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Abstract
Criminal networks such as human trafficking rings are threats to the rule of law,
democracy and public safety in our global society. Network science provides
invaluable tools to identify key players and design interventions for Law Enforcement
Agencies (LEAs), e.g., to dismantle their organisation. However, poor data quality and
the robustness of criminal networks make effective intervention extremely
challenging. Although there exists a large body of work building and applying
network scientific tools to green intervene criminal networks, these work often
neglect the problems of data incompleteness and inaccuracy. Moreover, there is thus
far no comprehensive understanding of the impacts of data quality on the
downstream effectiveness of interventions. This work investigates the relationship
between data quality and intervention effectiveness based on classical graph
theoretic and machine learning-based targeting approaches. Decentralization
emerges as a major factor in network robustness, particularly under conditions of
incomplete data, which renders intervention strategies largely ineffective. Moreover,
the robustness of centralized networks can be boosted using simple heuristics,
making targeted intervention more infeasible. Consequently, we advocate for a more
cautious application of network science in disrupting criminal networks, the
continuous development of an interoperable intelligence ecosystem, and the
creation of novel network inference techniques to address data quality challenges.
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1 Introduction
Criminal organizations are ubiquitous and the Dark Networks that support their opera-
tions are threats to our democracy, the rule of law and public safety [1]. Criminal networks
operate outside of the law in various contexts, such as drug trafficking rings [2] and ter-
rorist organizations [3]. For example, in 2008, 2.3% of the Australian population whose
age are over 14 had consumed methamphetamine within 12 months [2], revealing an un-
derlying public health issue across the country. Terrorist organizations, such as the Global
Salafi Jihad (GSJ) network, which includes al-Qaeda and was responsible for large-scale at-
tacks like 9/11, are among the more extensively studied criminal networks. More recently,
within the European Union (EU), around thirty transnational criminal networks are active
across most member countries, driving violent and exploitative crimes such as burglary
and sex trafficking [4].
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Although criminal networks are widely recognized and monitored by governments
worldwide, disrupting them remains a significant challenge for Law Enforcement Agencies
(LEAs) and intelligence agencies. One key obstacle is the advancement of secure commu-
nication technologies, which enable criminal organizations to coordinate illegal activities
with greater efficiency and reduced detection [5]. The persistence and robustness of these
organizations are often reinforced by their adaptability, reliance on corruption, and use of
forensic countermeasures, such as encrypted software like SkyECC, to evade monitoring.
Over the past two decades, these covert networks have also become increasingly decen-
tralized [6]. Additionally, the collection, management, and interpretation of criminal data
are frequently flawed. For large networks, such as the Sicilian Mafia or outlaw motorcy-
cle gangs (OMCGs), surveillance often fails to capture critical communications, resulting
in substantial data gaps [7]. Conversely, in smaller networks, intelligence gathered from
reports or investigations may be overlooked or lost due to corruption or poor judgment
[8]. As a result, data on covert networks is often incomplete, inaccurate, and unreliable.
Finally, the diversity of network topologies and dynamics across various types of covert
organizations complicates efforts to develop a unified approach to network intervention.
Although ‘intervention’ generally refers to various strategies employed by LEAs to dis-
rupt criminal organizations, we use this term in this paper to specifically refer to targeted
methods aimed at influencing individuals in criminal organizations (see Sect. 4.2).

Data quality and the adaptability of criminal organizations are key themes of contem-
porary research on covert networks and the intervention of these networks. These chal-
lenges reflect the robust nature of criminal organizations - that is the ability to evade de-
tection and recover from LEAs’ interventions (e.g., arrest, incarceration) [9]. In line with
the body of criminal network intervention literature [10–17], we will use network robust-
ness throughout this Article to represent such resilience against interventions. Over the
past two decades, network science has emerged as a critical tool for intervening in crim-
inal networks. By leveraging new data sources, such as cellphone call records, network
science has been applied to develop interactive strategies that assist in suspect identifica-
tion and in revealing the hidden structures of criminal organizations [18]. A key approach
in these studies is to target and remove individuals by individuals’ importance, quantified
through centrality measures. Indeed, a substantial body of literature on criminal network
intervention evaluates the most effective node-ranking strategies for targeting or appre-
hending actors within these networks [10, 14, 17, 19].

