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Abstract
Modelling epidemics using contact networks provides a significant improvement over classi-

cal compartmental models by explicitly incorporating the network of contacts. However, while
network-based models describe disease spread on a given contact structure, their potential for
inferring the underlying network from epidemic data remains largely unexplored. In this work,
we consider the edge-based compartmental model (EBCM), a compact and analytically tractable
framework, and we integrate it within dynamical survival analysis (DSA) to infer key network
properties along with parameters of the epidemic itself. Despite correlations between struc-
tural and epidemic parameters, our framework demonstrates robustness in accurately inferring
contact network properties from synthetic epidemic simulations. Additionally, we apply the
framework to real-world outbreaks—the 2001 UK foot-and-mouth disease outbreak and the
COVID-19 epidemic in Seoul— to estimate both disease parameters and network characteris-
tics. Our results show that our framework achieves good fits to real-world epidemic data and
reliable short-term forecasts. These findings highlight the potential of network-based inference
approaches to uncover hidden contact structures, providing insights that can inform the design
of targeted interventions and public health strategies.
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1 Introduction

The spread of infectious diseases is inherently tied to the structure of human interactions. Network theory
provides a powerful framework for understanding how diseases propagate by capturing the complex web
of contacts between individuals [1, 2, 3, 4, 5]. Studies have highlighted how structural properties such as
heterogeneity [6, 7, 8, 9, 10], communities [11, 12, 13, 14], clustering [15, 16, 17, 18], and degree correlations
[19, 20, 21, 22] play a significant role in shaping epidemic dynamics.

Epidemic models have traditionally been used to describe and predict disease spread based on assumptions
about the underlying contact structure [2, 23]. Ultimately, their applicability to real-world processes depends
on the availability and quality of data [24]. These models range in complexity, from classical mass-action
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approaches, where populations are assumed to mix homogeneously [25], to sophisticated network-based
frameworks that explicitly incorporate individual-level connectivity patterns [26, 27, 28]. Simpler models
offer easier tractability but may overlook key structural features, while more complex models provide richer
descriptions but require more detailed input data [29, 30, 31, 24]. Finding a balance between these aspects
is essential for effective epidemic modelling [32].

A particularly elegant and efficient modelling framework is the edge-based compartmental model (EBCM),
which provides a compact yet powerful representation of epidemic processes on networks [33, 34, 35]. Unlike
standard compartmental models where incorporating heterogeneity significantly increases model complexity,
EBCM encodes network structure and characteristics through probability-generating functions, allowing
epidemic dynamics to be described with only a few parameters and a reduced number of equations.

In many real-world scenarios, direct measurements of contact networks are unavailable or incomplete.
Although collecting data from contact networks is feasible in certain cases, such as sexually transmitted
infections [36, 37, 38, 39], it remains challenging for respiratory diseases [40, 41, 42]. While epidemic models
are often used to simulate outbreaks given a known network structure, inferring the structure of the contact
network from observed epidemic data represents an equally important challenge [43, 44, 45, 46, 47]. Since
spreading dynamics inherently reflect network properties, they can be used to extract valuable information
about the underlying structural information. Various methods have been proposed to reconstruct networks
from data, including likelihood-based optimization approaches [48, 49, 50, 51, 52] and Bayesian inference
techniques [53, 54, 55, 56, 57]. However, these methods often require detailed temporal data or strong prior
assumptions, making them difficult to apply in real-world epidemic surveillance [58].

An alternative approach, Dynamical Survival Analysis (DSA), has been introduced to estimate epidemic
parameters using infection and recovery time distributions [59]. Originally developed for mass-action models
[60, 61], DSA was recently extended to network-based models [62], enabling parameter estimation while
incorporating some aspects of network structure. However, existing applications remain limited in their
ability to fully capture the heterogeneity of contact networks.

In this paper, we integrate the DSA approach with the edge-based compartmental model (EBCM) [33] to
develop a Bayesian framework for inferring both disease and network parameters from epidemic data. This
extends previous works [63], shifting from identifiability analysis to active inference in both synthetic and
real-world scenarios. The manuscript is structured as follows: Section 2.1 introduces the EBCM framework,
and Section 2.2 details the Bayesian inference procedure. Section 3 presents validation on synthetic and real
data, specifically the first wave of COVID-19 in Seoul and the 2001 foot-and-mouth disease epidemic in the
UK. Finally, Section 5 discusses the implications of our findings.

2 Methods

In this section, we outline the methodologies that form the foundation of our inference framework. First,
we introduce the edge-based compartmental model (EBCM), which provides a compact representation of
SIR processes on networks. This model serves as the backbone for describing the epidemic dynamics in
structured populations.

Next, we present the complete inference process, detailing how these methods are integrated to estimate
both epidemic and network parameters from observed outbreak data. Specifically, we employ Dynamic
Survival Analysis (DSA) to construct the likelihood function, leveraging its ability to handle censored and
aggregated epidemic data. Moreover, we describe the Robust Adaptive Metropolis (RAM) algorithm, a
Markov Chain Monte Carlo (MCMC) technique designed for efficient exploration of the parameter space.
RAM adapts to the local structure of the posterior distribution, improving convergence and robustness in
high-dimensional settings. Together, these methods form a comprehensive framework for inferring epidemic
dynamics and network structures from real-world outbreak data.

2.1 Edge-based compartmental model

We consider a Susceptible-Infected-Recovered (SIR) epidemic process, where individuals can be in one of
three states: susceptible (S), infected (I), or recovered (R). Infection occurs at rate β along a link between
a susceptible and an infected node, while infected nodes recover independently of the network at rate γ.
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In this study, we employ the Edge-Based Compartmental Model (EBCM) [33], which provides a compact
and analytically tractable representation of epidemic dynamics on contact networks. The EBCM assumes
that disease transmission occurs on a network generated by the configuration model (CM) [64, 65], which is
characterized by a degree distribution P (k). The key idea behind EBCM is to track the probability that a
randomly chosen node remains susceptible rather than explicitly tracking individual infection events.

