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Abstract: The Fish School Search (FSS) algorithm is a metaheuristic known for its distinctive 1

exploration and exploitation operators and cumulative success representation approach. 2

Despite its success across various problem domains, FSS presents issues due to its high 3

number of parameters, making its performance susceptible to improper parameterisation. 4

Additionally, the interplay between its operators requires a sequential execution in a specific 5

order, requiring two fitness evaluations per iteration for each individual. This operator’s 6

intricacy and the number of fitness evaluations pose the issue of costly fitness functions and 7

inhibit parallelisation. To address these challenges, this paper proposes a Simplified Fish 8

School Search (SFSS) algorithm that preserves the core features of the original FSS while 9

redesigning the fish movement operators and introducing a new turbulence mechanism to 10

enhance population diversity and robustness against stagnation. The SFSS also reduces 11

the number of fitness evaluations per iteration and minimises the algorithm’s parameter 12

set. Computational experiments were conducted using a benchmark suite from the CEC 13

2017 competition to compare the SFSS with the traditional FSS and five other well-known 14

metaheuristics. The SFSS outperformed the FSS in 84% of the problems, and achieved the 15

best results among all algorithms in 10 of the 26 problems. 16

Keywords: simplified fish school search; SFSS; swarm intelligence; metaheuristics; single 17

objective optimization 18

1. Introduction 19

In computational intelligence, swarm and evolutionary metaheuristics have garnered 20

significant attention for their ability to solve complex optimisation problems. Leveraging 21

nature’s process to evolve efficient and effective solutions to many challenges, techniques 22

in this domain seek to apply these principles to the design metaheuristics. Among these 23

metaheuristics are Genetic Algorithms (GA) [1], Particle Swarm Optimisation (PSO) [2], 24

Artificial Bee Colony (ABC) [3], and Fish School Search (FSS) [28]. Besides drawing 25

inspiration from unique biological and evolutionary principles in their design, each one of 26

these methods possesses unique characteristics related to their behaviour, operators,and 27

capabilities. 28
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For example, Genetic algorithms are a class of optimisation algorithms inspired by 29

natural selection and belong to the broader category of evolutionary algorithms (EAs) 30

[1]. GA leverages selection, crossover, and mutation operators to evolve a population of 31

potential solutions over successive generations [4]. GAs typically encode solutions as 32

strings or chromosomes, often using binary representation. This encoding scheme allows 33

for easy manipulation and combination of solutions, making it an excellent choice for 34

combinatorial optimisation problems [5]. 35

Unlike the GA, particle swarm optimisation is in the swarm intelligence (SI) field. PSO 36

is based on the social behaviour of birds flocking and fish schooling [2]. It comprises a 37

population of candidate solutions (particles) that move through the search space to find 38

the optimal solution. Unlike other metaheuristics, PSO uses velocity and position vectors 39

to guide the search process. The velocity vector determines the direction and speed of a 40

particle’s movement, while the position vector represents the particle’s current solution 41

[6]. The updates are governed by equations that incorporate both the particle’s best-known 42

position and the best position discovered by the swarm. 43

Another example of SI metaheuristic is the artificial bee colony, which simulates the 44

foraging behaviour of honey bees [3]. In ABC, there are three types of bees: employed 45

bees, onlooker bees, and scout bees, representing phases of the algorithm. These phases 46

allow for a balanced exploration and exploitation of the search space. The ABC differs 47

from the GA and most swarm-based algorithms because the candidate solutions are not 48

encoded as part of the agents (bees). Instead, the ABC used the analogy of food sources 49

to represent the candidate solutions. The bee searchers exploit these food sources to find 50

better solutions to the optimisation problem [3]. 51

A third algorithm from the SI family is the fish school search. The Fish School Search 52

Algorithm (FSS) is inspired by fish swarms’ collective and individual behaviour [7]. In the 53

FSS, individual fish represent potential solutions, and local and global behaviours influence 54

their movements. Individual, collective-instinct, and collective-volitive components govern 55

the fish movement [28]. Individual movement allows each fish to explore the search space 56

based on its own experiences. In contrast, the collective movements direct the fish school 57

towards promising regions in the search space, influenced by the overall school’s behaviour 58

[28]. While the ABC and the PSO use current or previous best positional information to 59

estimate success, the FSS employs a cumulative success representation for its candidate 60

solutions [8]. The success accumulation is represented as the fish’s weight. Over iterations, 61

fish can gain weight when they improve their solution, and the populations will tend to 62

move to regions with the heaviest fish. FSS is known for its unique strategy to balance 63

exploration and exploitation base on the fish movements and the feeding operator [7]. 64

Despite their success and widespread application, these mataheuristics exhibit draw- 65

backs. For example, GA can present imitations linked to the definition of a proper solution 66

encoding strategy [9] and premature convergence pandey2014comparative, PSO has issues 67

maintaining swarm diversity and avoiding premature convergence [10–12], and ABC has 68

weak in exploration [13–15]. 69

Regarding the FSS, it is more complex to implement and has greater algorithmic 70

complexity than the GA and PSO, and performance issues due to improper parametrisation 71

can occur. Also, the interplay between the movements requires them to be executed 72

sequentially with two fitness evaluations per individual per iteration: one evaluation after 73

the individual movement used to signal the individual guiding the collective movements 74

and another after the collective movements to update the population’s fitness. Reducing 75

the number of fitness evaluations benefits computationally expensive fitness calculations 76

and allows for parallel execution of the movements. 77
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This paper proposes a novel simplified version of the Fish School Search algorithm. 78

