corresponding to the initial wave of the outbreak. In
the DSA framework, performing inference requires information about the temporal distribution of
infections. To address this, we assume that infection times within each day are uniformly distributed
and, based on this assumption, consider only the ℓ1 likelihood.

We generate five independent Markov chains, each running for 100,000 iterations, following the
methodology outlined in Section 2.2. To construct the posterior distribution, we discard the first
50,000 iterations as burn-in and thin the remaining samples by selecting every 50th iteration to
mitigate autocorrelation. From the resulting posterior, we estimate the five parameters (β , γ ,µ, r, ρ)
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Table 2. Estimated parameter values obtained using three inference methods: marginal mean, marginal
median, and joint mode, for the the Foot-and-Mouth disease outbreaka,b

Parameter Marginal mean Marginal median Joint mode

β 0.043 0.036 0.041
γ 0.30 0.28 0.32
µ 13.51 9.70 7.34
r 9.71 5.25 1.72
Variance 32.32 27.58 38.55
R0 1.89 1.32 1.31
MSE incidence 3.44 1.03 0.76
aThe table also reports the Mean Squared Error (MSE) between the predicted incidence and the observed data.
bTable showing estimated parameter values for the Foot-and-Mouth Disease outbreak using three inference methods: marginal
mean, marginal median, and joint mode. Parameters includeβ,γ ,µ, r, variance, R0, and the Mean Squared Error (MSE) of predicted
incidence.

using three different methods: marginal mean, marginal median, and joint mode, as shown in 1. The
joint mode is computed using the mean-shift algorithm, which approximates the kernel density based
on the posterior sample.

In Fig. 4a, we compare the EBCM solutions with real epidemic data using different parameter
estimation methods. As shown, the parameters obtained via the marginal mean fail to capture the
system’s behavior. While the EBCM integrated with parameters estimated through the marginal
median provides a better fit, it still does not fully capture the original data. However, the EBCM
solution obtained using parameters estimated via the joint mode exhibits excellent agreement with
the epidemic data. Additionally, we sample a subset of parameters,S, from the posterior distribution
to construct a 95% credible interval for the daily new infections, as mentioned in the bottom right
of 1. Notably, the prediction based on the joint mode lies at the centre of this interval. This is further
illustrated in Fig. 4b and c, where we present projections of the full posterior distribution for the
(β ,µ) and (r,µ) parameter spaces, respectively. These figures highlight that the marginal mean and
marginal median estimates lie outside the region of highest posterior density. On the other hand,
point estimates obtained using the joint mode are closer to the densest regions of the posterior
projections when compared to the estimates from the marginal distributions. The discrepancy is
likely due to the presence of long tails in the posterior distributions, which obscure important
correlations between parameters and lead to suboptimal point estimates. In Table 2, we provide the
point estimates for each method, along with the corresponding values of the MSE calculated from
the infeed incidence.

Additionally, in Fig. 4d, we show the degree distribution with values of the mean and variance
that are in line with expectations since highly connected markets were disproportionately affected
at the beginning of the outbreak leading to a marked reduction in network heterogeneity [71].
While the model successfully captures the epidemic curve, the inferred contact network structure
cannot be directly validated against ground truth data, as no empirical contact network is available
for comparison.

Furthermore, we compare the predictions made by the EBCM, with the ones made by using
the MA model. In this case, the parameters exhibit a lower correlation, resulting in a posterior
distribution without long tails. Consequently, the marginal median, marginal mean, and joint mode
produce similar estimates. In the table at the top-left corner in Fig. 5, we show the estimates of β ,
γ , and R0. Using these estimates, we can compare the MA and EBCM models in their ability to
describe the original data. In Fig. 5, we plot the incidence along with the MSE calculated for each
case.

The EBCM, which accounts for an explicit contact structure, provides a closer fit to the original
data compared to the classical MA model. This is clearly evidenced by the lower MSE values
achieved by the EBCM, suggesting that the FMD outbreak is better described by a model with an
explicit contact structure rather than a homogeneously mixed model.
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Figure 4. Summary of inference results for the 2001 Foot-and-Mouth Disease outbreak in the UK. (a)
Evolution of the incidence based on parameter estimates from the three methods, alongside the 95%
credible interval from the posterior distribution. The observed FMD incidence, smoothed using a 7-day
moving average, is also shown for comparison. (b) and (c) Heatmaps of the posterior distribution
projections, showing parameter density across the (β ,µ) and (r,µ) spaces, respectively. Each projection
includes point estimates obtained using the marginal mean, marginal median, and joint mode. (d) Inferred
degree distribution obtained using the joint mode estimation method.

4.2 COVID-19 data from Seoul, South Korea
In this section, we extend our analysis to the first wave of the COVID-19 pandemic in Seoul, South
Korea, covering an 84-day period from January 26 to April 18, 2020 [72]. This dataset provides
information on the time of symptom onset for each individual, as well as the date of their positive test
result. For our analysis, we assume that the time of infection coincides with the onset of symptoms.
Given the strict isolation measures in place, we treat the time of a positive test result as the effective
recovery time, as individuals were promptly isolated upon testing positive. Using this dataset, we
can aggregate the information to track the evolution of incidence (the number of new infections per
day, as in Section 4.1), prevalence (the total number of currently infected individuals at any given
time), and daily recoveries (the number of individuals recovering each day).

