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Abstract— Neurodegenerative diseases are characterized by
complex proteins misfolded that propagate within the brain.
For instance, current findings highlight the role of 2 specific
misfolded proteins in Alzheimer which are believed to spread
using brain fibers as highways. Previous studies investigated
such spreading by simulation models or machine learning-based
predictors which adopt the brain connectome as the underlying
spreading network. However, the structural connectome by
construction only describes pairwise connections between nodes
in a graph. High-order interaction complex networks offer
significant advantages over normal graphs because they can
capture interactions that go beyond simple pairwise relation-
ships. Protein misfolding and aggregation often involve coop-
erative behaviors or group dynamics that normal graphs, with
their focus on individual edges, cannot adequately represent.
The non-linear and multiscale nature of protein misfolding
might be better suited to a richer representation of higher-
order models. In this study we investigate whether higher-order
networks can provide improved fits and explanatory power in
this context. More specifically, we employ a simplicial complex
contagion model for amyloid beta to predict protein misfolding
spread. The simplicial contagion complex produced a mean
reconstruction error of 0.030 for Alzheimer’s patients regarding
the predicted protein deposition across all brain regions in a 2-
year horizon and other results, outperforming previous studies,
especially for cases in which the misfolded proteins were non-
increasing steadily. Despite the limited time span, this study
highlights the potential of combining advanced network analysis
to capture the intricate dynamics of protein aggregation across
neural networks.

Clinical relevance— This study highlights the potential of
high-order networks to improve predictions of misfolded pro-
tein spread in Alzheimer’s, offering better insight into protein
aggregation dynamics.

I. INTRODUCTION

Protein misfolding represents a critical pathological mech-
anism in neurodegenerative disorders, with progressive neu-
ral system dysfunction fundamentally altering network con-
nectivity [1]. Traditional models have limitations in captur-
ing the complex spatial and temporal dynamics of protein

*We acknowledge Polish high-performance computing infrastructure
PLGrid (HPC Centers: ACK Cyfronet AGH) for providing computer
facilities and support within computational grant no. PLG/2024/017108.
Data collection and sharing for this project is funded by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (National Institutes of Health
Grant U01 AG024904) and DOD ADNI (Department of Defense award
number W81XWH-12-2-0012), full acknowledgment is available at the URL
https://adni.loni.usc.edu/

1Marcin Wardynski and Alessandro Crimi are with the Faculty
of Computer Science, AGH University of Krakow., Krakow, Poland
alecrimi@agh.edu.pl

2Iacopo Iacopini and Giovanni Petri are with the Network Science
Institute, Northeastern University London, London UK

3Vito Latora is with the School of Mathematical Sciences Queen Mary,
University of London, London, UK

Fig. 1. The high-level pipeline where a baseline PET for protein deposition
and a structural connectivity matrix is used to define either a high-order
spreading model, predicting PET deposition after 2 years.

propagation [2]. Unlike earlier models that viewed protein
aggregation as a localized cellular event, current research
demonstrates a complex intercellular transmission mecha-
nism through which misfolded proteins propagate through
neuronal networks via multiple potential routes [2]. In re-
cent years, Diffusion-weighted imaging (DWI) has shown
information on the anatomical connectivity inside the brain,
polarizing water molecules to detect their diffusion in tissues
to identify white matter tracts through tractography. The
structural connectome [3] represents the brain network using
regions, provided by an anatomical atlas [4], as nodes, and
white fibers as weighted edges, exploiting graph theory to
obtain detailed measures on biological processes flowing
within. Indeed, the accepted paradigm in Alzheimer’s disease
(AD) suggests that diffusion patterns revolve mostly around
two misfolded proteins, namely Amyloid−β (Aβ) and tau
(τ ), across neuronal pathways [5]. Through radiopharma-
ceutical tracers, it is possible to obtain positron emission
tomography (PET) images to measure the concentrations of
proteins to estimate the prediction error of this guess and
to consequently improve its undertaking [6]. Indeed, compu-
tational models have been proposed, these have been either
inspired by spreading mechanisms similar to the diffusion of
heat [7], [8], or similar to epidemic spreading [9]. In parallel,
machine learning approaches using autoregressors and graph
convolutional networks achieved comparable results without
the use of simulations [10].