However, a primary limitation of these studies is their reliance on the assumption of data
completeness and accuracy, which can lead to overfitting on potentially flawed data. Not
only is data collection extremely challenging in this context [20], but criminal networks
can also manipulate their structures—using tactics such as the Remove-One-Attach-
Many (ROAM) heuristic (see Sect. 4.3) to obscure leaders and captains [21] or optimizing
network design to create nodes with identical centralities [22]. Criminal networks exhibit
highly dynamic structures driven by evolutionary processes such as member recruitment,
incarcerations, deaths, and the adoption of novel communication channels. For instance,
[23] found that eleven Islamic terrorist networks tend to become increasingly centralised
and transitive in preparation for specific tasks, such as terrorist attacks. This transfor-
mation involves shifting from decentralised, all-channel structures toward networks fea-
turing distinct central hubs, suggesting strategic centralisation orchestrated by criminal
leadership rather than organic network evolution. For example, Krebs’ terrorist networks
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typically exhibit high average degree centrality, as do certain criminal enterprises such as
the Caviar network, which revolves around a single leader. Similarly, studies of multiple
American and British street gangs [24, 25] have identified comparable average centralities
to those observed in the Caviar network.

In contrast, a notably different topological trajectory was observed within a New South
Wales drug trafficking network, where average degree centrality and network density de-
creased as the network expanded over time, despite initially presenting centrality compa-
rable to early-stage terrorist networks [26]. These contrasting observations highlight the
substantial variability in the topological evolution of criminal networks, driven by their
differing operational objectives - and potentially different data collection procedures. Cur-
rently, however, there is a lack of systematic understanding concerning how local- and
global-level network metrics—including centralisation, density, clustering, and average
path distance—relate to the effectiveness of intervention strategies, particularly in scenar-
ios complicated by data incompleteness and inaccuracies [15, 16]. Furthermore, while it is
recognised that data incompleteness exacerbates errors in estimating network properties
and characteristics [27], little research has specifically investigated when and how these
data limitations negatively impact the success of network intervention strategies.

In recent years, increasingly sophisticated intervention strategies have been developed
to identify key individuals who significantly influence information diffusion within net-
works. These techniques commonly involve algorithms leveraging spectral properties,
message-passing (belief propagation), and machine learning methodologies to devise op-
timal intervention strategies [28]. A prominent example is the Collective Influence (CI)
algorithm, which aims to minimise the largest eigenvalue of the non-backtracking matrix
by calculating a CI score for each node [29]. Subsequently, [30] and [31] introduced ma-
chine learning-based node ranking approaches using reinforcement learning and geomet-
ric deep learning to determine optimal targets for intervention. These advanced models
demonstrated superior performance compared to established algorithms such as CI, Ex-
plosive Immunisation (EI, [32]), and Core High-Degree (CoreHD, [33]). However, despite
this variety of innovative approaches, it remains unclear whether these newer methods
consistently outperform classical intervention techniques across different datasets and
network topologies, especially in the presence of data incompleteness and inaccuracies.

Overall, findings from previous studies on the effectiveness of intervention strategies
should be interpreted with careful consideration of issues related to missing and inaccu-
rate data. While recent work has begun addressing the impact of missing data in criminal
networks (see [15]), these studies have largely concentrated on (1) large datasets and (2)
network estimation errors. In this context, the present work examines the core question
of how data quality—whether compromised by incompleteness, inaccuracy, or intentional
network self-alteration—affects the effectiveness of downstream network interventions in
smaller networks. Through a series of percolation experiments, our results indicate that
missing data renders most node-ranking methods ineffective at reducing the size of the
Largest Connected Component (LCC) in both centralized and decentralized networks.
This limitation is further exacerbated by the potential for network topology to be restruc-
tured through simple heuristics. Based on these findings, we advocate for heightened
awareness of the limitations of network science in disrupting criminal networks under
various scenarios of poor data quality and emphasize the need for ongoing advancements
in data collection and annotation methods.
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Table 1 Data description of the networks being investigated. N and M indicate the number and
edges of the networks respectively. The synthetic networks are generated with approximately
constant density to control for the network connectivity for comparative purposes

Type N M Clustering Average
Distance

Density Degree
centralization

Synthetic
ER 50 149 0.09 2.36 0.12 0.11
BAHK 50 140 0.52 2.32 0.11 0.39
BA 50 141 0.27 2.26 0.12 0.37
WS 50 150 0.25 2.43 0.12 0.06
Superlinear DN 50 137 0.48 3.29 0.11 0.20

Empirical
London Gangs 54 315 0.63 2.05 0.22 0.26
New York Cocaine Trafficking Network 28 40 0.34 2.07 0.11 0.84
Ndrangheta mob network 139 1470 0.81 2.33 0.15 0.37
Madrid Bombing Terrorist Network 17 63 0.90 1.59 0.46 0.54

2 Results
While numerous robustness measures exist [34], we choose sequential node percolation
for our analysis due to its two primary advantages. First, it is widely used as a method to
study network vulnerability. Second, node percolation serves as an abstract representation
of real-life interventions in criminal networks, such as the arrest and incarceration of key
individuals. For this purpose, we selected various node-ranking methods based on classi-
cal centrality measures, as well as more advanced heuristics-based and machine learning-
based approaches (see details in Sect. 4). We then used these ranking strategies to conduct
percolation experiments on the networks.