A central variable in the model is θ(t), defined as the probability that a randomly selected neighbor of
a test node u has not transmitted the disease to u by time t. From now on, we omit the obvious time
dependence. Given that a node u has degree k, the probability that it remains susceptible is su(k, θ) = θk.
Thus, the overall fraction of susceptible nodes in the population is given by:

S(t) =
∑
k

P (k)θk = Ψ(θ), (1)

where Ψ(θ) represents the probability generating function (PGF).
If a fraction ρ of the population is initially infected at t = 0, we modify this expression as S(t) = Ψ̂(θ) =∑

k P (k)S(k, 0)θk, where S(k, 0) is the probability that a node with degree k is initially susceptible. Since
initially infected nodes are selected at random, it follows that S(k, 0) = 1 − ρ. To fully characterize the
system, we decompose θ into three probabilities, namely θ = ψS + ψI + ψR, where ψS , ψI , and ψR denote
the probabilities that a randomly selected neighbor of node u is, respectively, in the susceptible state at time
t; infected but has not yet transmitted the disease to u by time t; or recovered without having transmitted
the infection to u during their infectious period. Note that θ̇ = −βψI , where β represents the rate at which
an infected partner transmits the disease to the test node. Furthermore, we can express ψI = θ − ψS − ψR,
which leads to θ̇ = −β(θ − ψS − ψR). Additionally, we express ψR and ψS as ψR = ψR(0) + γ(1 − θ)/β
and ψS = ψS(0)Ψ̂′(θ)/⟨k⟩, where Ψ̂′(θ) denotes the derivative of the probability generating function (PGF)
with respect to θ. Additionally, the average degree can be defined as ⟨k⟩ =

∑
k kP (k)S(k, 0) which is also

equivalent to the derivative of the PGF evaluated at θ = 1. Finally, ψR(0) and ψS(0) are the probabilities of
the test node being initially connected to a recovered or susceptible node respectively. Further details on the
derivation of these expressions can be found in the supplementary material or in the original papers [66, 1].
By expressing ψR and ψS as functions of θ, we can redefine θ̇ as a differential equation that depends only on
θ, β, γ, and the initial condition. With these considerations, the model is fully described by the following
system of equations:

dθ

dt
= −βθ + βψS(0)

Ψ̂′(θ)

⟨k⟩
+ γ(1 − θ) + βψR(0),

dR

dt
= γ(1 − S −R), S = Ψ̂(θ).

(2)

Typically, we assume ψR(0) = 0 and ψS(0) = 1− ρ. Solving Eqs. (2) provides the evolution of S(t), I(t),
and R(t). Moreover, the basic reproductive number (R0) of the EBCM is defined as

R0 =
β

β + γ

⟨k2⟩ − ⟨k⟩
⟨k⟩

, (3)

where ⟨k2⟩ − ⟨k⟩ =
∑

k k(k − 1)P (k)S(k, 0), corresponding to the derivative of the PGF evaluated at θ = 1.
For simplicity, from now on, we apply a change of variable µ ≡ ⟨k⟩.

In this study, we consider two different degree distributions, which are summarized in Table 1 along
with their parameters and probability generating functions. The Poisson distribution is characterized by a
single parameter µ, which defines both its mean and variance, resulting in a relatively homogeneous degree
distribution. In contrast, the Negative Binomial distribution, parametrized by µ, which represents the
average degree, and r, which, together with µ, determine the variance of the distribution. In particular,
smaller values of r lead to greater overdispersion. This flexibility makes the Negative Binomial distribution
well-suited for modeling both homogeneous and heterogeneous network structures.

2.2 Statistical Inference framework

Accurate parameter estimation in epidemic modelling usually relies on optimizing a likelihood function
that reflects both the underlying transmission dynamics and the nature of the available data. A common
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Poisson Negative Binomial

Parameter(s) µ (r, µ)

Ψ(x) eµ(x−1)

(
r

r+µ(1−θ)

)r

Ψ′(x) µeµ(x−1) µ

(
r

r+µ(1−θ)

)r+1

Table 1: Details of the probability generating functions used throughout the paper. The parameter µ for
both distributions corresponds to the average degree given by

∑
k kP (k).

Alt text: Table comparing the probability generating functions (PGFs) and their derivatives for Poisson
and Negative Binomial degree distributions. It includes the associated parameters and analytical forms of
Ψ(x) and Ψ′(x) used in the study.

approach involves fitting model-generated epidemic curves to observed data by minimizing discrepancies
between them. However, this method is highly sensitive to noise, biases, and incomplete datasets, which
can compromise inference accuracy. To address these challenges, we employ the Dynamic Survival Analysis
(DSA) framework [67, 68, 69, 70], which provides a more robust approach by directly incorporating individual
transition times between epidemic states into the likelihood function.

DSA was developed to overcome the limitations of traditional inference methods in infectious disease
epidemiology by integrating dynamical systems theory with survival analysis techniques. Unlike conven-
tional approaches that rely on aggregate epidemic curves, DSA leverages the mean-field ordinary differential
equations (ODEs) governing population-level dynamics to model the probability distributions of transition
times, such as the time of infection or recovery. This formulation allows DSA to construct likelihood func-
tions for individual-level trajectories, making it particularly effective in handling censored, truncated, or
incomplete data. In this framework, the susceptible fraction of the population, S(t), is reinterpreted as a
survival function, satisfying S(0) = 1. More generally, when a fraction ρ of individuals is initially infected,
we introduce three rescaled survival functions, which are defined as

S̃(t) =
S(t)

1 − ρ
= Ψ(θ), Ĩ(t) =

I(t)

1 − ρ
, and R̃(t) =

R(t)

1 − ρ
. (4)

By substituting Eq. (4) in the system of equations for the EBCM, as given by Eqs. (2), we have

˙̃S(t) =
dS̃

dθ

dθ

dt
= Ψ′(θ)θ̇ = Ψ′(θ)

[
− βθ + β(1 − ρ)

Ψ̂′(θ)

⟨k⟩
+ γ(1 − θ)

]
.