Our approach aims to retain the core advantages of FSS—such as the balance between 79

exploration and exploitation, adaptability, and robustness—while reducing the number of 80

parameters and fitness evaluations per iteration. The main challenges involves identifying 81

and preserving the essential characteristics contributing to the algorithm’s success while 82

eliminating redundancies and minimising computational overhead. The simplification 83

process aims to: 84

• Analyse the original FSS to identify critical elements that drive its performance and 85

refine or eliminate non-essential components. 86

• Reduce the number of fitness evaluations per iteration by redesigning the interplay 87

between the fish movement operators. 88

• Decrease the number of parameters to make it less susceptible to performance issues 89

due to improper parametrisation. 90

The remainder of the article is organised as follows: Section 2 gives an overview of the 91

swarm and evolutionary metaheuristics used, Section 3 presents the new version of the 92

FSS algorithm, Section 4 shows the computational results achieved using databases from 93

the CEC ’2017 competition and a discussion about them. Finally, Section 5 presents the 94

conclusions. 95

2. Evolutionary and Swarm-based Metaheuristics 96

This section describes the metaheuristics studied in this paper: Genetic Algorithms, 97

Particle Swarm Optimization, Artificial Bee Colony, and Fish School Search. 98

2.1. Genetic Algorithms 99

GAs are composed of a population of individuals, each representing a potential 100

solution to the problem. These individuals are typically encoded as strings of bits, but this 101

representation varies depending on the problem tackled [5]. The basic idea behind them 102

is to evolve a population of candidate solutions to a problem over multiple generations 103

(i.e. iterations), gradually improving their quality based on a fitness function. To evolve 104

the population, GAs leverage three core operators: selection, crossover, and mutation 105

[4]. These operators mimic the processes of natural selection, genetic recombination, and 106

genetic mutation, respectively. 107

The first operator employed is the selection. This operator chooses individuals from 108

the current population to act as parents for the next generation [4]. Individuals with higher 109

fitness scores are more likely to be selected, ensuring better solutions have a greater chance 110

of passing on their genes. Next, the crossover operator combines parts of parent solutions 111

to produce offspring, introducing new combinations of traits [4]. Lastly, the mutation 112

introduces random changes to individual solutions, promoting population diversity and 113

allowing the algorithm to explore new areas of the solution space [4]. 114

Over successive generations, the population evolves towards better solutions, with 115

the best individuals being selected more frequently and the genetic operators introducing 116

variation. This iterative process continues until a stopping criterion is met (e.g. a maximum 117

number of generations). It is worth mentioning that, although these operators can be 118

considered the core of GAs, different versions of GAs have been proposed, introducing 119

novel and hybrid operators [16–19]. 120

2.2. Particle Swarm Optimisation 121

The PSO has a population of candidate solutions (particles) that move through the 122

search space to find the optimal solution [2]. Each particle has a position representing a 123

potential solution to the optimization problem. The particles also have a velocity that allows 124
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them to move through the search space [20]. Three components influence the movement of 125

each particle: 126

• Inertia: The tendency of the particle to continue moving in the same direction. The 127

inertia helps to balance the exploration and exploitation capabilities of the swarm. 128

• Cognitive component: The tendency of the particle to move towards its personal best 129

position (i.e., the best solution it has found so far). 130

• Social component: The tendency of the particle to move towards the global best 131

position (i.e., the best solution found by any particle in the swarm). 132

The PSO also has a few parameters, such as the inertia weight, cognitive coefficient, 133

and social coefficient, which guide the particle’s movement and control the balance between 134

exploration and exploitation [21]. For example, a larger inertia weight promotes search 135

space exploration, while a smaller one promotes the exploitation of the best solutions [22]. 136

To introduce stochasticity into the algorithm, the movement employs randomly generated 137

numbers between 0 and 1 to control the influence of the personal best and global best 138

positions on the particle’s movement. 139

2.3. Artificial Bee Colony 140

In the ABC, a hive (i.e., the population) is a set of artificial bees, and food sources are 141

the metaphor for an objective function’s optimum points. A metaphor with nectar amounts 142

represents the quality of the solutions where the best solutions possess large amounts of 143

nectar [23]. 144

The algorithm divides the bees into employed, onlookers, and scouts. Each bee 145

type explores each food source separately and represents a different operator designed to 146

improve the current set of candidate solutions (e.g., employed and onlookers bees) and 147

prevent stagnation (e.g., onlooker bees) [24]. 148

The iterative process starts with the employed bees, which select a random solution 149

from the current population and adjust its location based on the information gathered 150

from neighbouring solutions [25]. Next, the onlooker bees are also used to adjust the food 151

sources. However, instead of picking random solutions as in the employed bee phase, they 152

are selected based on a selection probability proportional to the fitness (i.e. nectar amount) 153

