
Distinguishing mechanisms of social contagion from 1

local network view 2
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ABSTRACT 9

The adoption of individual behavioural patterns is largely determined by stimuli arriving from peers via social interactions or
from external sources. Based on these influences, individuals are commonly assumed to follow simple or complex adoption
rules, inducing social contagion processes. In reality, multiple adoption rules may coexist even within the same social contagion
process, introducing additional complexity into the spreading phenomena. Our goal is to understand whether coexisting
adoption mechanisms can be distinguished from a microscopic view, at the egocentric network level, without requiring global
information about the underlying network, or the unfolding spreading process. We formulate this question as a classification
problem, and study it through a likelihood approach and with random forest classifiers in various synthetic and data-driven
experiments. This study offers a novel perspective on the observations of propagation processes at the egocentric level and a
better understanding of landmark contagion mechanisms from a local view.

10

Introduction 11

We influence our peers by our conduct and interactions, thereby impacting their decisions to follow behavioural patterns similar 12

to ours. Such patterns, mediated by social influence, may propagate as a spreading process and lead to macroscopic phenomena 13

of mass adoption of products, ideas, beliefs, or information cascades1–5. The relevance of social spreading phenomena has been 14

previously identified6, 7, and arguably explained by simple decision mechanisms on well-mixed populations8–11. Meanwhile, 15

the importance of social networks has also been recognised12–14, as they effectively encode the underlying structure along 16

which social influence travels. Their structure could critically influence the global outcome of social spreading phenomena 17

unfolding on top of them2, 15. This finding is especially true for temporal networks16, which capture both the structure and the 18

time of interactions between connected peers, whose time varying links represent possible events of direct social influence17, 18. 19

20

Models of social contagion commonly describe the spreading dynamics as a binary state process19, in which individuals 21

are identified as nodes of a social network that can be in different states; susceptible nodes (also called ignorants) may adopt 22

a given behaviour and become “infected” —borrowing the term from the literature of infectious disease modelling—, or in 23

other words spreaders, or adopters1 through a cognitive process driven by a variety of contagion mechanisms. One family 24

of mechanisms1, 8, 9, commonly termed simple contagion in the social science literature20–24, resembles biological epidemic 25

processes; each interaction between a susceptible node and an infectious one may independently result in an infection event 26

with a predetermined probability, leading to gradually evolving global adoption curves 25. 27

There is however plenty of empirical evidence suggesting that the simple contagion is not sufficient to explain the observed 28

spreading phenomena in certain contexts13, leading to the concept of an alternative mechanism, called complex contagion24, 26, 27. 29

In this case, exposures are not independent, but peer pressure can impact in a non-linear way the individual infection probability, 30

for example by accumulating influence towards an individual adoption threshold11, 15, 28. Depending on the model parameters, 31

the complex contagion mechanism may lead to a cascading phenomenon29, where mass infection emerges over a short period of 32

time. This was first shown on networks by Watts15, while several follow-up studies explored a rich family of similar phenomena 33

in multi-layer30–32, weighted33, 34 or temporal networks18, 35, demonstrating their relevance in real-world settings36–40. In this 34

manuscript, we will use the threshold model15 as a paradigmatic mechanism of complex contagion. 35

Simple and complex contagion capture network-based adoptions, however, social influence may not always spread on an 36

1Note that in this manuscript, we would use these terms interchangeably
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observable network (e.g., advertisements, news or policy recommendations, etc.). We take such external influences into account37

by also considering a third mechanism, called spontaneous adoption39, 41, 42. Although spontaneous adoption is agnostic to38

the underlying network structure, infection patterns via the other two mechanisms depend non-trivially on several network39

and dynamical characters of an ego and its peers43. It has been shown that while simple contagion spreads easier on dense40

and degree-heterogeneous structures, with high-degree nodes early infected44, these properties mitigate complex contagion41

as the threshold of high-degree nodes can be hardly reached2, 45. Moreover, while weak ties connecting densely connected42

communities act as facilitating bridges for simple contagion10, they slow down complex contagion cascades24, 46, 47, as they43

likely deliver non-reinforced social influence to susceptible individuals. In addition, the timing and the order of infection44

stimuli, their concurrency, and the bursty dynamics of interactions35, 48, 49 between individuals and their peers influence the45

adoption dynamics and the macroscopic dynamical outcome of the spreading process as a whole.46

47

Acting alone, all social contagion mechanisms may lead to differentiable infection dynamics at the global scale. In this48

direction, while distinguishing mechanisms solely from the overall infection dynamics remains a challenge50, recent methods49

combining spreading dynamics and network information45, considering the timing of peer stimuli38, or the differences of the50

spreading dynamics by contagion type in mesoscale structures51 led to promising results. However, these studies commonly51

make two assumptions limiting their applicability in real-world scenarios. First, they expect full knowledge about both the52

underlying network structure and the spreading dynamics. Indeed, this is a strong assumption in common real-world scenarios,53

where information about infection events is typically incomplete or limited to local knowledge, possibly obtained only about an54

adopting ego and its peers. Second, these studies assume that all individuals follow the same single adoption mechanism; either55

simple or complex contagion. In contrast, it has been argued that the mechanism driving one’s decision to adopt a behaviour56

during an unfolding social contagion may depend on the intrinsic susceptibility of an individual to the actual behavioural57

form and the properties of the propagation process itself52–54. Thus, each single adoption event may be driven by different58

mechanisms that jointly depend on personal factors55, 56 (heterogeneous susceptibility and predisposition), the properties of the59

item being adopted (Gladwell’s stickiness52), and the particular context (environment, time of adoption, other external factors).60

61

In this study, we distinguish between simple, complex and spontaneous contagion mechanisms by addressing both the issue62

of limited data availability and the challenge that a single social contagion process may involve multiple adoption mechanisms57.63

We frame this question as a classification problem and explore solutions based on likelihood and random forest approaches.64

These methods are developed and tested on extensive synthetic simulations, encompassing different spreading scenarios and65

underlying social structures, ranging from fully controlled experiments to empirical spreading cases observed on Twitter66

(currently called X). Our ultimate goal is to uncover the fundamental limits of distinguishability of these mechanisms, and to67

propose solutions that can be readily used in real-world scenarios aimed at understanding social contagion phenomena.68

Results69

Different mechanisms of social contagion70

We study adoption processes on networks, where individuals are represented as a set of nodes V , and their interactions as a71

set of links E. The number of nodes connecting to a node i (i.e., the number of neighbors) is called the degree of i, denoted72

by ki. The most common way to model propagation dynamics on a networked population is to assign a state to every node,73

which characterises its status with respect to the propagation19; a node is either susceptible (S), meaning that it has not yet been74

reached by the contagion process, or infected (I), if it has already been reached, and thus it can infect others.75

We consider three infection mechanisms that can change the state of a node from susceptible to infected (cf Figure 1a).76