We use publicly available static network data, specifically: (1) the London juvenile gang
network [35], (2) the ‘Ndrangheta network [36], (3) the New York cocaine trafficking ring
[37], and (4) the Madrid train bombing terrorist networks [38] (see details of networks
studied in Table 1). These networks were selected to provide diversity in size, topology, and
organizational goals, allowing for a comparative examination of intervention effectiveness
(see Sect. 4.1). Although the data sources occasionally include demographic variables and
edge attributes (e.g., relationships between actors), our analysis treats these networks as
unattributed, unweighted, and undirected graphs to facilitate more granular manipulation
of network topologies. Building on experiments with the baseline networks (i.e., networks
as represented in the original datasets (see Sect. 2.1), we conducted simulations to assess
intervention effectiveness on perturbed networks (i.e., networks with missing, inaccurate,
or topologically altered data).

2.1 Baseline performance of network intervention
In Sect. 2.1, we report the baseline performance of criminal network intervention. We
quantify the network intervention effectiveness by approximating Area Under the Curve
(AUC) of the size reduction of the Largest Connected Component (LCC) throughout the
sequential percolation estimated by the Trapezoidal Rule.

The lower the AUC, the more effective an intervention is. We observe that there ex-
ists a generally wide standard deviation of effectiveness σ across all empirical datasets,
but notably more so in the earlier phase of the New York cocaine trafficking ring and in
most parts in the ‘Ndrangheta network. However, the average AUC is much lower for the
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Figure 1 Criminal networks investigated in this work. A: Rank-Degree distribution fitted with Rank-Size
scaling law Pk = P1k–q , where P1 denotes the highest degree and k ∈ [1, 2, . . . ,N] refers to the rank. Rank is
normalized for comparative purposes. Note that not all networks were well-fitted due to varying levels of
network centralization. B: Visualization of the networks. C: Baseline percolation with shaded area is the
standard deviation σ and 〈AUC〉 is the average Area Under the Curve (AUC) of the LCC trajectories across all
node-ranking methods

cocaine trafficking network (〈AUC〉 = 0.108) than the mob network (〈AUC〉 = 0.332), in-
dicating the resilient nature of the mob network (see Fig. 1).

Another intriguing property is network centralization. As mentioned earlier, decentral-
ization has been shown to be a significant factor for network robustness. To quantify cen-
tralization, we used Freeman degree centralization coefficient (Cd) [39]

Cd =
∑

v maxw cw – cv

n2 – 3n + 2
, (1)

where i denotes the node with highest degree centrality. The denominator n2 –3n+2 is the
theoretical maximum sum of difference in degree given that a graph with one dominant
node (e.g., a star graph) must have a degree of n – 1 if self-loops are prohibited. For the
other nodes in the graph, then, the degree will automatically be 1 and thus the difference
between the dominant node and any follower node is (n – 1) – 1 = n – 2. Altogether, the
maximum sum of difference for all n – 1 dominant-follower pairs is (n – 2)(n – 1) = n2 –
3n + 2.

Our numerical experiments indicate that networks with lower degree centralization—
i.e., decentralized networks—generally exhibit greater robustness to network interven-
tions. Notably, degree centralization is closely correlated with the rank-degree distribu-
tion. Networks with a rank-degree distribution that closely follows a typical Zipf scaling
law, such as the Cocaine trafficking ring (q = 1.20) and the Madrid bombing terrorist net-
work (q = 0.38), showed lower average AUC values compared to the more resilient, de-
centralized networks. It is worthwhile to mention that the decentralized networks also
exhibits weaker power-law scaling, with q = 0.27 and q = 0.32 for the gang and mob net-
works respectively. This result was also consistent in synthetic networks with matching
centralization configurations.

2.2 Influence of missing data on intervention effectiveness
In this section, we examine the impact of missing data on network intervention effective-
ness. Building on the baseline established earlier, we repeated the percolation experiments
using randomly sampled subgraphs of the original graphs, assuming these graphs repre-
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sent the true underlying network structure of the target organization. To simulate data in-
completeness, subgraphs were generated by selecting a random fraction q of nodes from
the underlying graph. Each simulation was conducted 103 times per node-ranking method
across all data completeness scenarios.