[3]. It is worth mentioning that these two bee types represent greedy operations, which 154

will only update the current candidate solution when a better one is found. 155

Lastly, when a food source is depleted (i.e. a candidate solution could not be improved 156

after successive attempts), the scout be operator is used [26]. This procedure replaces 157

the depleted solution with a new one generated within the search space. The ABC has 158

a specific parameter that specifies the number of unsuccessfull improvemts attemps that 159

should trigger the scout bee. 160

2.4. Fish School Search 161

The Fish School Search has four operators: individual movement, feed operator, 162

collective instinctive movement, and collective volitive movement [27]. The collective 163

movements are unique to all schools. 164

It considers the following variables: N is the total number of fish or the school size, z⃗t
i 165

is the current position of the fish i at the iteration t. The operators are described below [28]: 166

• Individual movement p⃗nt`1
i q: random search in which each fish randomly chooses a 167

new position in its neighbourhood. It causes diversity and triggers the other operators. 168

It is executed according to Equation 1: 169

n⃗t`1
i “ z⃗t

i ` stepind.randr´1, 1s (1)
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where n⃗t`1
i is a new position (temporary), stepind is an individual step set by the 170

user (it may decay linearly along the iterations) and randr´1, 1s is a random value 171

generated by a uniform probability density function in the interval [-1,1]. Observe that 172

randr´1, 1s must be drawn for each dimension d “ 1, ..., D separately, while stepind is 173

constant in the current iteration. In this movement, the fish goes to the new position 174

only if there is more food than the current position. 175

• Feeding operator (wt
i ): updates the fish weight and occurs after the individual move- 176

ment. Firstly, the new position n⃗t
i is evaluated according to the fitness f r⃗nt

i s obtained 177

in the previous movement and compared to the fitness of the current position z⃗t
i , 178

according to Equation 2: 179

∆ f t`1
i “ | f r⃗nt`1

i s ´ f r⃗zt
i s| (2)

The value ∆ f t`1
i is used to update the fish weight, as shown in Equation 3 180

wt`1
i “ wt

i `

˜

∆ f t`1
i

maxr∆ f t`1
i s

¸

(3)

Equation 3 shows that the weight of the fish increases according to the success rate 181

achieved by the individual movement. The fish will move to the new position n⃗t`1
i if 182

the movement elevates its fitness or, in other words, if the new position is better than 183

the current (greedy search). 184

• Instinctive Collective Movement (m⃗t): This movement is influenced by the fish who 185

successfully updated their fitness from the individual movement. All the fish perform 186

this movement, calculated via Equation 4 187

m⃗t`1 “

N
ř

i“1
∆⃗zt`1

i ∆ f t`1
i

N
ř

i“1
∆ f t`1

i

(4)

where z⃗t
i is the displacement if the fish i caused by the individual movement and ∆ f t

i 188

is calculated by 2. 189

So, all the school has its position updated by Equation 5 190

z⃗t`1
i “ z⃗t`1

i ` m⃗t`1 (5)

• Volitive Collective Movement (B⃗t): This second collective movement is performed 191

according to the overall success rate of the fish school, measured by the sum of the 192

fish weights. If the total school weight has increased (wt`1 ą wt), this means that the 193

current search was successful. So, the school should contract to increase the exploita- 194

tion behaviour. However, if the school weight has decreased (wt`1 ă wt), it should 195

expand to increase the exploration of the search space. This movement is executed 196

according to the school barycenter calculated via 6 197

198

B⃗t`1 “

N
ř

i“1
z⃗t`1

i wt`1
i

N
ř

i“1
wt`1

i

(6)

If the weight of the school grows (wt`1 ą wt), the fish’ positions are updated according 199

to Equation 7: 200
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z⃗t`1
i “ z⃗t`1

i ´ stepvol .randr0, 1s

´

z⃗t`1
i ´ B⃗t`1

¯

(7)

If not (wt`1 ă wt), perform the new positions by 8: 201

z⃗t`1
i “ z⃗t`1

i ` stepvol .randr0, 1s

´

z⃗t`1
i ´ B⃗t`1

¯

(8)

where the stepvol “ 2.stepind (previously defined in the individual movement), and 202

randr0, 1s is a random value generated by a uniform probability density function in the 203

interval [0,1]. Observe that randr0, 1s must be drawn separately for each dimension 204

d “ 1, ..., D, while stepvol is constant in the current iteration. 205

Algorithm 1 presents the pseudocode of the original FSS. 206

Over the last decade, many improvements have been made to the FSS algorithm. 207

The Density Based Fish School Search (dFSS) was developed to solve multimodal hyper- 208

dimensional problems, adding new operators as memory and partition [28]. The Weight- 209

based Fish School Search (wFSS) modifies the barycenter by adding the Link Formation 210

Rule which causes niches formation [28]. Some versions are proposed to tackle premature 211

convergence and stagnation [28]. Most recently, the FSS family was expanded to cover 212

multi-objective problems for continuous and binary spaces [28]. Lastly, a simplified version 213

of the FSS was also proposed for problems in the binary domain [28], which demonstrated 214

that it was possible to reduce the complexity of the FSS while improving its performance. 215