As for the simple contagion (Sm) mechanism, we build on the Susceptible-Infected (SI) model, introduced first in77

epidemiology58 and later to characterise the adoption of social behaviours20–23. In this model a susceptible node can become78

independently infected with a fixed probability during each interaction with an infectious neighbour. Here, we assume that79

at every time step a susceptible node i could acquire an infection from each infectious node in its neighbourhood with its80

node-dependent probability βi ∈ [0,1] (that could thus be considered alike a heterogeneous susceptibility). After a gradual81

contamination of the network, the macroscopic steady state of an SI contagion process is reached when all nodes become82

infected. The Complex contagion (Cx) mechanism breaks the linearity of the contagion by introducing social reinforcement83

effects, often found in behavioural patterns: it is the combined influence arriving from the neighbours of an ego node, which84

triggers the adoption. Here, we consider this mechanism by employing a conventional deterministic threshold model introduced85

by Watts15, where each susceptible node i becomes infected as soon as its fraction of infectious neighbours exceeds a preassigned86

intrinsic threshold φi ∈ [0,1]. This threshold model is known to exhibit rapid cascading behavior if the necessary conditions on87

the average degree and the infection threshold are met15.88

Parameters βi and φi are crucial in shaping the propagation dynamics. High values of βi lead to faster adoption via Sm,89

while low values of φi accelerate the adoption rate via Cx, as individual thresholds become easier to reach (see Figure 1b and90
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Figure 1. Overview of experimental setups. (a) Illustration of the three contagion mechanisms that are subject for inference:
simple contagion parameterised by the adoption probability βi through a single stimuli; complex contagion parameterised by
the threshold φi of necessary fraction of adopter neighbours to induce the adoption event; and spontaneous adoption that occurs
with probability r. (b) The parameter space (β ,φ) and the speed dependence of the simple and complex contagion processes
shown as a schematic representation for illustration purposes. (c) The different experimental setups that include the considered
contagion mechanisms, the complexity of the underlying network, and model update rules. (d) Schematic pipeline for the
application of the log-likelihood (LLH) and random forest machine learning (ML) classification approaches to the different
experiments.

also Supplementary Material 1). 91

Finally, we implement a third adoption mechanism called spontaneous adoption (St), which models external effects; every 92

susceptible node becomes infected with probability r during any time steps of the process, independently of the state of its 93

neighbours. 94

The backbone of the paper is a series of four experiments (Figure 1c), where we tackle the problem of distinguishing 95

simulated Sm, Cx and St processes based on the infection times of an ego node and its neighbours. The experiments cover 96

a wide range of scenarios, from the simplest configuration on disjoint star networks with βi and φi known to the estimator 97

(Experiment 1), to the most involved setup, simulated with co-existing, asynchronous update mechanisms with unknown 98

parameters (Experiment 4). In each experiment, we distinguish the adoption processes using a maximum likelihood approach 99

and a random forest classifier, whenever the method is applicable (Figure 1d). The likelihood approach features theoretical 100

guarantees, and the possibility to include prior knowledge about the underlying processes59. However, likelihood-based 101

approaches may not be robust if they cannot capture precisely the data from the assumed generative process60. In contrast, 102

random forest classifiers tend to be more robust even if the dataset does not fit perfectly to the model, while falling short on the 103

interpretability of the results. Finally, after highlighting the strengths and weaknesses of the two classification approaches, we 104

apply the random forest classifier to real ego-level datasets collected from the Twitter (now called X) micro-blogging and social 105

networking platform. 106

Process classification with known parameters 107

We start approaching the proposed classification task in the most elementary case, that is when the parameters {βi}i∈N , {φi}i∈N 108

and r governing the spreading processes are known to the classifier. Even though such information is not available in practical 109

real-world scenarios, this setup represents an ideal starting point to understand the performance of the classifiers in a simple 110

and controlled synthetic context. 111

Contagion on egocentric networks 112

Experiment 1. As we aim at classifying contagion mechanisms relying solely on the information available at the level of 113

an ego node and its neighbours, the simplest setting to consider is the case of contagion processes that spread on disjoint star 114
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Figure 2. Classification accuracy values of the likelihood method (green rectangle (d) when it is obtained theoretically and
yellow rectangle (a-c) when it is obtain by simulation) and of the random forest method (red rectangle (e-g)). Results in the
same column are obtained on the same Experiment produced by synthetic models, with model complexity increasing from left
to right. In panel (g), the notation qparameter

n represents the nth quintile of the parameter distribution. Panels (h-l) show the
confusion matrices associated to the highlighted pairs (β , φ ) from Experiments 2, 3 and 4. In general, classification accuracy
decreases with increasing model complexity, but the accuracy remains well-above the random baseline (0.5 for Experiment 1
and 0.33 for Experiments 2-4). Within one experiment-method pair, accuracy increases with φ and decreases with β , which
agrees with our intuition that the Sm and the Cx are most difficult to distinguish when both contagions propagate fast in the
network.

structures that are not part of a larger network structure. To isolate the mechanism of the ego node only, we assume that all115

the neighbours undergo a spontaneous adoption (St mechanism), while the ego can adopt via simple or complex mechanisms,116

which are randomly assigned at the beginning of each simulation, as well as the βi and φi parameters controlling the contagion117

of each ego node.118

After simulating the contagion process for T timesteps, we feed the classification algorithm with the trajectory {σi(t)}T
t=0

that takes values 0 (S) or 1 (I) and tracks the status of each ego node i at each timestep t. In order to assess whether the
trajectory of an ego has been generated by the Sm or Cx mechanism, we formulate the classification problem under a likelihood
framework. Since both contagion processes are Markovian (i.e. the state of the system at a given time only depends on the
previous timestep), we can write, for each node i, the likelihood for an observed process to be generated by each mechanism
X ∈ {Sm,Cx} with parameters {βi,φi} as the product of the probabilities:

Li(X ) =
T

∏
t=0

P(σi(t +1)|σi,nb(t),X ,{βi,φi}), (1)

where σi,nb(t) denotes the trajectories of the ego node and of its neighbours. An observed adoption could then be attributed to119

the mechanism having the highest likelihood (more details are given in “Likelihood calculations” of the Methods section).120

Assuming that the star networks have degrees k drawn from a binomial distribution, we display in the heatmap of Figure121