We observed that data incompleteness affected different networks similarly, regardless
of the extent of incompleteness. For instance, although the New York cocaine trafficking
ring and the London gang network had markedly different baseline performance, AUC
values increased almost linearly as data completeness decreased. Thus, data incomplete-
ness poses a challenge for the LEAs’ irrespective of network topology, although centralized
networks—like the New York cocaine trafficking ring and the Madrid bombing terrorist
network—were still found to be more vulnerable to intervention under missing data con-
ditions. Sect. 2.2 illustrates the specific effects of data incompleteness on the Ndrangheta
network. In general, for more resilient networks, such as the London gang and Ndrangheta
networks, data incompleteness proves highly problematic for LEAs, as percolation effec-
tiveness remains weak even with a relatively low percentage of missing data when using
previously effective methods like FINDER and CI (see Fig. 2C). In other words, to disman-
tle these networks effectively, the observer would need near-complete knowledge of the
network structure.

We conducted additional quantile regression analysis with network completeness q as
the independent variable and intervention efficiency (AUC) as the outcome variable to
further confirm their relationship. For instance, on the ‘Ndrangheta network, as illustrated
in Fig. 2B, we observed a significant negative effect of network completeness on the value

Figure 2 Impact of data incompleteness on percolation effectiveness in the ‘Ndrangheta network with 103

simulations per node-ranking method across all data incompleteness scenarios. A: Boxplots of all
node-ranking methods under different data completeness scenarios. Whiskers show the inter-quantile range
(IQR) of the AUC and the outliers are indicated by small dots. B: Quantile regression of the effect of data
completeness on AUC. C: Percolation plots of four different node-ranking methods under different data
scenarios averaged over simulations
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of AUC (p < .001, t = –1672.5) with a 95% confidence interval of [–0.686, –0.685]. This
effect, however, varied across quantiles (τ ) of the outcome distribution. Specifically, we
detected a non-linear association between τ and the regression coefficient βq, showing
the strongest negative effect near the median of the efficiency distribution, a weaker effect
at the lower end of efficiency (where AUC is high), and the weakest effect at the higher
end (where AUC is low).

Similar results were observed in the synthetic networks. Additionally, we found that
ER and WS graphs exhibit high robustness against intervention, particularly in scenarios
with significant data incompleteness. This robustness makes ER and WS graphs especially
challenging to intervene when data incompleteness is present.

2.3 Influence of inaccurate data on intervention effectiveness
We present here the impact of data inaccuracy on intervention effectiveness. Unlike data
incompleteness, where nodes may be missing, data inaccuracy retains the same number
of observed nodes (q = 1). To model data inaccuracy, 103 randomly modified graphs G′

per inaccuracy scenario were generated based on the inaccuracy rate pk ∈ [0, 1], repre-
senting the proportion of nodes p with k edges that were added, deleted or rewired (non-
degree-preserving) per node (see Algorithm 1). For each randomly modified graph, we
again performed percolation as outlined in Sect. 2.2, and measured the effectiveness of
the intervention methods by computing the AUC of the reduction of the size of LCC.
Note that for any node with a number of edge(s) smaller than or equal to k, we do edge
modification for all of its edges. In cases where a node has zero degree after modification,
the node would be ranked the lowest by all metrics and was removed last.

Algorithm 1 Data Inaccuracy Model
1: Input: Graph G = (V , E), inaccuracy rate pk ∈ [0, 1]

2: Output: Modified graph G′ = (V , E′) with inaccuracy rate pk

3: Randomly sample a subgraph Gsub ⊆ G with a sampling rate of p
4: for each node u ∈ V (Gsub) do
5: Randomly select k edges to modify according to the predetermined data inaccuracy

scenario for node u
6: if Data inaccuracy scenario is edge removal then
7: if k ≥ Degree(u) then
8: Remove all edges connected to node u
9: Node u remains in Gsub with Degree(u) = 0

10: else
11: Remove k random edges from node u
12: end if
13: else if Data inaccuracy scenario is edge addition then
14: Add k random edges to node u
15: else if Data inaccuracy scenario is edge rewiring then
16: Rewire edges of node u with k other random nodes
17: end if
18: end for
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The results indicate only marginal differences in intervention effectiveness for graphs
with small perturbations through such edge modifications. In the conservative scenario
where only one inaccurate link (k = 1) can be modified for each node in their ego network,
data inaccuracies exerted minimal negative impact on percolation effectiveness. Although
a higher level of inaccuracy did delay the collapse of the largest connected component
(LCC), shifting the trajectories rightward, this effect was consistent across all types of edge
modifications. The influence of different types of edge modification on percolation effec-
tiveness remained qualitatively similar. Consistent with our earlier findings, inaccuracies
produced comparable effects across graphs with varying robustness levels. Our compara-
tive analysis of ER and BAHK graphs under data inaccuracies revealed a relatively uniform
delay in LCC dismantling with increasing inaccuracy. However, when we consider the less
ideal case where multiple edges may be added to each inaccurate node, distinct patterns
emerged. For instance, the less robust New York cocaine trafficking network experienced
a more pronounced robustness shift due to inaccuracies than the London gang network.
Despite general delays in both networks, the robustness shift for the New York network
was significantly greater (ΔAUCp2=0 ≈ 0.01 → ΔAUCp2=1 ≈ 0.07) compared to that of the
London network (ΔAUCp2=0 ≈ 0.223 → ΔAUCp2=1 ≈ 0.229). Additionally, our findings
reveal that random data inaccuracy does not always translate to lower percolation effec-
tiveness; bigger inaccuracies do not necessarily correlate with worse outcomes.