Algorithm 1: FSS Pseudocode

1 Initialize randomly all fish positions z⃗0
i , according to Equation 1;

2 Initialize randomly all fish weights W0
i ;

3 while stop criterion is not reached do
4 foreach fish do
5 Find neighbor position according to Equation 1;
6 if ∆p f t`1

i q ă 0 (minimization) then
7 Evaluate the neighbor position
8 Perform greedy search and calculate the displacement using 2
9 else

10 Stands in the same position;
11 end
12 end
13 Feed the fish using 3;
14 foreach fish do
15 Calculate the collective instinctive movement via Equation 4;
16 Execute the instinctive movement using 5;
17 end
18 Calculate barycenter using 6;
19 foreach fish do
20 Execute volitive movement using either 7 or 8
21 end
22 Calculate the collective volitive movement via Equation 4;
23 Update sind and svol ;
24 end
25 Return the best solution found;

216



Version April 16, 2025 submitted to Computation 7 of 15

3. The Proposed Fish School Search 217

The Simplified Fish School Search (SFSS) algorithm follows the structure and inspi- 218

ration of the FSS (movements and operators). The main goal was to reduce the use of 219

fitness functions while maintaining its generation of diversity and its automatic balance of 220

exploitation and exploration mechanisms. Moreover, another objective was to minimize 221

the number of parameters the user needs to initialize and define, such as initial and final 222

step sizes, initial weight, and weight limits. The only parameter preserved is the number of 223

individuals in the swarm. 224

In the original FSS, the swarm evaluates twice: one time after the individual movement 225

and another time after the volitive movement. To reduce to only one evaluation per iteration, 226

instead of updating the individual’s position after each movement, the movements generate 227

displacements based on the fish’s current position. After all displacements are calculated, 228

the fish position is updated combining all three displacements values. More than reducing 229

the number of fitness evaluations, this strategy also allows the three displacements to be 230

calculated in parallel, which reduces the execution time. 231

• Individual Displacement p ⃗Ind
t
iq: For each fish in the school, it is drawn a random 232

value generated by a uniform distribution in the interval [0,1]. If the probability of the 233

fish i is greater than the value generated, then the displacement is calculated using the 234

Equation 9. Otherwise, the fish do not perform an individual displacement. 235

⃗Ind
t`1
i,d “ randr´1, 1s.p⃗xt´1

i,d ´ x⃗t´1
j,d q (9)

where ⃗Ind
t
i,d is the displacement for fish i, j is a random fish selected from the swarm 236

(10), randr´1, 1s is a random value generated by a uniform probability density function 237

in the interval [-1,1] and d is a random dimension selected from the number of problem 238

dimensions. 239

Equation 10 calculates the fish selection probability. 240

Pt`1
i “

wt`1
i

maxrWt`1s
(10)

where wi is the weight of the fish i and maxrWt`1s returns weight of the heaviest fish 241

in the school. 242

• Instinctive Displacement p I⃗ns
t
iq: For each fish that had improved in the school, the 243

new position is calculated using the Equation 11: 244

I⃗ns
t`1
i,d “

selectp⃗xt´1
i,d ´ x⃗t

i,dq

N
ř

i“1
wt

i

(11)

where I⃗ns
t
i represents the instinctive displacement of fish i in dimension d, selectpr´1, 1sq 245

is a function which selects and returns 1 or -1 and wt
i is the weight of fish i at time t. 246

• Volitive Collective Displacement pV⃗ol
t
iq: For each fish in the school, the displacements 247

are generated by Equation 12: 248

V⃗ol
t`1
i “ sign

´

x⃗t
i ´ x⃗t

j

¯

(12)

where V⃗ol
t`1
i is the volitive displacement for fish i, j is a fish selected from the swarm 249

using a binary tournament process, sign is a function which returns a random value 250

generated by a uniform probability density function in the interval [-1,0], if the weight 251
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of the fish j is greater than the weight of fish i, or [1, 0] otherwise. This means that the 252

fish i will move towards the fish j if the fish j is heavier. 253

The new position of the fish is generated by combining the three displacements, as 254

can be seen in Equation 13 255

x⃗t`1
i “ ⃗Ind

t`1
i ` I⃗ns

t`1
i ` V⃗ol

t`1
i (13)

Another modification made is related to the feeding operator (Wt
i ). The fish’s weight 256

reflects how good the solution is found, and it determines the degree of influence a fish has 257

on the swarm. Initially, when a fish moves to a better region, it gains weight, and if it is 258

not able to improve, its weight remains the same. Even though it will be punished by not 259

having the instinctive movement and its influence will decrease as other fish get heavier, 260

this process might be slow. In SFSS, weight loss was introduced to penalize even more fish 261

that do not improve. First, the p∆ f t`1
i q is calculated using Equation 2, if ∆ f t`1

i ą 0, fish 262

weight is updated with the FSS weight gain (Equation 3), otherwise use (14). 263

wt`1
i “ wt

i .e
´

˜ˇ

ˇ

ˇ

ˇ

ˇ

∆ f t
t`1

maxr∆ f t`1
i s

ˇ

ˇ

ˇ

ˇ

ˇ

¸

(14)

where wi is the weight of fish i, e is the exponential function and maxr∆ f t`1
i s return the 264

maximum variation of fitness in the school. 265

In preliminary experiments, we observed the algorithm’s performance in different 266

problems by analysing the population weight over the iterations. In these experiments, 267

we noticed that in some cases, the population weight could reach values below one after 268

several iterations without improvements and losing diversity, causing stagnation issues. 269