2a the obtained accuracies (proportion of well-classified nodes) as a function of the respective pair of parameters (β ,φ) that122

generated the simulations. We obtain relatively high accuracy values —with a mean of 0.9— over the whole parameter space,123

with the exception of the portion of the space where Sm and Cx both evolve fast, which corresponds to the parameter extreme124
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when β → 1 and φ → 0. In this case, Sm and Cx are very difficult to distinguish; in both cases, the ego node becomes infected 125

most likely one timestep after its first neighbour adopts. This parameter range also corresponds to the least distinguishable 126

scenario at the level of the global epidemic curves, as they both evolve rapidly even in populations with homogeneous adoption 127

mechanisms (Supplementary Material Figure S1). In this range, the lowest classification accuracy is around 0.55, which is still 128

slightly above the expected accuracy of a random classifier 0.5. Notably, the two processes are highly distinguishable in the 129

opposite case, when β = 0.1 and φ = 0.9. In this other extreme, φ is so high that Cx adoptions are possible only once most of 130

the neighbours of the adopting ego have been spontaneously infected. At the same time, Sm adoptions are still possible via 131

repeated stimuli from a few neighbours, making the two processes easier to distinguish. 132

A major advantage of this stylised setup on disjoint degree-k star networks is that the likelihood classification accuracy can
be approximated analytically as

ACC(k,β ,φ ,r)≈ 1− 1
2

(
bkφc

∏
n=1

pn− pnbn

bn + pn− pnbn

)
bdkφe, (2)

with pn = 1− (1− r)k−n and bn = 1− (1−β )n (see Methods for the details of the calculation). Comparing the theoretically 133

estimated accuracies from Eq. (2) (visualised in Figure 2d) with the simulation outcomes (Figure 2a), we observe a very close 134

match, with a maximum difference of 0.01. 135

Overall, Experiment 1 features a high classification accuracy and precise analytical results, while making strong assumptions 136

on the network structure and the adoption mechanisms. Since the likelihood approach matches the underlying model exactly, it 137

is an optimal estimator, and we omit the application of the random forest approach in this setup. However, since this setting 138

also neglects some of the most important features of realistic social contagions and social structures, it can only be considered 139

as the simplest solvable reference model to be compared with more complex scenarios. 140

Contagion on random networks 141

Experiment 2. To generate a more realistic setting, we consider contagion mechanisms that spread over larger network 142

structures. Most of the results in this section were obtained on the giant component of Erdős-Rényi random networks61
143

with 1000 nodes and an average degree of 4, but we also present results on random networks with degree heterogeneity, 144

triadic closure and community structure with the same parameters. Similarly to Experiment 1, we randomly predetermine 145

the contagion mechanism (simple or complex) for each node. This time, however, we allow each node to spontaneously 146

adopt during the contagion process, regardless of their predetermined mechanism. This way the contagion does not vanish 147

even on large networks with extreme Sm and Cx contagion parameters, but continues spreading following a linear dynamics. 148

The modification also implies that, since nodes can adopt via the simple, the complex or the spontaneous mechanisms, our 149

classification algorithms need to distinguish between the three hypotheses (see Methods). 150

In line with the approach of Experiment 1, we compute the likelihood that each adopter follows a specific contagion 151

mechanism (see Eq. 1) based on the trajectories of the ego nodes and their neighbours. Since the assumption on the independent 152

adoption of the neighbours of an ego does not hold anymore, the likelihood framework becomes an approximation (see 153

“Likelihood calculations” of the Methods section for the detailed derivation). Nevertheless, accuracy values for the whole 154

parameter space summarised in Figure 2b confirm that this approach can still perform well achieving a mean accuracy of 0.87 155

—well above the expected accuracy of a random classifier (0.33). 156

Since the likelihood framework provides an approximate solution for Experiment 2, it calls for alternative approaches. 157

After an extensive classification model selection (cf Supplementary Material 2), we selected a random forest approach as the 158

consistently best performing classifier. In order to strike a balance between performance and interpretability, we train random 159

forest classifiers on the same synthetic dataset as above. After testing on several structural and dynamical features of the ego 160

and its neighbours, we identify eight relevant features for the classification that appear with distinct distributions for different 161

infection mechanisms (cf Supplementary Material 3). These are (i) the degree, (ii) the proportion of infected neighbours, (iii) 162

the number of infected neighbours, (iv) the sum of received stimuli, (v) the average number of received stimuli by neighbour, 163

(vi) the standard deviation of per neighbour stimuli, (vii) the time since the first infected neighbour and (viii) the time since the 164

last infected neighbour. 165

We train a random forest model using these input features for each adopted node that appeared during a simulated contagion 166

with Sm and Cx with parameters β and φ . The random forest approach provides very similar results (see Figure 2e) to the 167

likelihood-based calculations (Figure 2b), only with slightly worse average accuracy 0.82. According to the the confusion 168

matrices shown in Figure 2h and j, while the two methods perform similarly in classifying simple contagion cases, the random 169

forest misclassifies complex and spontaneous instances at a higher rate. Notably, given the interpretability of the trained random 170

forest classifiers via feature importance, we can further restrict our original eight features to only three, and retain similar 171

accuracies as before (see Supplementary Material 3). Interestingly, some feature subsets are consistently optimal across the full 172

parameter space. This is reported in Figure 3, where we present the number of times a feature appears within the subset of the 173
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top-3 optimal features, normalised by the number of possible instances (parameter pairs β ,φ in the phase space). Overall, the174

two most recurring features are the times since the first and the last infected neighbours. These can be also easily interpreted175

within the modelling framework: the time since the first infected neighbour cannot be too high for Sm, as that would mean too176

many repeated stimuli without an infection event, while for the threshold-based Cx the time since the last infected neighbour177

has to be necessarily one.178

0.0 0.2 0.4 0.6 0.8
Frequency of observation

sum of stimuli
degree

nber of stimuli by neighbors
nber of infected neighbors

proportion of infected neighbors
std of stimuli

time since the last infected neighbor
time since the first infected neighbor

Experiment 2
Experiment 4

Features

Figure 3. Frequency of observation of the features used to train the random forest classifier among the top-3 most important
ones across the full parameter space for Experiment 2 (blue) and Experiment 4 (orange). Frequencies are computed as the
number of appearances normalised by the number of possible occurrences. The resulting most important features are the time
since the first and the last infected neighbour.

Process classification with unknown parameters179

Up to this point, all the investigated tasks assumed precise knowledge of the parameters βi, φi and r governing the different180

processes. However, in realistic scenarios, these need to be also inferred together with the contagion mechanisms, thus181

motivating the following experimental setup.182

Experiment 3. In this setting we classify the contagion instances from Experiment 2 assuming unknown contagion parameters,183

which means distinguishing mechanisms without knowledge on the parameters that governed them. In the likelihood approach,184

we use the same equations to compute the likelihood that the contagion instance i is simple, complex or spontaneous as before,185

except we also estimate the values of βi, φi and r. We set the value of β̂i as the inverse of the number of received stimuli by186

the node i, and the value of φ̂i as the proportion of infected neighbours at the time of the infection of node i. The value of r̂ is187

calculated as the fraction of time spent by a node in the S state with at least one infected neighbour (see Methods for more188

details).189

Figure 2c shows that we still classify the adoption mechanisms with high accuracy, especially considering the increased190

difficulty of the classification problem compared to the earlier settings. The mean accuracy was found to be 0.69, well above191

the reference value of a random classifier (0.33). We observe the worse performance for low values of φ , due to the high192

rate of confusion between complex and simple contagion cases (Figure 2i). Those nodes are generally infected just after the193

appearance of an infectious neighbour, making it difficult for the model to distinguish between the two peer-driven mechanisms194