˙̃R(t) = γĨ(t) and Ĩ(t) = 1/(1 − ρ) − S̃(t) − R̃(t),

(5)

where, at t = 0 we have S̃(0) = 1, Ĩ(0) = ρ/(1 − ρ) and R̃(0) = 0.
DSA interprets the susceptible curve as an improper survival function representing the time of infection

for a randomly chosen initially susceptible individual. That is, S̃(t) = P(TI > t), where the random variable

TI denotes the infection time. The density function of TI is given by − ˙̃S(t), which is improper since
limt→∞ S̃(t) = P(TI = ∞) > 0. We define P(TI = ∞) = 1 − τ , where τ represents the final epidemic size.
To obtain a proper survival function, we condition it on a final observation time T ∈ (0,∞) and the final
epidemic size τ at time T . The resulting probability density function fτ (t) on the interval [0, T ] is then given
by:

fτ (t) = −
˙̃S(t)

τ
. (6)
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Note that DSA does not require knowledge of recovery times. However, if these times are available, they
can be incorporated to enhance the quality of inference. Let TR represent the time of recovery of an infected
individual. Given the infection time TI , the infectious period TR − TI follows an exponential distribution
with rate γ. Using equation (6) and the density of the infectious period, we can define the density of the
recovery time TR as:

g(t) =

∫ t

0

fτ (u)γe−γ(t−u)du. (7)

Equation (7) represents the convolution of the density of the infection time fτ (t) and an exponential
distribution with rate γ, corresponding to the density of the infectious period. In practice, solving the
system of ODEs (5) with respect to the observed recovery times is computationally more convenient.

Finally, the normalized density of the recovery time is given by:

g̃(t) =
g(t)∫ T

0
g(t)dt

. (8)

One of the advantages of the DSA method is the ability to build various likelihood functions based on
the observed data. Let N be the size of the population and M be the initial number of infected individuals
at the beginning time t = 0, and usually N >> M . We have K individuals out of N , who are infected
by time T and t1, t2..., tK represent the time of infection for each infected individual. If L individuals have
recovered by time T out of a total of K + M infected, let r1, r2, ..., rL denote the time of recovery. If we
can observe the time of infection and recovery exactly for each individual, then we can define the infectious
period, wi = ri − ti or wi = ri for initially infected, i = 1, 2, . . . , L respectively. Also, we could have L̃
infected individuals who have not recovered by time T , ϵj = T − tj or ϵj = T , j = 1, 2, . . . , L̃, denote the
censored infectious period respectively.

Given random samples of time of infection, t1, t2, ..., tK ,the log likelihood function is given by:

ℓ1 = K log(τ) + (N − (M +K)) log(1 − τ) +

K∑
i=1

log(fτ (ti)). (9)

The log likelihood function for the infectious period, w1, w2, ..., wL is given by

ℓ2 = L log(γ) − γ

L∑
j=1

wj . (10)

The log likelihood function for the time of recovery, r1, r2, ..., rL is given by

ℓ3 =

L∑
j=1

log(g̃(rj)). (11)

Finally, we can define the log likelihood for the censored infectious period, ϵ1, ϵ2, . . . , ϵL̃;

ℓ4 = −γ
L̃∑

k=1

ϵk. (12)

In some cases, we only know the number of infected individuals, K, by a given time, T , but lack infor-
mation about the total population size N . This situation is common in real epidemic scenarios, where data
about the segment of the population at risk of infection is often unavailable. For such cases, the likelihood ℓ1
can be reformulated as: ℓ1 =

∑K
i=1 fτ (ti), excluding terms related to the total population size. With this for-

mulation, we can analyze the dynamics of the proportion of infected, susceptible, and recovered individuals.
Furthermore, it is possible to estimate an effective population size using the following equation
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Neff =
K

1 − ST
. (13)

Depending on the data and particular context, we can use any of the four likelihoods described above or
a combination of them. For example, suppose we just observe K infections before a cut-off time T , then we
could just use ℓ1 (9). If, besides the infection times, we also observe L recovery times but not the specific
nodes who underwent these changes, then we could use the combination of ℓ1 + ℓ3, see Eqs. (9) and (11).
However, if the data is available at the node level and we have pairs of infection and recovery times for each
node, we could use the combination ℓ1+ ℓ2, see Eqs. (9) (10), since we can calculate the infectious period for
each node. The likelihood functions described above do not explicitly incorporate the network parameters,
making it impossible to derive closed-form solutions for their maximum likelihood estimates. To address
this limitation, we adopt a Bayesian approach, which allows us to sample from the posterior distribution
and derive point estimates from it. To construct the sample, we employ a Markov Chain Monte Carlo
(MCMC) method, specifically the Robust Adaptive Metropolis (RAM) algorithm. The RAM algorithm is
more efficient than the standard Metropolis-Hastings algorithm [71], as it dynamically adjusts the variance-
covariance matrix of the proposal distribution to maintain an optimal acceptance rate during the Metropolis
steps. We assign vaguely informative prior distributions (little information is given about the parameters to
be estimated) to the model parameters: a Gamma distribution, Gamma(a, b), for the β and γ parameters,
which is defined as

Gamma(x, a, b) ∼ baxa−1e−bx

Γ(a)
, (14)

where Γ(a) represents the gamma function. Additionally, for the parameter ρ in the SIR model, we assume
a Beta distribution, Beta(a, b), where, in this context, a = 1 and b = 1 are chosen from a uniform distribution.
Additionally, we assign a non-informative Gamma prior to the parameters of the degree distribution based
on the support of these parameters.

Given a dataset D, our goal is to fit the data with the EBCM, which is characterized by the set of
parameters X = (β, γ, ρ,∆). Here, we use the vector ∆ to represent the parameters of the probability
generating function of the network’s degree distribution. Our objective is to infer the parameter set X
such that the output from the EBCM matches the observed data. To achieve this, we utilize the RAM
algorithm to generate one or more chains for the values of X, which allows us to construct a sample of the
posterior distribution. From this sample, we remove the burn-in and apply a thinning procedure to reduce
autocorrelation. The inference scheme is illustrated in the left panels of Fig. 1.