To address this issue, the SFSS features a turbulence mechanism to promote population 270

diversity and increase the probability of improvements in the population. This mechanism 271

is triggered only in stagnation situations (e.g., swarm weight below one) and for a limited 272

number of fish in the population. In preliminary experiments, we noticed that applying 273

the perturbation to 10% of the worst individuals in the school was enough to produce 274

satisfactory results. This perturbation is not applied on consecutive iterations to prevent the 275

adverse effects of introducing too much diversity. Also, we chose the Gaussian perturbation 276

as our turbulence operator as it is simple to implement, has a low computational cost and 277

produces the expected results. 278

The SFSS is described in the Algorithm 2. It is important to mention that in line 5 the 279

turbulence will only be applied on the worst ten percent fish of the school. 280

3.1. SFSS: Trials 281

During the development of the proposal, the following ideas were also considered 282

as candidates to replace the movements and operators of the FSS. However, they were 283

not used in the final version because they do not improve the algorithm performance, or 284

another simpler solution reveals similar or better results than these. 285

3.1.1. Movements Trials 286

• Uses a roulette wheel to select a fish that will try to move and another roulette to 287

select a fish that will attract fish. The fish moves if the new location is better than the 288

previous one. 289

• Similar to the previous one, but instead of a roulette wheel to select a fish that will try 290

to move, all fish try to move. 291

• All fish try to move, and selecting a random fish from the school will attract fish. 292
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Algorithm 2: SFSS Pseudocode

1 Initialize randomly all fish positions z⃗0
i , according to Equation 1;

2 Initialize all fish weights (W0
i ) as 0 and initial probability as 1/(school size);

3 while stop criterion is not reached do
4 if (school weight ă 1) and (turbulence was not used in last iteration) then
5 Apply Gaussian turbulence;
6 else
7 foreach fish do
8 Calculate the displacements using equations 9, 11 and 12;
9 Generate the new position using Equation 13 and evaluate it;

10 Move to new position only if cost of new position is greater than the
current cost

11 end
12 foreach fish do
13 Feed the fish with Equation 3 if fish improved, otherwise use Equation

14;
14 Update swarm weight and the probability applying Equation 10;
15 end
16 end
17 end

• Generating a new position in all dimensions VS modifying only one random dimen- 293

sion. 294

3.1.2. Feeding Operator Trials 295

The variations described in this section aimed to find a more appropriate form to 296

penalize or reward the fish when necessary. The weight loss means that a fish could not 297

improve in the current iteration, and when the school weight decreases, it might indicate 298

that the swarm converged or is trapped in a local minimal. 299

• Exponential weight gain and loss: 300

wt
i “ wt´1

i e
∆ f t`1

i
maxr∆ f t`1

i s (15)

• Nonlinear weight gain attempt 1: 301

wt
i “ wt´1

i `

˜

|∆ f t`1
i ´ ∆ f t

i |

maxr∆ f t`1
i ´ ∆ f t

i s

¸

¨

˚

˚

˝

´1
ˇ

ˇ

ˇ

ˇ

∆ f t`1
i ´∆ f t

i
maxr∆ f t`1

i ´∆ f t
i s

ˇ

ˇ

ˇ

ˇ

´ 1
´ 1

˛

‹

‹

‚

(16)

• Nonlinear weight gain attempt 2: 302

It is similar to the previous one but with an addition operation instead of multiplication 303

between the normalized variation of the delta cost with the last term. 304

• Nonlinear weight gain attempt 3: 305

wt
i “ wt´1

i `

˜

|∆ f t`1
i ´ ∆ f t

i |

maxr∆ f t`1
i ´ ∆ f t

i s

¸˜

|∆ f t`1
i ´ ∆ f t

i |

maxr∆ f t`1
i ´ ∆ f t

i s

¸5

(17)
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• Nonlinear weight gain attempt 4: 306

wt
i “ wt´1

i

˜

|∆ f t`1
i ´ ∆ f t

i |

maxr∆ f t`1
i ´ ∆ f t

i s

¸5

(18)

• Nonlinear weight gain attempt 5: 307

wt
i “ wt´1

i `

˜

|∆ f t`1
i ´ ∆ f t

i |

maxr∆ f t`1
i ´ ∆ f t

i s

¸

.100

˜

|∆ f t`1
i ´∆ f t

i |

maxr∆ f t`1
i ´∆ f t

i s

¸

´1
(19)

All the exponential weight gain attempts produced similar results. For this reason, the 308

criteria for selecting one of the approaches were simplicity and computational cost. 309

4. Case Study 310

We tested the algorithms using 26 optimization problems from the IEEE Congress on 311

Evolutionary Computation (CEC) 2017 test suit [29]. Although the test suit has 28 problems, 312

we excluded the F17 and F21 because they show unstable behaviour possibly caused by the 313

source code. The Python code for the CEC’17 test suite can be downloaded from the GitHub 314

page 1. All the functions are tested in 30 dimensions, and among this problem, we have 315

unimodal, multimodal, shifted, rotated, and composed functions. The experiments were 316

conducted in a 12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz processor, 40GB of RAM, 317