Sm and Cx. The accuracy is the highest for large values of φ and low values of β . As before, we gain the most information195

about the processes when both of them are progressing slowly.196

We also test the random forest approach in this experiment by using the same features used in Experiment 2, but training197

instead one unique model over the whole phase space —as the parameters are not known anymore. Interestingly, this solution198

provides slightly more accurate results (see Figure 2f) than the likelihood method (see Figure 2c), especially for low values of199

β . Reading the confusion matrices (in Figure 2k and i resp.), this improvement mostly comes from the better classification of200

complex contagion instances, that were commonly classified as simple by the likelihood approach. Nevertheless, the overall201

accuracy of the random forest classifier is lower for Experiment 3 as compared to Experiment 2, which is expected, as the202

estimators receive less information.203

Note that we conducted Experiment 2 and 3 on various types of random networks including Erdős-Rényi62 (presented204

above), Barabási-Albert63, Watts-Strogatz64 and Stochastic Block Model65 networks (see Supplementary Material 4) with very205

similar results. This suggests that the global network structure has limited impact on the local differentiation of contagion206

processes in each performed experiment.207
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Sm Cx St
Random forest 970 349 4955
Likelihood 4440 1447 387

Table 1. Number of instances of contagion mechanisms inferred by the likelihood and random forest methods on the
#GiletsJaunes Twitter dataset.

Case study: adoption mechanisms on Twitter 208

After demonstrating the validity of our methods in controlled synthetic settings, we now turn our focus towards real contagion 209

processes to showcase the applicability of the devised approach to empirical scenarios. To this end, we rely on an ego-level 210

dataset of adoptions from Twitter66 (now called X), a micro-blogging and social networking platform, where users can follow 211

each other, and share short messages, or tweets. The dataset contains all tweets posted by 8527 selected users (egos who are 212

interested in French politics) and the people they follow (whom we call followees, or the members of the ego network) between 213

May 1 2018 to May 31 2019 (for more details about the data collection see67). This mounts up to a total of 1,844,978 timelines, 214

i.e., the timely ordered personal stream of tweets posted by all these users. This dataset allows us to identify the time of 215

adoption of a given hashtag by an ego together with the time of all incoming stimuli from its neighbours that previously posted 216

the same hashtag. These tweets cover multiple topics, which may correspond to the spreading of various co-occurring social 217

contagion processes. Since we are interested in analysing each contagion process separately, we filter messages that contain a 218

given set of hashtags within the same topic. We choose to focus on the hashtag #GiletsJaunes and its variants2, characterising a 219

political uprising in France that induced a significant social contagion unfolding on Twitter. We first identify egos who adopted 220

a related hashtag, and observe the posts of their followees over the preceding week, limiting in this way the effect of influence 221

to the recent past only. As per the synthetic cases, we can define the degree of an ego as the number of its followees who have 222

posted at least one tweet during the week preceding the adoption. In addition, user activity on Twitter is not linear in time —as 223

in our previous simulations— but it is driven by circadian fluctuations, bursty patterns, and individual preferences. We thus 224

move from real-time to event-time simulations. In this setting, a time step for an ego (leading to potential adoption cases) is 225

counted as the number of tweets by the followees, regardless of weather they contain the hashtag of interest; every time an alter 226

posts content containing the selected hashtag, the ego will receive a stimulus. 227

Empirical traces of social contagion set a particularly difficult problem for classification because neither the parameters of 228

the different contagion mechanisms are known, nor any ground truth is available for validation of the classification results. 229

In the following, we propose pathways that yet allow us to learn about the distinguishability of contagion mechanisms in the 230

Twitter dataset. 231

As a starting point, we applied our classifiers designed for Experiment 3, where we have no information about the adoption 232

parameters. Table 1 shows that the two methods give rather unbalanced results, with the random forest detecting large number 233

of spontaneous adoptions and the likelihood approach being biased towards simple contagion. This discrepancy in the results 234

suggests that one or both of the models might not be capturing the interaction patterns within the Twitter data sufficiently 235

well. Indeed, both methods are made for the characteristics of synthetic data, assuming that a complex contagion adoption 236

always occurs a time step after the infection of a neighbour (time since the last infected neighbour=1). However, in real 237

data a delay could occur between the infection of a node and its actual observation, making the classification of the complex 238

instances inaccurate, misclassifying it as simple or spontaneous contagion. This observation suggests that we need to relax our 239

assumptions, especially on complex contagion, and introduce the possibility of delays of the adoption times into our models. 240

When it comes to empirical adoption data collected via social media, one of the largest bias is induced by the waiting time 241

tw32, that is the time gap between the moment someone becomes convinced by an idea (upon exposure) and the moment we can 242

actually observe it through an active adoption event (posting). We report the waiting time distribution for the Twitter dataset in 243

Figure 4a, where one time step corresponds to time span between two consecutive tweets. This tw = ta− te lag between the 244

exposure te and the adoption ta time can depend on individual user characteristics. It biases our observations as during this tw 245

time further exposures can appear, that in principle could not be even necessary for the subsequent adoption (“incubation”). 246

Nevertheless, the only observation we can make is about the sequence of influencing tweets, as we can not know the exact tweet 247

that triggered the adoption. The effects of such biases have been studied earlier in other scenarios of online adoption32, 68. In 248

light of these observations, it is clear from the likelihood computations and from the feature importance ranks shown in Figure 249

3 that both the approaches used so far are ill-suited in this case since they heavily rely on precise adoption times —assuming 250

no waiting time. To steer our classification algorithms away from making estimates based on this hard assumption, we now 251

introduce a synthetic contagion process evolving on an activity driven temporal network model parameterised from data, and 252

2We target every user who has posted one of those hashtags: #GiletsJaunes, #giletsjaunes, #Giletsjaunes, #GiletJaune, #Giletjaune, #giletjaune, #giletsjaune,
#Giletsjaune, #GJ

7/19



where waiting times can be measured. The goal of this following model is to obtain a representation as close to reality as253

possible, enabling the training of a random forest algorithm to classify real contagion cases.254

Activity driven networks with asynchronous dynamics255

Figure 4. Parameter distributions and dependencies of Experiment 4 inferred from the #GiletsJaunes Twitter dataset. The
waiting time distributions observed in the (a) #GiletsJaunes dataset and (b) in Experiment 4. (c) Correlation between the
activities and degrees of nodes in the synthetic propagation inferred from the distribution of the number of tweets posted during
the week before adoption as function of the number of active followees in the Twitter dataset. (d) Correlation between the
inferred simple contagion parameter β̂ = 1/(number stimuli) and node degrees observed for egos in the #GiletsJaunes dataset.
(e) Distribution of the inferred simple contagion parameter β̂ . The inset depicts the same distribution stratified by degree. (f)
Distribution of the φ̂ complex contagion parameter inferred as the proportion of infected neighbours at the time of adoption of
an ego in the #GiletsJaunes dataset (φ̂ ). Since the P(β̂ ) and P(φ̂) are broad, we apply a filter to retain the 80% of their smallest
values.