Once a posterior distribution is obtained, we can find a point estimate for each parameter. This can be
done by either calculating the marginal mean, marginal median or taking the joint mode of the posterior
distribution, i.e., the point of highest probability in the full posterior. As shown in the top right panel in
Fig. 1. Either of these can be used in conjunction with the EBCM to produce one single epidemic curve that
can be compared to the data. However, to generate a credible interval around this single epidemic curve, we
take a subsample S from the full posterior and use each element to solve the EBCM, thereby generating a set
of solutions, as shown in the bottom right panel of Fig. 1. These can used to generate the desired credible
interval over a specified period of time.

In subsequent sections, we show the application of this workflow to estimate network and epidemic
dynamics parameters for two different scenarios. First, by the use of synthetic data corresponding to a
controlled case where ground truth is available. Second, we consider two different datasets corresponding to
real-world epidemics.

3 Inference from synthetic data

We begin by analysing synthetic data to verify the method’s accuracy and effectiveness in a controlled
environment. First, we consider 100 realizations of Gillespie simulations [72] with β = 0.2, γ = 1, on
networks with 104 nodes exhibiting Poisson (POI(µ = 10)) and Negative Binomial (NB(µ = 10, r = 1))
degree distributions. Since in a real epidemic process, complete data are rarely available, we consider four
possible scenarios which reflect varying data availability, which are:

• ℓ1 + ℓ2: infection times (t1, t2, . . . , tK) and infection periods (w1, w2, . . . , wL)
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Figure 1: Graphical representation of the inference process. The procedure starts with epidemic
data D as input for the Robust Adaptive Metropolis (RAM) algorithm, which employs the likelihood
function derived from the DSA framework (see main text). The RAM algorithm generates a Markov chain
of parameter samples, forming the posterior distribution. From this distribution, we obtain parameter
estimates using two approaches: credible intervals and point estimates, as detailed in the main text.
Alt text: Flowchart of the inference process: epidemic data D feeds into the RAM algorithm, linked to a
likelihood function, producing a Markov chain and posterior distribution, which yields credible intervals
and point estimates.

• ℓ1 + ℓ3: list of infection times (t1, t2, . . . , tK) and a decoupled list of recovery times (r1, r2, . . . , rL).

• ℓ1: infection times only (t1, t2, . . . , tK).

• ℓ3: recovery times only (r1, r2...rL).

Likelihood ℓ4 is not used for the synthetic data, as the cut-off time is set after the end of the epidemic.
However, this likelihood is used in Section 4.2.

Following the procedure outlined in Section 2.2, we fit our models to all stochastic realizations. Initially,
we consider the case where the data are fitted using the correct model. Specifically, data from simulations on
networks with a Poisson degree distribution were fitted using the Poisson (Poi) model in the EBCM; we refer
to this scenario as Poisson-Poi. Similarly, a match with the Negative Binomial is denoted by Negbin-NB.
We also consider model mismatch, where data from networks with a Poisson degree distribution were fitted
using the Negative Binomial (NB) model (Poisson-NB), and vice-versa, that is Negbin-Poi.

For all four possible combinations (Negbin-NB, Poisson-Poi, Negbin-Poi, Poisson-NB), we used the four
different scenarios discussed above. Then, for each stochastic realization, we construct a sample of the pos-
terior distribution and calculated the marginal median of β, γ, and µ, and computed the basic reproduction
number as defined in Eq.(3). The point estimates for β̂, γ̂, µ̂, R̂0 are obtained as the mean values of the
distributions of the marginal medians. In Fig. 2, we show the density of the marginal medians and their
mean, i.e., point estimates, for these four parameters and for both model match and mismatch. Additionally,
we present these results for the four different data availability scenarios presented above.

As expected, the correct matches, Negbin-NB, first column, and Poisson-Poi, second column, yield ac-
curate estimations for all parameters and for all different likelihoods. In the presence of data and model
mismatch, we observe that fitting Poisson data with the Negative Binomial model (fourth column) often
yields reasonable results. This can be attributed to the flexibility of the Negative Binomial distribution, i.e.
one more free parameter compared to Poisson, which allows it to capture both homogeneous and heteroge-
neous degree distributions. In contrast, fitting data generated with the Negative Binomial with the Poisson
model underperforms. This is especially evident in the estimates for β and µ in the first and third rows,
where the EBCM with a Poisson degree distribution tends to overestimate β and underestimate µ.

It is noteworthy that the mismatched Negbin–Poi model produced better estimates for β and µ in the
ℓ1 + ℓ3 and ℓ3 scenarios. However, even in these cases, γ was substantially overestimated. These qualitative
observations are further supported by the larger bias and mean squared error (MSE) of the estimates, as
detailed in Supplementary Material (SM). For the estimation of γ, scenario ℓ1+ℓ2 uses the infectious periods
as data. Since the infectious period directly reflects γ (the inverse of the mean infectious period), this scenario
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(a) Negbin - NB (b) Poisson - Poi (d) Poisson - NB(c) Negbin - Poi

Figure 2: Distributions of the marginal medians for model parameters and the basic
reproduction number inferred from the DSA framework. Each row represents the distribution of a
different inferred parameter. The synthetic data were generated using either a Poisson or a Negative
Binomial degree distribution, and inference was performed using both distributions for comparison. Each
column corresponds to different inference cases: (a) and (b) show results where the data were fitted with
the same degree distribution used for generation—(a) for Negative Binomial and (b) for Poisson. (c) and
(d) show cases where the data were fitted using the opposite degree distribution—(c) for Negative Binomial
data fitted with a Poisson model and (d) for Poisson data fitted with a Negative Binomial model. This
analysis highlights the impact of assuming different degree distributions on parameter inference. The
results are obtained by fitting 200 distinct realizations of Gillespie simulations with parameters β = 0.2,
γ = 1, and an initial proportion of infected individuals set to 10−4. Networks with a Negative Binomial
(Negbin) degree distribution were generated using parameters µ = 10, r = 1, while networks with a Poisson
degree distribution were generated with µ = 10
Alt text: Panel of plots showing marginal median distributions for inferred model parameters and basic
reproduction number. Rows represent different parameters; columns compare inference results under
matching and mismatched degree distributions (Poisson or Negative Binomial).