2.4 Robustness boosting and intervention effectiveness
Given the understanding that high centralization reduces network robustness against in-
terventions, an important question arises: can we enhance network robustness through
leader-hiding techniques? In this section, we present the results of numerical experiments
aimed at increasing robustness through topological alterations using the ROAM heuristic.

Figure 3A shows the results of the percolation experiment on a centralized network
(i.e., cocaine) and a decentralized network (i.e., mob) after applying the ROAM heuristic.
ROAM starts to be very effective in strengthening a centralized network when b and execn

are sufficiently large. Particularly, when b ≥ 6 and execn ≥ 8, the effectiveness of the in-
tervention strategies are significantly reduced by a great margin (0.003 ≤ ΔAUC ≤ 0.15).
Intriguingly, we found that ROAM worked significantly better for the originally central-
ized networks (i.e., New York cocaine trafficking ring and Madrid bombing network), and
was much less effective for networks that are already decentralized. While the ROAM-
altered centralized networks did not achieve the same level of robustness as the reference
baseline (the WS graph), it is reasonable to conclude that ROAM serves not only as a
leader-hiding technique to evade detection but also as an effective robustness-enhancing
method with a significant impact on the intervention phase of network intervention.

As a next step, we evaluate how the parameterization of the algorithm may affect the ef-
fectiveness of such hiding techniques. The parameters quantify the costs required to run
the algorithm in real-life. Particularly, the budget (b) and number of executions (execn)
parameters in ROAM were inspected. Figure 3B illustrates the gain in robustness as mea-
sured by the AUC of various LCC trajectories relative to the original graph in ROAM.
Assuming that any modification to edges incurs the same cost, increasing the number of
executions almost always yielded better payoff when controlling for the total number of
edges that can be modified. For example, under the scenario where the total number of
edges modified is 24 (e.g., b = 4, execn = 6; b = 6, execn = 4), the payoff is higher when the
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Figure 3 Results of the percolation experiments on the ROAM-altered cocaine trafficking ring and the
‘Ndrangheta network (b = 6, execn = 8). A: Evolution of LCC under ROAM-altered network (blue line) against
the original network (gray dotted line). Green area indicates the positive difference of AUC between the two
trajectories. The trajectories are averaging over all measures as intervention strategies. B: Change in AUC with
different values of b and execn C: Change in the four network statistics over varying execn of ROAM

number of execution is higher than the budget. Therefore, perhaps unsurprisingly, there
exists a clear relation effect between budget and number of executions of the algorithm.
Nonetheless, it should be emphasized that having a low number of executions inhibits
the positive influence of budget on the robustness improvement. A general observation is
that having a lower number of executions delays the robustness gain even given the large
amount of budget devoted to each execution. Particularly, when 1 ≤ execn ≤ 2, the net-
work robustness does not improve at all. One significant note to point out is that even
with higher number of executions and budget, the positive effects of ROAM on AUC for
the originally decentralized networks become negligible.

Finally, to understand how ROAM induces structural changes, we conducted additional
analyses on the evolution of several global graph properties, namely (1) centralization, (2)
average inverse geodesic length (AIGL), (3) average clustering and (4) network density.
Figure 3C considers the New York cocaine trafficking ring and the ‘Ndrangheta network.
Beyond the two representative networks shown, we observe that across all originally cen-
tralized networks, for the networks that gained the starkest increase in AUC, (1) central-
ization has a negative trend and (2) AIGL, (3) clustering and (4) density have positive trend
over the iterations. In other words, via ROAM, the centralized networks are in fact in a
process of decentralizing and fostering previously distant connections as observed from
the increasing clustering coefficient, AIGL and network density. Nonetheless, echoing our
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findings earlier in this section, originally decentralized graphs did not experience any vis-
ible changes in the structure of the graph (see Mob in Fig. 3C).

3 Discussion and conclusion
Data incompleteness and inaccuracy pose significant challenges to law enforcement agen-
cies (LEAs) in effectively disrupting criminal networks [15, 16]. This article aims to explore
critical issues in criminal network intervention through the application of network and
information-theoretic tools. Our findings reveal that even a 20% level of missing data can
severely impair the effectiveness of leading node-ranking methods. In contrast, data inac-
curacy only compromises these methods when a high percentage of actors’ information
is inaccurately captured. This result highlights that data incompleteness extends beyond
simply skewing network statistics; it directly undermines the success of network inter-
vention strategies. Specifically, we observed that data incompleteness (i.e., networks with
missing nodes) is a more challenging task than data inaccuracy (i.e., networks with mod-
ified edges).