Notably, the Seoul COVID-19 dataset also includes contact pattern data, recording the number
of contacts each infected individual had between symptom onset and recovery. This allows us to use
the contact data as ground truth for evaluating the network structure characteristics inferred by the
EBCM. By comparing the inferred network properties with empirical contact data, we assess the
capability of the model to recover meaningful structural information from epidemic observations.
To perform our analysis, we consider the Negative Binomial degree distributions and follow the
same procedure as in Section 4.1. Additionally, we consider the likelihood ℓ1 + ℓ2, which is able to
accommodate the most complete type of data.
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Figure 5. Comparison of predicted incidence of infections using the EBCM and mass-action model for
Foot-and-Mouth Disease (FMD). The estimated incidence curves are presented for the DSA framework
using the Edge-Based Compartmental Model (EBCM, shown as the thick continuous line) and the
Mass-Action (MA) model (depicted square markers). Point estimates were derived using the joint mode
for both models. The table in the top-left corner displays the results of the MA model, while the EBCM
estimates can be found in Table 2. The thin black line with circle markers represents the 7-day moving
average of observed FMD cases.

In Fig. 6, we show the predictions based on the EBCM for prevalence, incidence, and daily
recoveries.

As with the FMD disease dataset (Section 4.1), the set of parameters estimated using the joint
mode provides a temporal evolution of the system that aligns closely with the original data. In this
case, the marginal median also performs well, yielding results that are closer to those obtained with
the joint mode. In contrast, the marginal mean produces the least accurate results, failing to capture
the behavior of the system. These findings are illustrated in Fig. 6a–c, which show the evolution of
incidence, prevalence, and daily recoveries for each method. Additional evidence for these results is
provided by the Mean Squared Error (MSE) values in Table 3.

In Fig. 6d, we compare the inferred degree distribution with the one obtained from the contact
data. While the inferred distribution captures key characteristics of the empirical data, the point
estimates derived from the joint mode yield a lower average degree and variance than those observed
in the real network. Notably, the Negative Binomial distribution struggles to fully reproduce the
long tail present in the empirical contact data, suggesting that higher-degree individuals may be
under-represented in the inferred network structure.

Furthermore, we can use the contact data to fix the average degree. In this case, we fixµ = 7.61,
which is the average number of contacts entered in the survey. We can apply the inference procedure
to find β , γ , and the parameter r of the Negative Binomial distribution. Table 4 presents the point
estimates obtained from the three methods: marginal mean, marginal median, and joint mode. In this
scenario, the three methods produce very similar estimates. Furthermore, in Fig. 7a, we observe
the incidence predicted by the three methods, which are nearly identical. This indicates that fixing
the average degree results in a much better-behaved posterior distribution. It is important to note
that the contact data collected should be interpreted with caution. This data is highly dependent on
an individual’s perceptions and, as such, cannot be treated as a definitive ground truth for contact
patterns.
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Figure 6. Inference results for the first wave of COVID-19 in Seoul. Panels (a), (b), and (c) depict the time
evolution of prevalence, incidence, and daily recoveries, respectively, estimated using three inference
methods: marginal mean (dotted line), marginal median (dashed line), and joint mode (solid line). These
estimates are compared to the 7-day moving average of observed data from the first wave of COVID-19 in
Seoul (CS), represented by the thin line with circle markers. Panel (d) presents the inferred probability
mass function derived from epidemic data, alongside the recorded contact data.

Table 3. Estimated parameter values obtained using three inference methods: marginal mean, marginal
median, and joint mode, for the 7-day moving average of the first wave of COVID-19 in Seoul (CS)a,b

Parameter Marginal mean Marginal median Joint mode

β 0.042 0.035 0.052
γ 0.192 0.192 0.193
µ 12.80 8.96 4.59
Variance 16.82 12.30 14.64
R0 2.35 1.43 1.44
MSE incidence 1.14 0.48 0.41
MSE prevalence 4.65 2.65 2.37
MSE daily recovered 1.07 0.65 0.6
aThe table also reports the Mean Squared Error (MSE) between the predicted epidemic trajectory and the observed data
bTable presenting estimated parameter values for the first wave of COVID-19 in Seoul using three inference methods: marginal
mean, marginal median, and joint mode. Parameters include β, γ , µ, variance, and R0. The table also reports the Mean Squared
Error (MSE) for predicted incidence, prevalence, and daily recoveries compared to observed data.
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Table 4. Estimated parameter values obtained using three inference methods: marginal mean, marginal
median, and joint mode, for the 7-day moving average of the first wave of COVID-19 in Seoul (CS) for a
fixed average degreeµ = 7.61, obtained from the COVID-19 Survey dataa,b

Parameter Marginal mean Marginal median Joint mode

β 0.044 0.044 0.043
γ 0.196 0.196 0.193
Variance 8.77 9.33 12.10
R0 1.42 1.44 1.47
MSE incidence 0.45 0.42 0.41
MSE prevalence 2.44 2.30 2.25
MSE new recovered 0.63 0.61 0.60
aThe table also reports the Mean Squared Error (MSE) between the predicted epidemic trajectory and the observed data.
bTable showing estimated values of β, γ , variance, and R0 using three inference methods—marginal mean, marginal median, and
joint mode—for the first wave of COVID-19 in Seoul with fixed average degree µ = 7.61. Also includes Mean Squared Error
(MSE) values for predicted incidence, prevalence, and new recoveries compared to observed data.