yields highly accurate estimates, even for mismatched models and data. By contrast, estimates of γ exhibit
a larger bias in mismatched scenarios ℓ1 + ℓ3 and ℓ3, where the recovery times are used instead, but they do
not align with the infection times. Interestingly, in the mismatch cases, in particular, see the panel on the
third row and third column in Fig. 2, we note that the estimates of µ based on scenario ℓ1+ℓ2 perform poorly
when compared to estimates based on scenarios ℓ1 and ℓ3. This, at first, is surprising since ℓ1 + ℓ2 provides
the most complete data. However, due to the model mismatch manifesting itself mainly in the infection
part, this is likely to lead to a better estimation of γ, which in turn has a negative effect on the estimation
of β and µ. In contrast, in scenarios ℓ1 and ℓ3, the estimation of µ improves at the expense of obtaining
less accurate estimates of γ. These observations are further supported by the MSE values presented in SM,
where this analysis is discussed in detail.
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(a) (b)

(d)(c)

Figure 3: DSA parameters estimation for each synthetic dataset. (a) Projection of the 250
median estimates from the marginal posterior distributions of each dataset in the β–µ space. (b)
Projection of the median estimates in the γ–β space. (c) Epidemic curves from three selected datasets
(gray lines) alongside the corresponding curves obtained by solving the EBCM using the median parameter
estimates (pink, green, and orange points in panels (a) and (b)). Despite variations in parameter estimates,
the model accurately reproduces the observed epidemic dynamics of the data. Panel (d) shows 50 of the
250 datasets (gray lines) with the solution of the EBCM obtained using the master parameters (dotted
black line) and the solution from the final point estimates from the marginal posteriors (red line). Results
are based on 250 synthetic epidemic datasets generated on a network with a Poisson degree distribution.
The true parameters used were β = 0.2, γ = 1, µ = 10, and ρ = 1 × 10−4. For inference, the cut-off time
was set to T = 25.
Alt text: Multi-panel figure showing parameter estimates from 250 synthetic epidemic datasets. Panels
(a) and (b) project median estimates in β − µ and γ − β spaces. Panel (c) compares observed epidemic
curves with model outputs using selected parameter estimates. Panel (d) shows epidemic curves from 50
datasets, alongside model solutions using master and inferred parameters, illustrating accurate recovery of
epidemic dynamics.

Even though accurate and precise estimations can be obtained using the marginal medians of the posterior
distributions, it is important to recognize that the posterior distribution is multivariate. This means that the
marginals are not always fully representative of the entire distribution, especially when there is a correlation
between parameters. When used for inference, network-based mean-field models have been noted to exhibit
correlations between the infectivity β and parameters of the degree distribution, such as the average degree
µ [62]. For this reason, we now investigate the projections of the posterior distribution. We do this for
Poisson-Poi case, and we consider the scenario where the data is complete, i.e., ℓ1 + ℓ2. In Fig. 3(a), we show
the projection of the medians of the marginals in the (β, µ) space. We observe a strong inverse correlation
between the infection rate β and the average degree µ.

Although we observe a considerable variance in both the average degree and the infection rate, it’s
important to highlight that most of the estimates of parameters are around the master parameter used in
the simulation. Furthermore, no correlation is observed when exploring the (β, γ) parameter space. As
expected, the correlations between parameters can be mitigated by fixing either the infection rate or the
average degree. This approach leads to a posterior sample without long tails, resulting in more accurate
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estimates. Further discussions on the process of fixing parameters are provided in SM.
Up to this point, we have focused on parameter estimation with their validity based on comparison to

their true values. However, another important consideration is to assess how the epidemic curve, such as
new infecteds or prevalence, generated using the EBCM with the point estimates compares to the original
outbreak data. To address this, we consider three different stochastic realizations of the epidemic, see grey
curves in Fig. 3(c). We fit each of these separately with the corresponding point estimates reported as the
pink, green, and orange points in Fig. 3(a) and Fig. 3(b). The EBCM with these point estimates leads to
excellent agreement with the original stochastic realizations, see Fig. 3(c) and Fig. 3(d).

4 Inference from real-world data

In this section, we further validate our methodology by analyzing real epidemic data from two outbreaks.
Based on the general procedure presented in Section 2.2, we apply it to two real epidemic datasets. The
first one is the 2001 Foot-and-Mouth Disease (FMD) epidemic in the United Kingdom, which involved a
highly contagious virus affecting farm animals. The second dataset captures the first wave of COVID-19 in
Seoul, South Korea, documenting the onset of symptoms and confirmation of infection for approximately
500 individuals over the first 82 days following the appearance of the initial confirmed case.

For both datasets, we fit the EBCM using a probability-generating function corresponding to a Negative
Binomial degree distribution, chosen for its flexibility in modelling both homogeneous and heterogeneous
contact patterns. We adopt non-informative prior distributions, assigning β, γ, µ, and r a GAMMA(a, b)
prior, where a is randomly selected from the parameter space and b is fixed at 10−4. The initial number of
infected individuals follows a BETA(1, 1) prior, representing a uniform distribution and reflecting complete
uncertainty about the starting conditions. A key distinction from our analysis of synthetic data is that
the total population size is unknown. As discussed in Section 2.2, one approach is to estimate an effective
population size using Neff = K/(1 − S[T ]) [68]. To obtain a denser posterior distribution, we performed
multiple runs of the RAM algorithm, varying the initial conditions of the chain for each run. Consequently,
we find point estimates for each parameter and evaluate the accuracy of the EBCM predictions by comparing
them to real-world epidemic data. To quantify the discrepancy, we use the mean squared error (MSE), defined
as

MSE =
1

T

T∑
d=0

(Ĵ(d) − J(d))2, (15)

where d denotes the day index, T is the cut-off time, Ĵ(d) represents the incidence predicted by the EBCM,
and J(d) corresponds to the epidemic incidence observed in the real-data.