Data incompleteness is a significant threat to both the intelligence and implementation
phases of network intervention missions. How, then, can we address this challenge? A
critical first step towards a more resilient criminal network intervention strategy is invest-
ing in consistent, interoperable data infrastructures for effective data sharing (see Sect. 3).
This goes beyond simply merging as many data sources as possible, as [20] suggests; the
issue often stems from technical inconsistencies across varied data sources. To maximize
both the scope and accuracy of network data, it is essential to synthesize “large volumes
of disparate data” [40] (p.3) collected from diverse intelligence channels. A recent model
of such an integrated security system is the EU interoperability regime established un-
der Regulation (EU) 2019/818, which facilitates police and judicial cooperation via sys-
tems like the European Criminal Records Information System (ECRIS), the Europol sys-
tem, and the Prüm II framework [41]. Prüm II, in particular, aims to “improve, facilitate
and accelerate data exchange” by enabling more open sharing of biometric and criminal
records across EU member states [42]. However, these regulations and systems often lack
the formalization necessary for practical network data representation. Interoperability ef-
forts tend to focus on data storage and exchange (e.g., using the universal message format,
UMF), yet they neglect crucial aspects of data fusion, such as defining legitimate crimi-
nal contacts (e.g., is co-arrest sufficient to establish a link?) and standardizing the labeling
of individuals and their relationships. Consequently, constructing a reliable representa-
tion of criminal networks remains a challenge for LEAs. While data-sharing infrastructure
continues to evolve, advancements in data collection technology must be matched by col-
laboration with civil society organizations (e.g., Tech Against Terrorism) and networked
investigators (e.g., Bellingcat) to foster a more comprehensive intelligence-gathering pro-
cess. For example, integrating intelligence sources and employing network analysis can
identify critical targets in financial networks to combat money laundering effectively. Cru-
cially, fostering collaboration among law enforcement agencies (LEAs), researchers, and
civil society is essential for achieving network disruption objectives set by practitioners.
An illustrative example is the COMCRIM project, a Dutch consortium comprising police
forces, banks (e.g., ABN AMRO, Rabobank), NGOs (e.g., FAIRWORK), government enti-
ties (e.g., the Ministry of Foreign Affairs), and universities, united in their efforts against
money laundering [43]. All in all, we encourage the further development of interoperable
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Figure 4 Effective criminal network intervention framework. Intelligence phase: Developing interoperable
intelligence ecosystem is key to establish efficient data sharing between sources and agencies to improve
data accuracy. Design phase: Identifying policy goals and designing appropriate mission simulations to ensure
effectiveness of intervention. A case in point is a numerical experiment as outlined in this work. Intervention
phase: Carrying out planned tasks and monitoring the progress of intervention. The results of the intervention
should always be fed back to the intelligence phase for further refinement

ecosystems and framework to support data fusion from various intelligence sources (see
Fig. 4). Moreover, we urge more collaborative design and interdisciplinary partnerships to
facilitate policy goal planning and mission simulations. Finally, when the intervention is to
occur, an oversight committee must be present to monitor not only the effectiveness of the
intervention, but also the law-abiding and ethical implementations of these interventions
(see Sect. 4.2).

Our experiments also reveal that centralized networks are consistently more vulnerable
to intervention, though they become more resilient as data quality declines. This finding,
combined with highly effective robustness-boosting techniques, is particularly troubling
given the trend toward increased decentralization—both technically and socially—in illicit
networks over time [44]. Notably, the ROAM leader-hiding technique does more than sim-
ply obscure key actors; it significantly enhances the robustness of criminal organizations
against network intervention, even in relatively centralized networks. This aligns with ex-
pectations, as such techniques effectively reduce degree centralization, thus blurring the
lines between centralized and decentralized networks. Consistent with prior research in-
dicating that centralized networks are susceptible to degree-based or value chain-based
intervention [20], our results suggest a similar trend: more decentralized networks—both
synthetic (e.g., WS, ER) and empirical (e.g., London gangs, ‘Ndrangheta networks)—tend
to be more robust against non-random intervention strategies across all evaluation met-
rics. If criminal networks continue to decentralize in response to technological advances,
the detrimental effects of data incompleteness may be even greater than previously esti-
mated. Furthermore, as this paper focuses on dismantling smaller sub-units of organized
crime networks, large-scale dismantling of poly-criminal networks might exhibit different
dynamics. According to [4], approximately 20% of high-risk criminal networks are poly-
criminal, meaning they encompass diverse, topologically varied components. With decen-
tralization and poly-criminality on the rise, effectively disrupting these networks remains
a critical challenge for LEAs, even with advanced tactics. For these reasons, alongside de-
veloping interoperable intelligence systems, we urge the scientific community to advance
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rigorous network inference techniques—such as network reconstruction and deep learn-
ing approaches—that can accurately integrate information from diverse sources.