The Braak staging is one of the oldest systems used to
describe the spread in a predictable pattern across specific
brain regions as the disease progresses. This staging provides
insight into the disease’s severity, and helps link the observed
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Fig. 2. Simplistic view of the spreading of misfolded proteins associated
to Alzheimer’s. Initially, the accumulation of Aβ with little relationship
with symptoms and believed to saturate at some points, then exponential
spreading of τ -filaments with more reliable relationships with cognitive
deficits marked by the darker area.

pathology to clinical symptoms. However, not all patients
follow the exact sequence outlined by the Braak staging [5].
Moreover, their spatio-temporal trajectories are discordant,
Aβ might even slow down at later stages, as opposed to τ ,
which continues to increase steadily for the remaining course
of AD [6]. In this view, the disease has mostly 2 stages. One
initial with the diffusion of Aβ, which does not correlate well
with symptoms, and one more advanced with the spreading
of τ filaments, which correlates better with symptoms [6],
as shown in Figure 2. This conceptualization allowed for
defining an AD biological model with physiological changes
[11]. Indeed, τ filaments are considered at the moment more
indicative of diagnosis. Nevertheless, it can be hypothesized
that, to stop disease progression, it is more relevant to
act with therapies such as trans-cranial stimulation [12] or
pharmaceutical [13] at an early stage when only the Aβ is
present. Therefore, we focus on this stage as we are more
interested in prediction at an early stage.

Indeed, our analysis showed that Aβ behaves similarly to
a sigmoidal temporal evolution, where after a steep increase,
the overall deposition and aggregation of proteins does not
increase, as shown in other studies [6]. Unfortunately, it is
not as straightforward to understand which patients are in the
steep increase phase or in the plateaux. To further complicate
this picture, some patients might show only mild cognitive
impairment, which may remain so, without a complete
conversion to AD patients. In this study, we take into account
this heterogeneity, evaluating how predictor models react
while attempting to predict future states of patients, whether
they are among those with increasing protein deposition or in
plateaux. We do this by expanding the previous comparison
between spreading models and machine learning predictors
[10] using more advanced complex networks relationships
(as depicted in Figure 1). More in detail, this study aims to

1) evaluate a spreading model using a simplicial complex,
2) quantify protein misfolding spread probabilities across

heterogeneous subjective patterns.

By leveraging recent advances in network science, machine
learning, and computational neurobiology, we propose a
novel framework for understanding and predicting neurode-
generative disease progression. Using this approach, we
predict the deposition of misfolded protein with a horizon
of 2 years.

II. METHODS

A. Data and preprocessing

We used a subset of the ADNI defined by the subjects and
patients for which all the required modalities where available
(DWI, T1-weighted, and PET). Ethical approval and patient
consent statement were not necessary as previously acquired
by ADNI, and information about the approval are available
on their website. The resulting demographics for the selected
subjects are the following: AD subjects (age: 76.5 ± 7.4
years), control (CN) (age 77.0 ± 5.1 years), mild cognitive
impaired (MCI) (age: 75.34 ± 5.93); with relatively uniform
sex distribution (52% male and 48% female subjects). Data
were processed as in [10] and accessible on Figshare 1.
Briefly, the pre-processing steps were the following: The
DWI data were skulls-stripped, denoised and eddy current
corrected, and structural connectivity was obtained by using
the DiPy library and the Automated Anatomical Labeling
3 (AAL3) [14], leading to 166 ROIs, with an average of
22.9 edges between ROIs. For the PET data, we performed
motion correction through a co-registration of frames, then
we computerd the average of these frames, over time, using
fslmaths, then registered to a reference volume of AAL3 with
skull, and skull stripped afterwards. We further normalized
PET images of each subject by the maximum value of the
image in the range [0, 1], and computed the average regional
concentrations for each image following the ROIs of AAL3.
We again averaged for each category (AD, MCI, and control
subjects) and applied a z-score normalization against baseline
PET concentrations for CN subjects as in [7]. Then, z-
scores were remapped into a [0, 1] interval using a standard
logistic function. The predicted protein concentration values
are tested with ground-truth values given in PET follow-up
scans after 2 years.

Our experiments are carried out taking into account the
different clinical statuses: CN, MCI, and AD. Moreover,
following the insight of the sigmoidal behavior of the Aβ
deposition as shown in Figure 2, we take into account further
stratification. Practically, we investigate further how the
predictions result separately for subjects where the protein
deposition is increasing within the considered interval or not.
Those values are reported in the tables in Section Results and
Discussions. In our study, the subjects that are considered
non-increasing are defined as∑

ρ∈P
lρ <

∑
ρ∈P

l′ρ, (1)

1https://figshare.com/articles/dataset/
Pre-processed_data_for_the_study_Gherardini_et_
al_/22645357
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Fig. 3. High-order spreading of protein uses underlying d-dimensional group interactions as depicted on the left, all over the brain as shown in the middle,
and those are reflected in high-order contagions as shown on the right.

where ρ stands for a single region, P is the set of all
considered regions, lρ and l′ρ are Aβ concentrations in
specific regions when measured for the first and second time,
respectively.