Here, we compare the predictions of the EBCM with those obtained using the standard mass-action (MA)
SIR model [59]. The MA model is incorporated into the inference framework described in Section 2.2 and
serves as a benchmark for epidemic curve predictions. The governing equations for the SIR MA model are
given by:

ṡt = −σstιt, ι̇t = σstιt − γιt, ṙt = γιt, (16)

where γ is the recovery rate, and σ is the infection rate. It is important to note that σ differs from the
infection rate β in the EBCM: while β represents the per-contact transmission rate, σ describes the infection
rate per infectious individual.

Unlike the EBCM, which explicitly accounts for the network structure, the MA model assumes homo-
geneous random mixing, meaning it does not incorporate any connectivity patterns. As a result, while the
EBCM enables inference of both the epidemic dynamics and the underlying contact structure, the MA model
can only be used to predict the epidemic curve. Consequently, our comparison is limited to the epidemic
trajectory rather than network-related properties. For parameter inference, we follow the same numerical
procedure as outlined earlier.
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Figure 4: Summary of inference results for the 2001 Foot-and-Mouth Disease outbreak in the
UK. (a) Evolution of the incidence based on parameter estimates from the three methods, alongside the
95% credible interval from the posterior distribution. The observed FMD incidence, smoothed using a
7-day moving average, is also shown for comparison. (b) and (c) Heatmaps of the posterior distribution
projections, showing parameter density across the (β, µ) and (r, µ) spaces, respectively. Each projection
includes point estimates obtained using the marginal mean, marginal median, and joint mode. (d) Inferred
degree distribution obtained using the joint mode estimation method.
Alt text: Figure summarizing inference results for the 2001 UK Foot-and-Mouth Disease outbreak. Panel
(a) shows modeled incidence curves from three estimation methods with 95% credible intervals, compared
to original data. Panels (b) and (c) are heatmaps of posterior density in β - µ and r –µ parameter spaces,
including key point estimates. Panel (d) displays the inferred degree distribution based on the joint mode
estimate.

4.1 Foot-and-Mouth disease data

In this section, we analyze the Foot-and-Mouth Disease (FMD) dataset, which provides daily incidence data,
J(d), representing the number of newly infected individuals per day over a 200-day period. We focus on
the first 82 days, corresponding to the initial wave of the outbreak. In the DSA framework, performing
inference requires information about the temporal distribution of infections. To address this, we assume that
infection times within each day are uniformly distributed and, based on this assumption, consider only the
ℓ1 likelihood.

We generate five independent Markov chains, each running for 100,000 iterations, following the method-
ology outlined in Section 2.2. To construct the posterior distribution, we discard the first 50,000 iterations as
burn-in and thin the remaining samples by selecting every 50th iteration to mitigate autocorrelation. From
the resulting posterior, we estimate the five parameters (β, γ, µ, r, ρ) using three different methods: marginal
mean, marginal median, and joint mode, as shown in 1. The joint mode is computed using the mean-shift
algorithm, which approximates the kernel density based on the posterior sample.

In Fig. 4(a), we compare the EBCM solutions with real epidemic data using different parameter estimation
methods. As shown, the parameters obtained via the marginal mean fail to capture the system’s behaviour.
While the EBCM integrated with parameters estimated through the marginal median provides a better fit,
it still does not fully capture the original data. However, the EBCM solution obtained using parameters
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estimated via the joint mode exhibits excellent agreement with the epidemic data. Additionally, we sample
a subset of parameters, S, from the posterior distribution to construct a 95% credible interval for the daily
new infections, as mentioned in the bottom right of 1. Notably, the prediction based on the joint mode lies
at the centre of this interval. This is further illustrated in Fig. 4(b)-(c), where we present projections of the
full posterior distribution for the (β, µ) and (r, µ) parameter spaces, respectively. These figures highlight
that the marginal mean and marginal median estimates lie outside the region of highest posterior density.
On the other hand, point estimates obtained using the joint mode are closer to the densest regions of the
posterior projections when compared to the estimates from the marginal distributions. The discrepancy is
likely due to the presence of long tails in the posterior distributions, which obscure important correlations
between parameters and lead to suboptimal point estimates. In Table 2, we provide the point estimates for
each method, along with the corresponding values of the MSE calculated from the infeed incidence.

Additionally, in Fig. 4(d), we show the degree distribution with values of the mean and variance that are
in line with expectations since highly connected markets were disproportionately affected at the beginning
of the outbreak leading to a marked reduction in network heterogeneity [73]. While the model successfully
captures the epidemic curve, the inferred contact network structure cannot be directly validated against
ground truth data, as no empirical contact network is available for comparison.

Furthermore, we compare the predictions made by the EBCM, with the ones made by using the MA
model. In this case, the parameters exhibit a lower correlation, resulting in a posterior distribution without
long tails. Consequently, the marginal median, marginal mean, and joint mode produce similar estimates. In
the table at the top-left corner in Figure 5, we show the estimates of β, γ, and R0. Using these estimates,
we can compare the MA and EBCM models in their ability to describe the original data. In Fig. 5, we
plot the incidence along with the MSE calculated for each case. The EBCM, which accounts for an explicit
contact structure, provides a closer fit to the original data compared to the classical MA model. This is
clearly evidenced by the lower MSE values achieved by the EBCM, suggesting that the FMD outbreak is
better described by a model with an explicit contact structure rather than a homogeneously mixed model.

4.2 COVID-19 data from Seoul, South Korea

In this section, we extend our analysis to the first wave of the COVID-19 pandemic in Seoul, South Korea,
covering an 84-day period from January 26 to April 18, 2020 [74]. This dataset provides information on the
time of symptom onset for each individual, as well as the date of their positive test result. For our analysis, we
assume that the time of infection coincides with the onset of symptoms. Given the strict isolation measures
in place, we treat the time of a positive test result as the effective recovery time, as individuals were promptly
isolated upon testing positive. Using this dataset, we can aggregate the information to track the evolution of
incidence (the number of new infections per day, as in Section 4.1), prevalence (the total number of currently
infected individuals at any given time), and daily recoveries (the number of individuals recovering each day).