Experiment 4. We employ a connected and undirected sample of the follower Twitter network as the underlying structure for256

the contagion process (for more details about the network creation see section Methods, Experiments). We assume that nodes257

can be in three distinct states: susceptible (not yet infected), aware (they are already infected, but that has not been observed yet258

through an active post), and detected (they are infected and this has been observed). Every node i is assigned with an activity259

âi ∈ [0,1] sampled from a truncated normal distribution with values constrained between 0 and 1, and an average activity that260

characterises nodes coming from the same degree group as node i (Figure 4c). They are also attributed to a contagion process,261

either simple or complex, which determines their adoption mechanism. Further, nodes are endowed with parameters β̂i or φ̂i262

respectively sampled from the empirical distributions P(β̂ ) and P(φ̂) shown in Figure 4d,f. Since these distributions are broad,263

we filtered them and kept only samples from their lowest 80% (more details about sampling and filtering in the Methods section264

and Supplementary Material 5).265

At every step, a node is selected with a probability proportional to its activity, modelling its action of posting. If the selected266

node is susceptible, we assume its post induces no influence on its neighbours. Once a node is infected via one of the considered267

mechanisms, it enters the aware state and no further stimuli are necessary for adoption —yet to be observed. The next time the268

node is selected for an interaction, it becomes detected. If a node is aware or detected, its posts are considered as influencing269
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events to its neighbours. The resulting waiting time, measured for each infected node as the time between the aware and 270

detected state, follows a broad distribution (Figure 4b), similar to the empirical observations. More details about the model 271

definition and evaluation are explained in Methods. 272

The complexity of Experiment 4 makes the application of the likelihood method unfeasible, so we continue our investigation 273

only through the random forest approach, using the same feature set as in the previous experiments, and assuming unknown 274

contagion parameters. As before, we pre-assign an adoption mechanism to each node in the modelled activity driven network 275

and compute the classification accuracy. Results, shown in Figure 2g, demonstrate that despite the increased complexity of this 276

data-driven experiment, the random forest can achieve good classification accuracy all across the parameter space, with average 277

accuracy 0.71. In this experiment, the spontaneous adoptions are the hardest to classify since they appear with a very low rate 278

(see the confusion matrix Figure 2 panel l and the Supplementary Material, Table S2). It is worth noticing that the importance 279

of the features is different from the one previously shown for Experiment 2 (Figure 3). While the feature time since the last 280

infected neighbours diminishes in importance due to the presence of a waiting time, the proportion of the infected neighbours, 281

and particularly the degree of the central ego gain significance (Figure 3). 282

Classification of Twitter hashtags 283

Experiment 5. To conclude our case study on the Twitter dataset, we apply the trained models from Experiment 4 on the 284

adoption cases of #GiletsJaunes and related hashtags. The inset of Figure 5 shows that most adoption cases are classified as 285

simple as opposed to complex. This suggests that more people adopt #GiletsJaunes through a repeated influence from their 286

contacts than through combined influence mechanisms. The less detected class is the one of spontaneous adoptions, suggesting 287

the limited influence of external sources with respect to peer-induced contagion within the platform. 288

Since no ground truth exists for this dataset, instead of visualizing the accuracy values on the (β ,φ) phase space, we 289

show in Figure 5 the full distribution of inferred adoption mechanisms stratified by their inferred contagion parameters β̂ 290

and φ̂ (aggregated in deciles). We can see that ego nodes with high β̂ and low φ̂ values are more likely to be classified as 291

Cx, whereas egos with low β̂ and high φ̂ tend to be classified as Sm. However, Figure 5 also suggests that the two inferred 292

parameters, β̂ and φ̂ , cannot capture the complexity of the classification problem on their own. Indeed, both Sm and Cx 293

adoptions appear throughout the parameter space, highlighting the added value of the random forest classifiers trained in our 294

modelling framework. Finally, we observe that certainty of the classification algorithm improves with lower β̂ and higher φ̂ 295

values, which can be explained by the increased number of stimuli, and therefore a richer dataset, in this parameter range. 296

Discussion 297

Our goal in this work was to infer social contagion mechanisms leading to the adoptions of products, ideas, information, or 298

behaviours. We restricted the focus to three complementary contagion mechanisms potentially determining the behaviour of 299

an ego node, whether adopting spontaneously (exogenous influence) or due to transmission on a social network (endogenous 300

influence) via simple or complex contagion mechanisms. The general problem of distinguishing social contagion mechanisms 301

in networked populations has recently been addressed by analysing macroscopic spreading curves at the population level38, 45, 50, 302

typically assuming that only one a single mechanisms is exclusively present during the contagion process. In this work, we 303

overcome these assumptions by (i) considering only microscopic information at the level of the adopter and their peers and 304

(ii) allowing different contagion mechanisms to be simultaneously present —with different parameters— during the same 305

spreading phenomenon. Under these assumptions, we tackled the inference question as a classification problem under a 306

likelihood and a random forest approach over a sequence of experiments with increasing levels of complexity. We showed, in 307

controlled synthetic settings, that the limited information available from an ego and its peers is generally enough to distinguish 308

the specific adoption dynamics with varying levels of accuracy depending on the contagion parameters. The lines between 309

the mechanisms becomes more blurred in cases when one infectious neighbour is enough to induce the adoption of an ego. 310

This can happen for strongly infectious items spreading via simple contagion (akin to high individual susceptibility) or low 311

individual thresholds in adoptions triggered by complex contagion, both cases leading to an immediate local transmission 312

and rapid global spreading. Interestingly, in the simplest experiments performed via simulations on synthetic static networks, 313

we found little impact of the network structure on the accuracy of the classification task. Recent results have shown that 314

simple contagion leads to similar infection patterns across different network models, while the patterns associated to complex 315

contagion mechanisms are less robust 43, 69, 70. This could explain the fact in Experiment 2 and 3 we do not observe major 316

differences in the distinguishability of the mechanisms over different network structures, from Erdős-Rényi graphs to those 317

generated via Barabási-Albert, Watts-Strogatz, and Stochastic Block Model approaches. Increasing the level of realism, we 318

demonstrated that simplistic models fail to capture the full complexity proper of real-world transmissions, such as waiting 319

times, or the non-static structure of empirical social networks. The challenges arising in these scenarios confirm the inherent 320

difficulty that comes with these tasks when several internal and external factors are at play at both the dynamical and structural 321

level, as also highlighted in other recent studies that tackled the inference problem in different contexts71. Nevertheless, even in 322
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Figure 5. Classification of contagion mechanisms of the #GiletsJaunes Twitter dataset as the function of φ̂ (x-axis) and β̂