1TB of hard drive, and running Windows 11 Pro version 23H2 64-bit operating system. 318

Since the ABC and the FSS algorithms have more than one fitness evaluation per 319

individual per iteration, to provide a fair comparison, we decided to use the number of 320

fitness evaluations as the stop criteria of the execution. Furthermore, considering that the 321

CEC functions can be challenging, it was decided, after previous experiments, that the 322

number of fitness evaluations adopted would be five hundred thousand. All the algorithms 323

were executed 30 times for each function and had a population of 30 individuals. 324

The PSO was implemented with a global best topology and used w0 “ 0.72984, C1, 325

and C2 equal to (2.05w) and a maximum velocity of 100000. ABC algorithm employed the 326

trial limit of 100. The GA algorithm was configured with a mutation rate of 0.05 and a 327

crossover constant equal to 0.9. The FSS has initial and final individual steps, respectively, 328

equal to 0.1 and 0.0001, the initial volitive step of 0.01, and a final volitive step of 0.001. 329

Moreover, the initial weight and weight scale of FSS were one and (number of fitness 330

evaluation)/4.0, respectively. The SFSS and FA do not have additional parameters to set 331

aside from the population size. 332

Figure 1 shows an example of the convergence curve of all seven algorithms in six CEC 333

problems, while Table 1 and Figure 2 compare their performance in all 26 problems. As seen 334

in Table 1 and Figure 2, the SFSS overcame the FSS algorithm in 23 of the 26 CEC problems. 335

The SFSS performed best in 10 of the 26 problems compared to the other algorithms. These 336

results suggest that the SFSS reduced the number of fitness evaluations per iteration and 337

presented performance gains. 338

1 more information available at https://github.com/tilleyd/cec2017-py/tree/master

https://github.com/tilleyd/cec2017-py/tree/master
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Figure 1. Example of convergence curves of the algorithms in (A) F1, (B) F9, (C) F14, (D) F21, (E) F26,
and (F) F28. We present the results for 26 CEC problems with 30 dimensions. The algorithms were
interrupted after 500 thousand fitness evaluations.

Figure 2 illustrates the results of the Wilcoxon test comparing the SFSS to the other 339

algorithms. In this figures, the blue square means that the SFSS was superior, the red square 340

denotes that the SFSS was inferior, and the grey square means that there is no statistical 341

difference between them. The statistical results in Figure 2 reinforce the superiority of the 342

SFSS over the FSS. Furthermore, comparing the SFSS to each algorithm reveals statistical 343

significance in most of the results when the SFSS was better than the other algorithms. 344

Table 1. Performance evaluation in terms of average fitness value and (standard deviation) for all
algorithms. The results for 26 CEC problems with 30 dimensions. The algorithms were interrupted
after 500 thousand fitness evaluations. In bold, we have the best results.

Function SFSS ABC CSO FA FSS GA PSO

F1
1.09E+04

(6.17E+03)
6.30E+03

(2.84E+03)
2.87E+10

(4.46E+09)
7.87E+05

(7.86E+04)
6.46E+05

(8.34E+04)
5.95E+10

(1.64E+10)
9.71E+03

(5.43E+03)

F2
1.99E+32

(4.65E+32)
1.03E+08

(1.52E+08)
5.46E+30

(1.39E+31)
2.74E+15

(3.02E+15)
1.47E+14

(1.13E+14)
2.06E+29

(2.90E+29)
3.95E+11

(2.12E+12)

F3
9.24E+04

(7.02E+04)
1.89E+05

(1.48E+04)
9.48E+04

(1.65E+04)
9.99E+03

(5.81E+02)
1.09E+04

(2.04E+03)
1.38E+05

(1.33E+04)
5.02E+04

(2.90E+04)

F4
4.98E+02

(2.82E+01)
4.68E+02

(1.80E+01)
7.23E+02

(4.08E+01)
5.11E+02

(7.17E+00)
5.07E+02

(1.92E+01)
6.01E+02

(3.66E+01)
4.21E+02

(2.76E+01)

F5
6.25E+02

(4.23E+01)
7.11E+02

(1.89E+01)
7.39E+02

(1.58E+01)
7.60E+02

(1.45E+01)
1.59E+03

(1.33E+02)
1.48E+03

(5.23E+01)
7.79E+02

(7.30E+01)

F6
6.22E+02

(7.43E+00)
6.93E+02

(2.50E+00)
6.40E+02

(6.09E+00)
6.72E+02

(3.86E+00)
7.20E+02

(9.24E+00)
7.22E+02

(5.51E+00)
7.10E+02

(1.28E+01)

F7
1.04E+03

(1.46E+02)
8.60E+02

(1.73E+01)
1.02E+03

(1.73E+01)
1.30E+03

(1.49E+01)
6.63E+03

(9.01E+02)
6.32E+03

(2.17E+02)
1.25E+03

(1.66E+02)

F8
9.47E+02

(4.98E+01)
1.18E+03

(3.15E+01)
1.04E+03

(1.96E+01)
9.73E+02

(1.18E+01)
1.63E+03

(9.38E+01)
1.58E+03

(3.52E+01)
1.09E+03

(1.34E+02)