Parameter marginal mean marginal median joint mode

β 0.043 0.036 0.041

γ 0.30 0.28 0.32

µ 13.51 9.70 7.34

r 9.71 5.25 1.72

Variance 32.32 27.58 38.55

R0 1.89 1.32 1.31

MSE Incidence 3.44 1.03 0.76

Table 2: Estimated parameter values obtained using three inference methods: marginal mean, marginal
median, and joint mode, for the the Foot-and-Mouth disease outbreak. The table also reports the Mean
Squared Error (MSE) between the predicted incidence evolution and the observed data.
Alt text: Table showing estimated parameter values for the Foot-and-Mouth Disease outbreak using three
inference methods: marginal mean, marginal median, and joint mode. Parameters include β, γ, µ, r,
variance, R0, and the Mean Squared Error (MSE) of predicted incidence.
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Figure 5: Comparison of predicted incidence of infections using the EBCM and mass-action
model for Foot-and-Mouth Disease (FMD). The estimated incidence curves are presented for the
DSA framework using the Edge-Based Compartmental Model (EBCM, shown as the orange curve) and the
Mass-Action (MA) model (depicted as purple squares). Point estimates were derived using the joint mode
for both models. The table in the top-left corner displays the results of the MA model, while the EBCM
estimates can be found in Table 2. The black circled line represents the 7-day moving average of observed
FMD cases.
Alt text: Predicted FMD incidence from EBCM (orange) and Mass-Action model (purple squares),
compared to observed data (black line). Includes summary table for MA model.

Notably, the Seoul COVID-19 dataset also includes contact pattern data, recording the number of contacts
each infected individual had between symptom onset and recovery. This allows us to use the contact data
as ground truth for evaluating the network structure characteristics inferred by the EBCM. By comparing
the inferred network properties with empirical contact data, we assess the capability of the model to recover
meaningful structural information from epidemic observations. To perform our analysis, we consider the
Negative Binomial degree distributions and follow the same procedure as in Section 4.1. Additionally, we
consider the likelihood ℓ1 + ℓ2, which is able to accommodate the most complete type of data.

In Fig. 6, we show the predictions based on the EBCM for prevalence, incidence, and daily recoveries.
As with the FMD disease dataset (Section 4.1), the set of parameters estimated using the joint mode

provides a temporal evolution of the system that aligns closely with the original data. In this case, the
marginal median also performs well, yielding results that are closer to those obtained with the joint mode.
In contrast, the marginal mean produces the least accurate results, failing to capture the behaviour of the
system. These findings are illustrated in Fig. 6(a), 6(b), and 6(c), which show the evolution of incidence,
prevalence, and daily recoveries for each method. Additional evidence for these results is provided by the
Mean Squared Error (MSE) values in Table 3.

In Fig. 6(d), we compare the inferred degree distribution with the one obtained from the contact data.
While the inferred distribution captures key characteristics of the empirical data, the point estimates derived
from the joint mode yield a lower average degree and variance than those observed in the real network.
Notably, the Negative Binomial distribution struggles to fully reproduce the long tail present in the empirical
contact data, suggesting that higher-degree individuals may be under-represented in the inferred network
structure.

Furthermore, we can use the contact data to fix the average degree. In this case, we fix µ = 7.61, which is
the average number of contacts entered in the survey. We can apply the inference procedure to find β, γ, and
the parameter r of the Negative Binomial distribution. Table 4 presents the point estimates obtained from
the three methods: marginal mean, marginal median, and joint mode. In this scenario, the three methods
produce very similar estimates. Furthermore, in Fig. 7(a), we observe the incidence predicted by the three
methods, which are nearly identical. This indicates that fixing the average degree results in a much better-
behaved posterior distribution. It is important to note that the contact data collected should be interpreted
with caution. This data is highly dependent on an individual’s perceptions and, as such, cannot be treated
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(c) (d)

Figure 6: Inference results for the first wave of COVID-19 in Seoul. Panels (a), (b), and (c)
depict the time evolution of prevalence, incidence, and daily recoveries, respectively, estimated using three
inference methods: marginal mean (pink dotted line), marginal median (light blue dashed line), and joint
mode (orange solid line). These estimates are compared to the 7-day moving average of observed data from
the first wave of COVID-19 in Seoul (CS), represented by black empty circles. Panel (d) presents the
inferred probability mass function derived from epidemic data, alongside the recorded contact data.
Alt text: Inference results for Seoul’s first COVID-19 wave: (a–c) show estimated prevalence, incidence,
and recoveries using three methods, compared to observed data. (d) Displays the inferred contact
distribution alongside recorded contact data.

as a definitive ground truth for contact patterns.
Finally, to further demonstrate the potential of this framework, we performed parameter estimation,

including the mean degree—using only partial data, specifically up to a cut-off time Tc before the 84th day.
In this case, we used the first 26 days of data to infer parameters and then forecasted the number of new
infections for the following 10 days. As a result, the likelihood is now ℓ1 + ℓ2 + ℓ4, where ℓ4 accounts for
the infection times of individual who did not recover before Tc. The 95% credible interval was obtained by
sampling from the full posterior distribution, while point estimates were determined using the joint mode.
For comparison, we performed the same analysis using the mass-action (MA) model. The results are shown
in Fig. 7(b). The forecasted incidence was compared to the observed data using the mean squared error
(MSE). The results indicate that the EBCM provides the most accurate forecast.

5 Discussion

Understanding the contact patterns of individuals during an epidemic remains a fundamental challenge in
infectious disease modelling. Inferring the underlying network structure of an epidemic process is particularly
difficult, even when the goal is not to reconstruct the entire network but rather to estimate key characteristics,
such as the average degree or variance. A major obstacle in this inference process is the practical identifiability
between connectivity and infectivity, a challenge previously highlighted in the literature [54, 62].