Figure 7. Additional analysis of the first wave of COVID-19 in Seoul: Panel (a) shows the evolution of the
incidence obtained from the point estimates using marginal mean, marginal median, and joint mode for the
case where the average degree is known and fixed atµ = 7.61. Panel (b) shows the results obtained using
partial data. Specifically, the first 26 days of data were used to forecast the following 10 days. In the figure,
we show the prediction obtained using the EBCM (line with triangle markers), MA (line with square
markers), and the 7 days moving average of the COVID-19 in Seoul (CS) (line with circle markers).

Finally, to further demonstrate the potential of this framework, we performed parameter estima-
tion, including the mean degree—using only partial data, specifically up to a cut-off time Tc before
the 84th day. In this case, we used the first 26 days of data to infer parameters and then forecasted the
number of new infections for the following 10 days. As a result, the likelihood is now ℓ1 + ℓ2 + ℓ4,
where ℓ4 accounts for the infection times of individual who did not recover before Tc. The 95%
credible interval was obtained by sampling from the full posterior distribution, while point estimates
were determined using the joint mode. For comparison, we performed the same analysis using the
mass-action (MA) model. The results are shown in Fig. 7b. The forecasted incidence was compared
to the observed data using the mean squared error (MSE). The results indicate that the EBCM
provides the most accurate forecast.

5. DISCUSSION
Understanding the contact patterns of individuals during an epidemic remains a fundamental
challenge in infectious disease modelling. Inferring the underlying network structure of an epidemic
process is particularly difficult, even when the goal is not to reconstruct the entire network but
rather to estimate key characteristics, such as the average degree or variance. A major obstacle in
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this inference process is the practical identifiability between connectivity and infectivity, a challenge
previously highlighted in the literature [54, 62].

In this study, we introduced a framework for inferring network properties from epidemic data by
integrating the Dynamic Survival Analysis (DSA) framework with the EBCM. The EBCM provides
a compact yet effective representation of the epidemic process, where the degree distribution is
incorporated as a model parameter. By combining this with the flexibility of DSA, our approach
enables the inference of crucial properties of the contact network that drive epidemic spreading.

We validated this framework using synthetic epidemic data generated via Gillespie simulations,
considering networks with Poisson and Negative Binomial degree distributions. By applying the
DSA-EBCM approach, we sampled from the joint posterior distribution of both disease and net-
work parameters. Despite the inherent correlation between the infection rate, the recovery rate, and
network properties such as the average degree, the posterior distributions consistently concentrated
around the true parameter values. This allowed for an accurate reconstruction of both the epidemic
dynamics and key network characteristics, despite relying solely on epidemic time-series data in
which the network structure is only implicitly present.

Beyond synthetic data, we tested our methodology on two real-world outbreaks: the 2001 Foot-
and-Mouth Disease (FMD) epidemic in the UK and the first wave of COVID-19 in Seoul, South
Korea. In both cases, the framework successfully produced robust posterior distributions despite
correlations between parameters. For the FMD dataset, we observed a multidimensional posterior
distribution with long tails and a strong inverse correlation between β and µ. Nevertheless, as in
the synthetic cases, a high-density region in parameter space provided the best description of the
original data. Notably, we found that the joint mode, which represents the point of highest density in
the sample of the posterior distribution, although more computationally demanding and less exact,
yielded better point estimates compared to the marginal median or marginal mean, as it minimized
the mean squared error.

For the Seoul COVID-19 dataset, we observed similar results, with the joint mode again emerging
as the most accurate estimator of the epidemic process. Additionally, our inferred average degree
closely matched independent contact data collected during the outbreak, reinforcing the validity
of the approach. The framework also demonstrated its predictive capabilities by generating a
short-term forecast with a 95% credible interval for the epidemic’s progression over a 10-day period.

This study demonstrates that meaningful insights about underlying contact structures can
be extracted solely from epidemic data without requiring explicit network observations. Future
work could explore the extent to which this method can distinguish between homogeneous and
heterogeneous network structures based only on outbreak dynamics. Furthermore, the approach
could be extended to other spreading processes, such as information diffusion, where higher-order
interactions may play a significant role. Comparing inferred network properties across different
geographic regions—such as cities, counties, or states—could also provide insights into the diverse
mechanisms that shape disease transmission.

Overall, our findings highlight the potential of integrating the EBCM and other network-based
mean-field models with DSA to infer hidden contact structures from limited epidemic data. This
approach provides a powerful tool for reconstructing essential network characteristics, improving
epidemic forecasting, and enhancing our understanding of infectious disease spread in real-world
settings.
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