F9
1.21E+03

(4.42E+02)
1.32E+04

(5.76E+02)
3.04E+03

(8.07E+02)
5.13E+03

(1.47E+02)
1.94E+04

(2.28E+03)
1.95E+04

(1.11E+03)
1.80E+04

(2.08E+03)

F10
5.75E+03

(8.61E+02)
4.13E+03

(2.17E+02)
8.67E+03

(2.47E+02)
4.68E+03

(2.29E+02)
6.73E+03

(4.12E+02)
5.96E+03

(5.63E+02)
5.69E+03

(5.68E+02)

F11
1.29E+03

(2.89E+02)
2.30E+03

(6.97E+02)
2.37E+03

(3.42E+02)
1.17E+03

(4.17E+00)
1.47E+03

(4.34E+01)
1.84E+03

(1.51E+02)
1.36E+03

(6.25E+01)

F12
2.80E+05

(2.33E+05)
2.30E+06

(5.79E+05)
2.99E+09

(6.01E+08)
1.17E+07

(2.52E+06)
5.28E+06

(5.62E+05)
7.88E+06

(2.32E+06)
7.27E+04

(9.55E+04)



Version April 16, 2025 submitted to Computation 12 of 15

F13
4.77E+03

(3.43E+03)
1.16E+04

(4.17E+03)
1.41E+09

(4.54E+08)
5.92E+04

(1.16E+04)
3.14E+05

(4.78E+04)
1.49E+04

(2.18E+03)
7.17E+03

(5.14E+03)

F14
2.07E+03

(2.36E+02)
2.23E+05

(8.56E+04)
2.89E+05

(1.07E+05)
1.01E+04

(1.44E+03)
9.67E+03

(3.84E+03)
5.22E+04

(1.09E+04)
1.19E+04

(1.20E+04)

F15
1.08E+05

(1.30E+05)
6.12E+03

(3.93E+03)
8.55E+07

(4.76E+07)
1.60E+04

(1.53E+03)
1.20E+05

(1.78E+04)
2.31E+03

(4.47E+02)
9.72E+03

(9.40E+03)

F16
2.32E+03

(3.64E+02)
2.24E+03

(1.06E+02)
3.40E+03

(1.79E+02)
3.36E+03

(2.68E+02)
3.24E+03

(3.59E+02)
3.37E+03

(3.88E+02)
2.73E+03

(3.66E+02)

F18
8.81E+04

(3.76E+04)
3.17E+05

(9.84E+04)
2.52E+06

(1.25E+06)
9.46E+04

(8.78E+03)
1.56E+05

(1.75E+04)
1.06E+06

(2.04E+05)
1.43E+05

(8.95E+04)

F19
7.10E+05

(2.23E+06)
2.56E+04

(1.43E+04)
1.64E+08

(5.89E+07)
9.96E+05

(2.62E+05)
1.30E+06

(2.41E+05)
4.66E+03

(9.24E+02)
9.02E+03

(6.24E+03)

F21
2.40E+03

(3.40E+01)
2.55E+03

(1.67E+01)
2.53E+03

(1.42E+01)
2.56E+03

(7.90E+01)
3.00E+03

(6.62E+01)
2.93E+03

(3.19E+01)
2.56E+03

(6.84E+01)

F22
7.04E+03

(1.39E+03)
5.76E+03

(2.45E+02)
7.95E+03

(2.86E+03)
7.41E+03

(1.66E+02)
8.19E+03

(4.37E+02)
7.69E+03

(7.58E+02)
7.00E+03

(5.86E+02)

F23
2.74E+03

(4.10E+01)
2.82E+03

(1.81E+01)
2.93E+03

(3.20E+01)
3.88E+03

(1.06E+02)
5.00E+03

(2.44E+02)
4.69E+03

(1.57E+02)
3.24E+03

(4.52E+02)

F24
2.89E+03

(3.13E+01)
3.14E+03

(3.17E+01)
3.08E+03

(2.41E+01)
3.46E+03

(1.61E+02)
4.05E+03

(1.29E+02)
4.03E+03

(4.69E+01)
3.19E+03

(1.53E+02)

F25
2.90E+03

(1.30E+01)
2.88E+03
(5.62E-02)

3.03E+03
(1.80E+01)

2.90E+03
(2.02E+00)

2.88E+03
(1.72E+00)

2.91E+03
(1.47E+01)

2.89E+03
(1.25E+01)

F26
5.76E+03

(1.03E+03)
5.40E+03

(1.32E+03)
3.79E+03

(9.98E+01)
5.49E+03

(1.06E+03)
1.24E+04

(1.66E+03)
1.29E+04

(3.37E+03)
6.06E+03

(2.20E+03)

F27
3.24E+03

(1.90E+01)
3.22E+03

(3.66E+00)
3.37E+03

(3.37E+01)
4.94E+03

(2.63E+02)
4.06E+03

(1.56E+02)
3.97E+03

(2.16E+02)
3.40E+03

(1.06E+02)

F28
3.21E+03

(2.44E+01)
3.16E+03

(4.08E+01)
3.45E+03

(3.76E+01)
3.26E+03

(2.91E+00)
3.32E+03

(4.03E+01)
4.93E+03

(3.77E+02)
3.15E+03

(6.30E+01)

Figure 2. Results of Wilcoxon test comparing the proposed metaheuristic to the other algorithms.
We present the results for 26 CEC problems with 30 dimensions. The algorithms were interrupted
after 500 thousand fitness evaluations. Blue signifies superiority of the SFSS, while the red indicates
inferiority. Grey denotes no statistical difference between them.