(y-axis) parameters. The notation dparameter
n represents the nth deciles of the parameter distribution from the #GiletsJaunes

dataset from Figure 4. The classification results of each instance i are shown at the corresponding location of the decile of its
inferred φ̂i and β̂i parameters sampled from the P(φ̂) and P(β̂ ) distributions. The background colour of each panel indicates
the dominating classified mechanism that characterise the given parameters (purple for Sm, orange for Cx and blue for Sp). The
certainty of classification, displayed with black circles, defined as the proportion of trees in the random forest that have
classified an instance into the assigned contagion type, averaged over the set of instances classified in that contagion type. Most
of the infection cases are classified as simple if their β̂ are in the 8th decile or below and their proportion of infected neighbours
is greater than dφ

5 , and as complex otherwise.

these realistic settings when mechanistic approaches seem to be out of reach, a random forest classifier trained on a carefully323

parametrized synthetic model can give interpretable results.324

Despite the comprehensive approach to the inference problem in this paper, our results presented here have certain325

limitations. First, for simplicity reasons we only consider static network structures, while in reality social influence is mediated326

via temporal interactions. Further, we assumed that the effects of external influence (like advertisements and news) do not327

vary in time, that is clearly an approximation. During our likelihood formulation we assume each contagion instance to be328

independent from each other, which is only an approximation, that is accounted for in the random forest approach. Finally,329

since no real dataset is available with ground truth information regarding the adoption mechanisms of a social contagion, it330

prevents us to validate our findings in our final experimental setting. Such datasets are challenging to collect and require careful331

experimental design. However, we envision that our learned labels could be validated even without extensive data collection,332

if they were treated as hidden variables used to predict adoption times. More explicitly, under the assumption that certain333

spreading processes or certain individuals predominantly follow simple or complex contagion, our inferred labels on past334
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datasets could predict future labels, which could improve native estimates of future adoption times. Given the great number of 335

difficulties and unknowns, we leave this task for future research. 336

Beyond accounting for these limitations, possible extensions of the present method could include the analysis of the 337

spreading of different items on the same population; or to classify different infection mechanisms 36, 72 even beyond pairwise 338

exposures73–75, as considered in a recent work45. Another potential direction for future research is to explore the competition 339

between simple and complex contagions, where the adoption mechanism of a node is not predetermined but depends on the 340

circumstances20. One could also integrate homophily, and conceive a model in which nodes of a same group are more likely to 341

adopt through the same contagion process or nodes within the same mechanism have a higher probability to form connections 342

between themselves76. Such scenario would create correlated inferences, potentially affecting the accuracy of the classification. 343

We believe that our results open the door to the investigation of microscopic social contagion mechanisms at the local 344

network level. In one way, our study aims to contribute to the understanding how seemingly similar macroscopic processes can 345

be differentiated at the microscopic level. In another way, we hope to lay down a path to study social contagion processes at the 346

level of individuals, that is more feasible from a real data perspective and can lead us to a more fine-grained understanding how 347

local decision mechanisms lead to system level global phenomena in social contagion processes. 348

Methods 349

Experiments 350

To study the distinguishability of the Sm, Cx and Sp contagion processes we defined three experimental settings with increasing 351

complexity: 352

Experiment 1 - classification on egocentric networks 353

In Experiment 1 we assume no underlying network structure to disseminate the spreading process but we operated only with 354

isolated ego networks. We assume knowledge only about egos and their neighbours, that together defined a star structure around 355

the central ego. The degrees of the ego (i.e. number of its neighbours) are drawn from a binomial distribution of parameters 356

(N, p) = (1000,0.004) (which yields a mean of 〈k〉 = 4), excluding the value 0. This was necessary to obtain the same 357

parametrization than the Erdős–Rényi networks that we used in Experiment 2. We assign to each ego-node a predetermined 358

adoption class, simple or complex, with corresponding parameter, respectively β or φ . Further, we defined the same adoption 359

probability rnb for any neighbour of an ego, mimicking their adoption dynamics as a Bernoulli process. Assuming each node 360

in the ego-network to be susceptible at the outset, neighbours became infected following their Bernoulli dynamics, while 361

egos changed state only when their condition to infect has been satisfied. We simulate this contagion dynamics on 100,000 362

ego-networks, having 10,000 realisations for each parameter values of β and φ taking values from {0.1, 0.3, 0.5, 0.7, 0.9} and 363

with parameter rnb = 0.05. In this setting the classifier was informed by the βi, φi and r parameter values for each instance i. 364

Experiment 2 - classification on random networks with known parameters 365

Experiment 2 is conducted on an Erdős–Rényi model network61, with 1,000 nodes and average degree 4. For comparison 366

purposes, in Supplementary Material 4, we also demonstrate our results using Watts-Strogatz64 and Barabási–Albert63 model 367

networks, Stochastic Block model networks65, and a real Twitter mention network77 defined by linked customers if they 368

mutually mentioned each other during the observation period. For computational purpose we filter the Twitter mention network 369

to keep only its largest connected component, i.e. the largest interconnected subset of nodes within a network (370,544 nodes 370

and 1,013,096 links) and we assume it to be undirected by ignoring the directions of its links. As in Experiment 1, we assign 371

all nodes beforehand with a contagion process (Sm or Cx) and a parameter (β or φ ) accordingly from the set {0.1, 0.3, 0.5, 372

0.7, 0.9} in order to have all pairs (process, parameter) equally distributed in the data set. Having all nodes as susceptible 373

at the outset, the propagation initialised by infecting one random node. The spreading process among the rest of the nodes 374

is gradually spreading either by their assigned process of contagion, or through the spontaneous adoption with a rate of r. 375

We stop the contagion process when all of the nodes become infected, except for the Twitter mention network, where the 376

process is terminated when 90% of the nodes become infected. For each synthetic network model, the propagation is run on 20 377

independent network realisations, with r = 0.005. For each node i, the parameters βi, φi and r are assumed to be know by the 378

classifiers. 379

Experiment 3 - classification on random networks with unknown parameters 380

Experiment 3 is aiming to solve the classification of the same contagion instances than Experiment 2 but without prior 381

knowledge about the parameters of βi, φi and r. 382

Experiment 4 - classification on real networks with known parameters 383

Experiment 4 is inspired by the Activity Driven network model78 and has been created to represent the propagation of a hashtag 384

on the Twitter platform. Here we use the largest connected component of an un-directed mutual follower network from Twitter77
385
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and concentrate on the propagation of the hashtags related to the political movement called #GiletsJaunes. For computational386

purposes, we iteratively filter this network to reduce its size. At the outset, the filtered network only contains one randomly387

selected node from the initial network. Subsequently, a neighbour of the initial node is selected with a probability inversely388

proportional the node’s degree. Once a neighbour is selected, it is incorporated into the filtered network along with its edge.389