B. Multivariate Autoregressive Model (MAR)

Inspired by the effective connectivity estimator [15] and
applied for the first time to Aβ levels forecasting in [10],
the multivariate autoregressive (MAR) model is a state-of-
the-art tool that provides an accurate estimation of protein
depositions, outpeforming other models [7], [9] in previous
investigations using the same data [10].

Conceptually, the MAR model captures linear dependen-
cies between the current and future states of variables, in this
case, protein depositions across two time points. Although
such models can handle multiple time points, this study
limits the analysis due to data constraints. Unlike biological
spreading models, MAR defines a structural relationship
between baseline and follow-up states, incorporating physical
constraints believed to support parameter optimization.

Mathematically, the MAR model represents a stochastic
process in which r variables y(t) are influenced by a linear
combination of their past values and a stochastic noise term.

y(t) =

n∑
i=1

Aiy(t− 1) + ϵ (2)

In Equation (2), the matrices Ai are the model parameters,
containing r × r coefficients. These coefficients represent
linear dependencies between the values of the time series
[y1, ..., yr]

T . The variable i denotes the lag order (up to the
n lag), and ϵ term corresponds to additive Gaussian noise.

In our context, the y(t − 1) represents the initial protein
depositions, while y(t) represents the predicted depositions.

The matrices Ai can be estimated in different way, and also
constrained by structural connectivity [10], [15]. It is a data-
driven approach, which means it performs well depending
on the available data.

C. Simplicial Complex Contagion Model (SCM)

Extending traditional network representations, we adopt
the simplicial complex approach pioneered by Iacopini et al.
[16] to model protein misfolding propagation. Unlike tradi-
tional graph models that capture only pairwise interactions,
simplicial complexes enable the representation of higher-
order interactions and dependencies in biological networks.

A simplicial complex K is defined as a collection of
simplices σ ∈ K, where a simplex is a generalized concept
of an edge representing k-dimensional interactions:

• 0-simplex: Individual nodes (brain regions)
• 1-simplex: Edges (pairwise interactions)
• 2-simplex: Triangles (three-way interactions)
• k-simplex: Higher-dimensional interactions

This extends traditional graph representations by incorpo-
rating higher-order interactions as ∆k = {(v0, . . . , vk) :
vi ∈ V, 0 ≤ i ≤ k}, allowing also multidimensional mod-
eling of protein network propagation [16]. Specifically, the
spread of misfolded protein across networked brain regions
is mathematically modeled using the Susceptible-Infected-
Susceptible (SIS) compartmental framework, traditionally
introduced in the context of infectius diseases. Here, the
SIS model describes the transition from healthy regions (S)
to regions containing a non-zero concentration of misfolded
proteins (I). Transition between compartments are governed
by rates of “infection” (from S to I, via contacts with
I nodes) and “recovery” (from I to S). We consider the
simplicial contagion model which has been introduced to



model behavioral contagion in social networks [16]. It is
adapted here as following: Nodes represent brain regions
linked by fiber bundles, with initial contagion probabilities
based on baseline Aβ levels from PET imaging. Edges
denote brain region connections from the connectome, ig-
noring weights. Simplices capture protein interactions within
cliques, such as cellular transfers, extracellular vesicle path-
ways, and neuronal connectivity. For each subject, a separate
graph is constructed according to the aforementioned rules
from the diffusion MRI data. Moreover, the framework is
restricted to 2-simplices of K (triangles) as in Figure 3, since
our implementation currently does not include simplices
of higher order. However, it can be easily extended to k-
simplices. The dynamics of the system evolves according
to a microscopic Markov chain approach [17]. At the node
level, the concentration pi(t) of misfolded protein at node i
at time t is calculated based on levels at time t − 1, using
the following equation:

pi(t) = [1− qi(t− 1)][1− pi(t− 1)]+ [1−µ]pi(t− 1), (3)

with qi(t) being the probability that i does not get infected
by any of the neighboring nodes:

qi(t) =
∏
j∈V

[1−γaijpj(t−1)]
∏
j,l∈V

[1−γ∆aijlpj(t−1)pl(t−1)].

(4)
The parameter µ in Eq. (3) denotes the recovery rate, which
is node-independent and constant in time. Contrarily, the
parameters γ and γ∆ that appear in Eq. (4) represent the
transmission rates for 1- and 2-simplices, respectively. While
β acts as a standard pairwise rate (from a I to a S node),
β∆ captures the additional higher-order transmission rate that
kicks in when an S node shares a 2-simplex with two I nodes.
This structure is encoded into the elements of the adjacency
matrices aij and aijl that return 1 if the 1-simplex ij, or the
2-simplex ijl, exists, and 0 otherwise.