In this study, we introduced a framework for inferring network properties from epidemic data by integrat-
ing the Dynamic Survival Analysis (DSA) framework with the Edge-Based Compartmental Model (EBCM).
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The EBCM provides a compact yet effective representation of the epidemic process, where the degree distri-
bution is incorporated as a model parameter. By combining this with the flexibility of DSA, our approach
enables the inference of crucial properties of the contact network that drive epidemic spreading.

We validated this framework using synthetic epidemic data generated via Gillespie simulations, consid-
ering networks with Poisson and Negative Binomial degree distributions. By applying the DSA-EBCM
approach, we sampled from the joint posterior distribution of both disease and network parameters. De-
spite the inherent correlation between the infection rate, the recovery rate, and network properties such as
the average degree, the posterior distributions consistently concentrated around the true parameter values.
This allowed for an accurate reconstruction of both the epidemic dynamics and key network characteristics,
despite relying solely on epidemic time-series data in which the network structure is only implicitly present.

Beyond synthetic data, we tested our methodology on two real-world outbreaks: the 2001 Foot-and-
Mouth Disease (FMD) epidemic in the UK and the first wave of COVID-19 in Seoul, South Korea. In
both cases, the framework successfully produced robust posterior distributions despite correlations between

Parameter marginal mean marginal median joint mode

β 0.042 0.035 0.052

γ 0.192 0.192 0.193

µ 12.80 8.96 4.59

Variance 16.82 12.30 14.64

R0 2.35 1.43 1.44

MSE Incidence 1.14 0.48 0.41

MSE Prevalence 4.65 2.65 2.37

MSE Daily Recovered 1.07 0.65 0.6

Table 3: Estimated parameter values obtained using three inference methods: marginal mean, marginal
median, and joint mode, for the 7-day moving average of the first wave of COVID-19 in Seoul (CS). The
table also reports the Mean Squared Error (MSE) between the predicted epidemic trajectory and the
observed data.
Alt text: Table presenting estimated parameter values for the first wave of COVID-19 in Seoul using three
inference methods: marginal mean, marginal median, and joint mode. Parameters include β, γ, µ, variance,
and R0. The table also reports the Mean Squared Error (MSE) for predicted incidence, prevalence, and
daily recoveries compared to observed data.

Parameter marginal mean marginal median joint mode

β 0.044 0.044 0.043

γ 0.196 0.196 0.193

V ariance 8.77 9.33 12.10

R0 1.42 1.44 1.47

MSE Incidence 0.45 0.42 0.41

MSE Prevalence 2.44 2.30 2.25

MSE New Recovered 0.63 0.61 0.60

Table 4: Estimated parameter values obtained using three inference methods: marginal mean, marginal
median, and joint mode, for the 7-day moving average of the first wave of COVID-19 in Seoul (CS) for a
fixed average degree µ = 7.61, obtained from the COVID-19 Survey data. The table also reports the Mean
Squared Error (MSE) between the predicted epidemic trajectory and the observed data
Alt text: Table showing estimated values of β, γ, variance, and R0 using three inference
methods—marginal mean, marginal median, and joint mode—for the first wave of COVID-19 in Seoul with
fixed average degree µ = 7.61. Also includes Mean Squared Error (MSE) values for predicted incidence,
prevalence, and new recoveries compared to observed data.
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(a) (b)

Figure 7: Additional analysis of the first wave of COVID-19 in Seoul: Panel (a) shows the
evolution of the incidence obtained from the point estimates using marginal mean, marginal median, and
joint mode for the case where the average degree is known and fixed at µ = 7.61. Panel (b) shows the
results obtained using partial data. Specifically, the first 26 days of data were used to forecast the following
10 days. In the figure, we show the prediction obtained using the EBCM in orange triangles, MA in square
purple, and the 7 days moving average of the COVID-19 in Seoul (CS) in the black circles.
Alt text: COVID-19 incidence in Seoul: (a) model estimates using different inference methods with fixed
average degree; (b) 10-day forecast using partial data, comparing EBCM, MA model, and observed data.

parameters. For the FMD dataset, we observed a multidimensional posterior distribution with long tails and
a strong inverse correlation between β and µ. Nevertheless, as in the synthetic cases, a high-density region
in parameter space provided the best description of the original data. Notably, we found that the joint
mode, which represents the point of highest density in the sample of the posterior distribution, although
more computationally demanding and less exact, yielded better point estimates compared to the marginal
median or marginal mean, as it minimized the mean squared error.

For the Seoul COVID-19 dataset, we observed similar results, with the joint mode again emerging as
the most accurate estimator of the epidemic process. Additionally, our inferred average degree closely
matched independent contact data collected during the outbreak, reinforcing the validity of the approach.
The framework also demonstrated its predictive capabilities by generating a short-term forecast with a 95%
credible interval for the epidemic’s progression over a 10-day period.

This study demonstrates that meaningful insights about underlying contact structures can be extracted
solely from epidemic data without requiring explicit network observations. Future work could explore the
extent to which this method can distinguish between homogeneous and heterogeneous network structures
based only on outbreak dynamics. Furthermore, the approach could be extended to other spreading processes,
such as information diffusion, where higher-order interactions may play a significant role. Comparing inferred
network properties across different geographic regions—such as cities, counties, or states—could also provide
insights into the diverse mechanisms that shape disease transmission.

Overall, our findings highlight the potential of integrating the EBCM and other network-based mean-field
models with DSA to infer hidden contact structures from limited epidemic data. This approach provides
a powerful tool for reconstructing essential network characteristics, improving epidemic forecasting, and
enhancing our understanding of infectious disease spread in real-world settings.
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[19] Marián Boguá, Romualdo Pastor-Satorras, and Alessandro Vespignani. Epidemic spreading in complex
networks with degree correlations. Statistical mechanics of complex networks, pages 127–147, 2003.

17



[20] Yi Wang, Junling Ma, Jinde Cao, and Li Li. Edge-based epidemic spreading in degree-correlated
complex networks. Journal of theoretical biology, 454:164–181, 2018.
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