Subsequently we reproduce this process, each time selecting a neighbour from the newly integrated node and its edge, until we390

achieve a network size of 100,000 nodes.391

Parameter sampling. First of all, in this setting each node is assigned with an activity, mimicking its level of participation on392

the Twitter platform. As the distribution of the number of tweets posted by each user during a week depends on its degree and393

because those distributions along a certain degree range are not part of the typical known distributions, we sample the assigned394

activity of each node with a normal distribution centred on the average number of tweets posted by each user corresponding to395

its degree.396

Before inferring distributions of β̂ and φ̂ , we assign to each infected node an adoption process using the following heuristic.397

Events in which a susceptible node becomes infected without having any infectious neighbors at the time of transition are398

classified as spontaneous adoptions. Additionally, instances where the last event before the ego becomes infected is a new399

infected neighbour are classified as complex contagion. This classification is motivated by the fact that the newly infected400

neighbour increases the proportion of infected neighbors, potentially allowing the threshold φ to be overpassed. All other401

instances are classified as simple contagion. This pre-classification step reduces errors in inferring β̂ (resp., φ̂ ) from complex402

(resp., simple) contagion instances, resulting in more accurate distributions.403

The parameters are sampled for each node depending on the pre-assigned mechanism. For simple contagion, parameter404

values for β̂ are defined as the inverse of the number of times a hashtag appeared in the timeline of an observed ego’s neighbours,405

one week before the ego’s adoption. Note that we consider cases of infected egos who have at least one infected neighbour406

at the time of adoption. Since the β̂ parameter shows correlation with the node degree (see Figure 4d), we account for this407

dependency when sampling β̂ values for egos. We group nodes by their degrees and assume that each P(β̂ )k distribution for408

a degree class can be approximated by a log-normal distribution with an average characterising the actual degree class (see409

Figure 4e and its inset). Thus for each node i with degree k to obtain a β̂i we simply sample the corresponding log-normal410

distribution.411

At the same time, the parameter φ̂i for the complex contagion mechanism is measured as the fraction of infected neighbours412

of an ego that adopted a hashtag. The distribution of P(φ̂) (in Figure 4f) is measured from adoption cases where the last infected413

neighbour of the ego before its adoption was a newly infected neighbour. We assign a parameter φ̂i to a node i by sampling this414

distribution P(φ̂) shown in Figure 4f. Finally, to avoid the sampling of extreme values, since the distributions P(β̂ ) and P(φ̂)415

appeared as broad distributions, we filter them by keeping 80% of their lowest values for parameter sampling. For a robustness416

analysis on the effect of filtered fraction of inferred parameters see the Supplementary Material.417

Contagion model with waiting time. Beyond the realistic data-driven parametrisation of the network and adoption mech-418

anisms, our main goal with this experiment is to simulate spreading scenarios to study the effects of waiting times between419

node adoption and its observation on the inference of spreading mechanisms. For this reason we assume that every node of420

the network can be in one of the three following states: susceptible (not infected), aware (infected but the infection cannot be421

observed) and detected (the infection can be observed). After infecting a uniformly randomly selected seed node to launch the422

spreading process, we iteratively execute the following protocol at each time step: first a node is selected randomly with a423

probability proportional to its activity, indicating that this node posts a tweet. If the node is susceptible, it can become adopted424

with probability r, mimicking the possibility to post the hashtags spontaneously. Otherwise the susceptible node can get infected425

through its assigned adoption mechanism. If a node is active but susceptible, its post will not count towards the influence of its426

neighbour. However, if the node is aware, at the time of its next post it becomes detected. Once aware or detected we assume427

that at each future activity of a node it will post the spreading hashtag. If a post of a node includes the hashtag, it counts as a428

stimuli to all of its neighbours, which can become aware if they are susceptible and their condition of infection is reached. In429

our simulations we modelled the contagion processes in the network until they reached the 90% of the nodes and used the430

observed adoption instances for the training of a random forest classifier that was not aware of the contagion parameters.431

Experiment 5 - Classification of hashtag adoption with unknown ground truth432

Since we cannot obtain the contagion mechanisms as ground truth labels for real data, we use the trained model in Experiment433

4 for classification of the empirical adoption instances. With these model, that has been trained on data-driven model data434

closest to reality, we explore the whole (β̂ , φ̂) parameter space, as shown in Figure 5. We then use this algorithm to analyse435

various social contagion processes by focusing on tweets with specific sets of hashtags corresponding to distinct topics. We use436

a dataset collected by67 from Twitter, now known as X, a social media platform where users can follow each other and share437

brief posts, or tweets. This dataset spans from May 1, 2018, to May 31, 2019, and includes all tweets from 8,527 selected users438

interested in the European election of 2019 (denoted as egos) and the accounts they follow (denoted as followees). In total, this439
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comprises 1,844,978 timelines, representing the chronological history of tweets from these users. These tweets cover a range of 440

topics, referenced with key words called hashtags. 441

Among all the possible hashtags, we choose to focus on #GiletsJaunes and its variations (#GiletsJaunes, #giletsjaunes, 442

#Giletsjaunes, #GiletJaune, #Giletjaune, #giletjaune, #giletsjaune, #Giletsjaune, #GJ), which are linked to a political movement 443

in France that causes social contagion on Twitter. Our first step is to identify users who have adopted one of these hashtags and 444

then examine the tweets from their followees. We consider that individuals remember influences only from their recent past, 445

thus we study tweets of the ego and its followees on the last week before the adoption. We define a user’s degree by the number 446

of followees who posted at least one tweet in the preceding week and we use event time instead of real time for our analysis. 447

Event time counts the number of tweets by followees, regardless of whether they contain the hashtag. We define a stimulus as a 448

tweet posted by followee containing the hashtag. 449

Likelihood calculations 450

The classification with the likelihood approach follows the same protocol for each experiment: we first compute the likelihood 451

that a given observed adoption case has been caused by each mechanism, being simple, complex or spontaneous, and then we 452

classify the adoption event into the category which maximises the likelihood. 453

Experiment 1 454

We determine the likelihood that a node i has been infected either through simple or complex contagion using Eq. (1), which 455

expresses the likelihood of the entire process as a product of the likelihoods of each time step (Markov property). We call σi(t) 456

the state of a node i at time t, being 0 (S) or 1 (I). To compute the likelihood of observing the ego’s state σi(t +1) conditioned 457

on its state and the states of the neighbours σi,nb(t) in the previous timestep, we distinguish three cases: 458

1. ego stays susceptible, formally σi(t +1) = σi(t) = 0, which we abbreviate as 0→ 0 459