Generally, misfolded protein concentrations do not
decrease—the transition from I to S via µ should not be
allowed. Nevertheless, here the recovery rate µ is introduced
to model confounding factors such as changes in diets
and sleeping habits, which could relatively reduce protein
concentrations [18], [19].

We fit the model using Optuna based on a tree-structured
Parzen estimator with a Gaussian mixture model over multi-
ple simulations [20], each consisting of 50 steps throughout
the dataset. Before fitting, infectivity parameters are rescaled
in terms of ⟨k⟩ and ⟨k∆⟩, the average number of incident 1-
and 2-simplices per node, respectively. This leads to the new
variables:

λ =
γ⟨k⟩
µ

(5)

λ∆ =
γ∆⟨k∆⟩

µ
. (6)

The resulting best-fitting parameters are λ = 0.20, λ∆ =
2.21, and µ = 0.0003. Such a small µ value justifies the a
priori assumption, given its limited impact compared to the
infection parameters.

Furthermore, the fitted parameters clearly demonstrate the
advantage of using high-order networks over standard graphs.
If this were not the case, the value of the parameter λ∆ would
be zero, effectively eliminating the influence of 2-simplices.
It is also worth noting that including higher-grade 2 simplices
did not yield improvements significant enough to justify the
substantially increased processing time.

The code in Python related to the simplicial contagion is
available on Github 2.

III. RESULTS AND DISCUSSION

The differentiation between subjects with increasing and
non-increasing protein deposition using the equation 1, led
the identification of subjects in all clinical groups. Those
are reported in Table I. This shows that less than half of

TABLE I
DISTRIBUTION OF CASES ACROSS CATEGORIES BY INCREASING OR

NON-INCREASING PROTEIN DEPOSITION WITHIN 2 YEARS

Category AD LMCI MCI EMCI CN
Total 24 47 30 60 51

Non-Increasing 16 20 9 29 26

the subjects has non-increasing deposition using equation 1.
This large fraction might be related to the fact we are limited
by the available data. Namely, there is only one interval of 2
years between baseline and follow-up PET, while the entire
evolution, as ideally depicted in Figure 2, might span 50-60
years.

Despite this, our model demonstrates significant improve-
ments in tracking protein misfolding patterns. More pre-
cisely, we compared our results to a previous model based
on MAR, which was already showing superior performance
compared to other state-of-the-art models [10] as network
diffusion model [7] and epidemic spreading [9]. The ra-
tionale behind why a simplicial contagion outperforms an
autoregressive model and also other spreading models based
on graphs rather than hypergraphs, can be given by the fact
that a simplicial complex can capture the non-linearity of
protein spreading given by a clique rather than just an edge
[16]. A MAR model can be used in various flavors. For
example, knowing that a subject is an Alzheimer’s patient,
we can use a model trained on data of the same type
to reach a better Aβ concentration forecast. In this case,
the results reported in Table II highlights the MAR model
as performing better than the proposed model. However,
without knowing the diagnosis enforces the use of the general
purpose MAR trained on all the data. We would consider
this a more realistic clinical scenario in which the proposed
model performs better as reported in bold in Table III and
IV.

2https://github.com/mwardynski/
MP-spreading-prediction-with-SCM
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TABLE II
COMPARATIVE MODEL PERFORMANCE FOR DIAGNOSED SUBJECT

MAR SCM
Category MSE±σ PCC±σ MSE±σ PCC±σ

AD .0027 ± .00 .9662± .02 .0030± .00 .9662± 0.02
LMCI .0066± .02 .9231± .18 .0064 ± .02 .9225± 0.18
MCI .0105 ± .01 .7684± .28 .0107± 0̇1 .7677± 0.28

EMCI .0065± .02 .9171± .20 .0064 ± .02 .9163± 0.20
CN .0044± .01 .9457± .10 .0044 ± .01 .9453± 0.10

ALL .0062± .02 .9097± .19 .0061 ± .02 .9093± 0.19

IV. CONCLUSION

The proposed simplicial graph model provides a sophis-
ticated computational framework for understanding protein
misfolding propagation. The simplicial contagion approach
shows higher accuracy compared to the model that had
previously achieved better performance, offering potential
insight into the mechanisms of neurodegenerative diseases.
This is particularly relevant to conditions like Alzheimer’s
and Parkinson’s disease, which are critical to understand the
stratification of patients [21]. Future works include repeating
those analyses with a longer horizon in the prediction and
also investigating τ filament depositions, or even expand the
model with hypergraph convolutional networks [22], [23].
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