In summary, future research could extend this study by examining larger networks, such
as cryptocurrency transaction networks and illicit peer-to-peer communication systems,
to assess the replicability of our findings. We also encourage the exploration of alternative
percolation methods, such as triadic or community-based approaches, which may offer
insights into intervention and its dynamics in larger and more complex networks. Ad-
ditionally, percolation experiments on networks with adaptive features—such as recruit-
ment or temporary incarceration modeled through Susceptible-Infected-Recovered (SIR)
frameworks—could reveal further realistic impacts of data quality on the effectiveness of
intervention strategies.

4 Materials and method
4.1 Data description
The empirical networks were primarily collected through evidence presented in courts
with edges between individuals representing an incidence of communication, including
but not limited to tapped phone calls, mob conferences and co-appearance in arrests.
To validate our result, we generated various unweighted, undirected graphs with sev-
eral generative models, namely (1) Erdős–Rényi model (ER); scale-free networks with
(2) Barabási-Albert model (BA) [45] and (3) Holme and Kim’s variation of the BA model
(BAHK) [46]; (4) small-world network with Watts-Strogatz model (WS) [47]; (5) super-
linear densifying network (SDN) [48]. The models were parameterized to minimize the
difference in network density and number of edges to control for the connectivity in the
graphs.

4.2 Intervention strategies
The following sections will detail the mathematical rationale of the node ranking tactics.
Fig. 5 shows the rank-biased correlation between the ranking tactics. Note that we do not
consider bond percolation in this work as site percolation is considerably more efficient
in graph dismantling tasks [19].

4.2.1 Heuristics-based intervention
Other than the classical centrality measures (see Table 2), we also used two heuristics-
based method for targeting. CI is a heuristic that search for the minimal set of influencers
to be targeted to reduce their influence in a network as seen in a typical influence maxi-
mization problem [29]. CI index of a node given by

CI(vi) = (ki – 1)
∑

j∈∂B(i,�)

(kj – 1), (2)

where ki is the degree of node vi, B(i,�) is the ball centring on node vi and ∂B(i,�) are the
nodes at the frontiers of the ball. In simple terms, CI of a length � = 2 is the product be-
tween the sum of the degree of all nodes located at the shortest path distance exactly at
2 from node vi and the degree of the node vi itself. This quantity is a scalable method to
search for minimal sets of nodes [29], which is extremely useful for finding influential play-
ers in very large complex networks. [49] developed an even more efficient computational
method using max-heap, with the computational complexity O(n log n).
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Figure 5 Rank-biased overlap similarity of node-ranking methods used in the percolation experiment. Higher
values indicate higher similarity between node-ranking methods

Table 2 Node-ranking methods used in this work. Computational complexity is assumed optimal for
sparse networks. Note that for eigenvector and PageRank, k indicates the iterations needed for
convergence

Category Method Computational Complexity

Centrality-based Degree centrality O(m)
Eigenvector centrality O(km)
Katz centrality O(n3)
PageRank centrality O(km)
Closeness centrality O(nm)
Betweenness centrality O(nm)

Heuristics-based Collective Influence (CI) O(n logn)
Core High-Degree (CoreHD) O(n)

Machine Learning FINDER O(n +m + n logn)

Another heuristic is Core High-Degree (CoreHD), an approach that utilizes degree-
based decycling - the disintegration of cycles [33]. CoreHD starts by finding the kcore
and obtain the degree of the nodes, then finding the set of nodes VHD with the highest
degree in the kcore, given that the size of kcore > 0. If |VHD| > 1, a random node is chosen
to be removed. We then update the kcore and the degrees of the nodes until the kcore dis-
appears. Finally, CoreHD will perform tree-breaking and greedy insertion - a procedure
to reinsert nodes that were previously unncessarily removed from the decycling process.
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This method is similar to the degree centrality-based intervention, but it focuses on
adaptive node removal inside the kcore with greedy reinsertion, a technique designed to
minimize the number of unnecessary nodes removed during the process of decycling. This
method is extremely fast with a computational complexity of O(n) for sparse networks and
generally as effective as other message-passing decycling methods such as Min-Sum.