Regarding the algorithm complexity, we employed a calculation similar to the one 345

adopted at CEC’17 [29], which can be described as follows: 346

1. Calculate the function complexity Ti by computing time of 10000 evaluations for 347

problem i. 348

2. Compute the algorithm complexity TAi by computing the time of 10000 evaluations 349

for problem i. To accommodate variations in performance due to the algorithms’ 350

stochastic nature, the TAi is the average of 15 runs. 351

3. The final complexity is given by AC “ pTAi ´ Tiq{Ti 352

The main difference between this definition and the CEC’17 is that here, we present the 353

complexity per function, while the CEC’17 calculates the overall complexity in all problems 354

in the test suit. 355
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The results of the algorithm’s complexity across the benchmark problems are presented 356

in Table 2. As shown in Table 2, the PSO, the CSO, and GA are the algorithms with the 357

lowest complexity, while the FA, FSS and SFSS presented the highest values. As this 358

definition assesses the time required to execute a given number of fitness evaluations, we 359

expect the SFSS to exhibit higher values than the FSS. This results arises from the SFSS 360

combining its operators’ complexity within a unique fitness evaluation per iteration. In 361

contrast, the FSS has two evaluations per iteration. 362

Table 2. Analysis of the algorithm’s complexity on the 26 benchmark problems. Note that, because
this definition gauges performance based on the time it takes to perform a certain number of fitness
evaluations, the SFSS is expected to present greater complexity than the FSS.

Function SFSS ABC CSO FA FSS GA PSO
F1 8.166 1.937 0.348 5.067 4.615 1.396 0.957
F2 5.416 1.828 0.315 4.874 4.367 1.336 0.937
F3 3.517 0.933 0.112 2.783 2.448 0.577 0.331
F4 5.283 1.091 0.037 3.239 2.913 0.704 0.463
F5 6.422 1.820 0.308 5.059 4.398 1.311 0.915
F6 4.109 1.090 0.155 3.253 2.782 0.741 0.456
F7 3.279 0.902 0.154 2.392 1.992 0.600 0.411
F8 4.869 1.544 0.441 3.937 3.637 1.070 0.774
F9 3.128 0.864 0.144 2.745 2.389 0.588 0.385
F10 2.649 0.780 0.154 2.399 1.962 0.508 0.358
F11 1.533 0.567 0.181 1.531 1.266 0.391 0.292
F12 1.880 0.561 0.197 1.315 1.204 0.370 0.303
F13 1.676 0.544 0.191 1.321 1.110 0.358 0.278
F14 1.305 0.489 0.184 1.252 1.032 0.333 0.244
F15 1.584 0.524 0.172 1.327 1.117 0.350 0.267
F16 1.228 0.413 0.153 1.046 0.897 0.262 0.198
F18 1.253 0.452 0.186 1.093 0.933 0.298 0.226
F19 0.968 0.343 0.162 0.845 0.718 0.227 0.174
F21 0.942 0.306 0.131 0.799 0.734 0.163 0.114
F22 0.850 0.341 0.196 0.741 0.748 0.204 0.161
F23 0.686 0.217 0.135 0.557 0.484 0.111 0.124
F24 0.782 0.287 0.162 0.650 0.576 0.175 0.139
F25 0.755 0.204 0.171 0.606 0.443 0.111 0.077
F26 0.672 0.210 0.159 0.595 0.448 0.119 0.090
F27 0.543 0.123 0.120 0.404 0.331 0.053 0.048
F28 0.661 0.189 0.179 0.484 0.396 0.120 0.098

5. Conclusion 363

This paper presented the Simplified Fish School Search as an alternative algorithm 364

for optimization problems. The experiment results show that it could overcome the FSS in 365

most of the problems analysed (22 of 26) and compete with well-known algorithms such as 366

PSO, ABC, GA, CSO and FA. 367

The proposed algorithm’s performance in unimodal, multimodal, and composition 368

problems was satisfactory, showing the SFSS’s versatility. Furthermore, the computational 369

cost and the number of fitness evaluations per individual per iteration were reduced. 370

Reducing the number of calls to the fitness function is essential when dealing with functions 371

with elevated costs. 372

Finally, we reduced the number of parameters, which led to a less user-dependent 373

and problem-dependent algorithm with no parameter specification required besides the 374

population size. 375

We aim to apply our proposal to other challenging real-world problems in future 376

works. Moreover, it is recommended that the contributions of the three displacements to 377
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the swarm performance be assessed and the effectivity of improvements in the turbulence 378

mechanism further studied. 379
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The following abbreviations are used in this manuscript: 389
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ABC Artificial Bee Colony
EAs Evolutionary Algorithms
FSS Fish School Search
GA Genetic Algorithms
PSO Particle Swarm Optimization
SFSS Simplified Fish School Search
SI Swarm Intelligence
wFSS Weight-based Fish School Search
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