4.2.2 Machine learning-based intervention
We also consider a popular pre-trained Graph Neural Network model (GNN), the so-
called FInding key players in Networks through DEep Reinforcement learning (FINDER)
[30], in order to target nodes in the network. FINDER is a deep reinforcement learning
framework for optimal percolation problems proposed by [30]. Formally, FINDER aims to
minimize the accumulated normalized connectivity (ANC)

R(v1, v2, . . . , vN ) =
1
N

N∑

k=1

σ (G\{v1, v2, . . . , vk})
σ (G)

, (3)

where N is the number of nodes in G and vi ∈ V indicates the ith node to be percolated
from the graph, σ (G\{v1, v2, . . . , vk}) is the connectivity of the graph after vi is removed
from the initial graph and, intuitively, σ (G) is the connectivity of the original graph. The
connectivity metric in FINDER can be any well-defined network metric (i.e., network ro-
bustness metrics), making it an extremely adaptable method to consider different types of
metrics, such as Von Neumann entropy and spectral gap.

The model contains two phases, namely the offline training phase and the online appli-
cation phase. In the first phase, synthetic graphs are generated based on different network
generative models. These graphs are randomly sampled for the agent to play the game - an
episode of a crucial node identification process - where the agent’s action is to remove the
chosen node. As mentioned, the reward to such an action is defined by the ANC, and the
larger the marginal decrease of ANC, the more reward an agent will obtain. The graphs
are encoded with tunable parameters Θe using inductive graph representational learning
to aggregate node embedding vectors as node features to obtain their latent structural po-
sition in a graph. After capturing the node embedding, the embedding is then decoded
with tunable parameters Θd as a scalar Q, a set of scores that assesses the potentials of
any given actions. A multilayer perceptron with RELU activation is used to generate the
output layer containing the Q values. Using the ε-greedy strategy under an exploration-
exploitation framework, the action with the highest Q will be adopted with a probability
of (1- ε), and a random action will be undertaken with a probability of ε. ε decreases lin-
early from 1.0 to 0.05 over episodes, symbolizing that a more experienced agent will make
decisions based on its past learning (i.e., exploitation) rather than exploring new options
in comparison to a less experienced agent. When a game is completed, n-step transitions
(Si, Ai, R(i,i+n), Si+n) are collected. M most recent transitions are then stored in the experi-
ence replay buffer, a memory storage technique commonly used Deep-Q learning models.
With these memories, the agent is updated with a new set of parameters Θe and Θd for the
encoder and decoding processes respectively. Adam gradient descent updates are used to
compute the loss from the randomly sampled experiences from the M most recent mem-
ories.

During the application phase, the empirical network will be fed to the model and en-
coded into a embedding vector with lower dimensions, and then the model will infer the
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Figure 6 One execution of the Remove-One-Attach-Many heuristic with a budget b = 3

Q-value for each node (i.e., the reward when such node is removed from the network)
using the decoder. Note that in practice the model selects nodes in batches that can max-
imize Q instead of the computing Q for each node to reduce computational complexity
to O(|E| + |V | + |V | log |V |). For example, instead of choosing the node v0, FINDER will
evaluate the Q-value of removing the set of {v0, v1, v2, v5}.

The model used in this paper is pre-trained by the authors in the original FINDER paper.
The model was trained on ER, WS and BA networks (ntotal = 2 × 106) with each synthetic
network containing 30 to 50 nodes. The model sets M = 5 × 104 for the experience replay
buffer. Because of the batch selection strategy, FINDER only returns the most effective
set of nodes to be percolated from the complete graph, meaning that some nodes will
be omitted from FINDER. To resolve this problem, the final ordered list of nodes to be
removed from graph contains two separate subsets: (1) one with the nodes provided by
FINDER and (2) one imputed randomly with the residual nodes in the network. Because
subset 1 is not ordered, it is possible that the effectiveness of FINDER under our scenario
of sequential node removal is not optimal. However, FINDER has overall been proven to be
effective even compared to node rankings that are theoretically designed to be completely
ordered.

4.3 Remove-One-Attach-Many heuristic
Finally, we also used a leader-hiding heuristic called Remove-One-Attach-Many (ROAM),
an efficient method to hide the leading actor in a network simply by rewiring links of the
most central person in a network (see Fig. 6) [21], to boost the robustness of a network.
The algorithm takes two parameters, b and execn, which are the budget available for link
addition and removal (see Sect. 6) and the number of consecutive execution of ROAM
respectively. In practice, ROAM searches for the evader v†. It then detaches the edge be-
tween v† and its most connected neighbour v0. By doing so, we reduce the centrality of
the leader. Then, to recover the loss of influence of the leader due to reduced connections,
we artificially add b – 1 links between v0 and its least connected neighbours. The success
of ROAM, then, relies on b as well as how many times we execute the heuristic. In this
work, the evader was chosen to be the actor with the lowest combined rank of degree,
betweenness and closeness centrality measures, resembling a leader in the network.
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