2. ego becomes infected, formally σi(t +1) = 1, σi(t) = 0, which we abbreviate as 0→ 1 460

3. ego stays infected, formally σi(t +1) = σi(t) = 1, which we abbreviate as 1→ 1. 461

In case of a simple contagion, the independence of infection probabilities on each edge makes it possible to combine the three
cases into a single equation as

L (σi(t +1)|σi,nb(t),Sm,β ) =


∏
j∈nb

(1−β )σ j(t) 0→ 0

1−∏
j∈nb

(1−β )σ j(t) 0→ 1

1 1→ 1

where nb is the set of the neighbours of the ego. 462

In case of a complex contagion, the same likelihood function takes the binary values

L (σi(t +1)|σi,nb(t),Cx,φ) =


1(σi,nb(t)) 0→ 0
1−1(σi,nb(t)) 0→ 1
1 1→ 1

depending on whether the condition

1(σi,nb(t)) = Θ

(
∑

j
σ j(t)Ai j−φ ∑

j
Ai j

)
,

on the proportion of infected nodes is satisfied or not. In this case A denotes the adjacency matrix of the network, with elements 463

Ai j, and Θ denotes the Heaviside step function, which is equal to 1 if the input if positive, 0 otherwise. 464

Accuracy estimation for Experiment 1 465

In Experiment 1, the accuracies from of the maximum likelihood classification algorithm can be computed analytically across
the phase space. Let us define X̂ to be the contagion label that the algorithm assigns, and X to be the true contagion label.
Assuming a uniform prior on the contagion labels, the accuracy of the algorithm can be expressed as:

P(X̂ =Cx | X =Cx)+P(X̂ = Sm | X = Sm)

2
.
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Since for a node infected by the complex contagion, we always have L (σi(t +1)|σi,nb(t),Cx,φ) = 1, the maximum likelihood466

approach always classifies complex nodes correctly. Consequently, P(X̂ =Cx | X =Cx) = 1 always holds.467

For the second term, to compute

P(X̂ = Sm | X = Sm) = 1−P(X̂ =Cx | X = Sm),

we need to estimate the probability that a node i with degree k becomes infected by the simple contagion immediately after468

dkφe of its neighbours get spontaneously infected, and therefore it incorrectly becomes classified as complex. Conditioning on469

the event that the ego has n infected neighbours at time t, we define following two random variables:470

• Nn denotes the number of time steps until a new neighbour gets infected471

• En denotes the number of time steps until the ego gets infected, assuming that no new neighbor gets infected.472

Since at each time step, the probability of a new neighbour spontaneously becoming infected is pn = 1− (1− r)k−n, the random
variable Nn follows a geometric distribution with success probability pn. Similarly, since the probability that any of the n
neighbours infect the ego node in each time step is bn = 1− (1−β )n, the random variable En follows a geometric distribution
with success probability bn. Our goal is to compute the probability of the event that the ego becomes infected immediately after
dkφe of its neighbours get infected, i.e. that Nn < En holds for n < dkφe, but Edkφe = 1. For each n < dkφe, the corresponding
event probability can be computed based on the well-known formula of two competing geometric random variables. For
n = dkφe, the event probability is simply bn. Finally, due to the Markov property of the contagion process, assuming that no
two neighbours get infected at the same time, we arrive to the final result by computing the product of the event probabilities
for each n:

P(X̂ =Cx | X = Sm)≈

(
bkφc

∏
n=1

pn− pnbn

bn + pn− pnbn

)
bdkφe.

Our result is an approximation, because we did not account for the low-probability event that two neighbours might473

be infected at the same time. Despite this limitation, the outcomes closely align with the accuracy values observed in the474

simulations (see Figure 2, panel d).475

Experiment 2 - classification with known parameters476

The calculations of the likelihoods of Experiment 2 are similar to Experiment 1, but instead of two, now they involve three477

processes: simple, complex and spontaneous adoptions. For clarity, we divide those three processes in four scenarios:478

479

1. The ego, initially assigned with the simple contagion, eventually becomes infected by the simple contagion:480

481

L (σi(t +1)|σi,nb(t),Sm,β ) =

(1− r) ∏
j∈nb

(1−β )σ j(t) 0→ 0

(1− r)

(
1−∏

j∈nb
(1−β )σ j(t)

)
0→ 1

1 1→ 1

(3)

(4)

2. The ego, initially assigned with the simple contagion, eventually becomes infected by the spontaneous contagion:482

483

L (σi(t +1)|σi,nb(t),Sm → St,β ) =
(1− r) ∏

j∈nb
(1−β )σ j(t) 0→ 0

r ∏
j∈nb

(1−β )σ j(t) 0→ 1

1 1→ 1

(5)

(6)
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3. The ego, initially assigned with the complex contagion, eventually becomes infected by the complex contagion: 484

485

L (σi(t +1)|σi,nb(t),Cx,β ) =
(1− r)

(
1−1(σi,nb(t))

)
0→ 0

1(σi,nb(t)) 0→ 1
1 1→ 1

(7)

(8)

4. The ego, initially assigned with the complex contagion, eventually becomes infected by the spontaneous contagion: 486

487

L (σi(t +1)|σi,nb(t),Cx → St,β ) =
(1− r)

(
1−1(σi,nb(t))

)
0→ 0

r
(
1−1(σi,nb(t))

)
0→ 1

1 1→ 1
.

(9)

(10)

Experiment 3 - classification with unknown parameters 488

In this case we assume that parameter values are not known for the classifier and we employ the same formulas as in 489

Equations (3)-(10) used for classifying contagion instances from Experiment 2 with known parameters. However, here the 490

parameters β and φ and r are no longer the true values but are instead inferred from the modelled spreading process: β̂ as the 491

inverse of the number of stimuli, φ̂ as the proportion of infected neighbours and r̂ as the fraction of time spent by a node in the 492

S state with at least one infected neighbour, averaged on every node in that case. 493

Random forest classification 494

Experiment 2 - classification with known parameters 495

We train 25 random forest algorithms, one for each pair of (β ,φ) by sampling 18,000 instances from Experiment 2, with 6,000 496

contagion cases from each category. Then we test the models on a set containing 6,000 instances (2,000 instances from each 497

category). The results are averaged over 10 realisations. Each random forest algorithm has 100 trees without any limit on the 498

maximum of depth. The use of the Gini function or the entropy function is determined by grid search. 499

Experiment 3 - classification with unknown parameters 500

We train a unique random forest model on a sample of Experiment 2, which contains 18,000 instances in total (6,000 instances 501

in each category), regardless of the parameters. The results are averaged over 10 realisations. Each random forest algorithm has 502

100 trees without any limit on the maximum of depth. The use of the Gini function or the entropy function is determined by 503

grid search. 504

Data availability 505

The filtered network structure and distributions of the inferred parameters are shared at an open data repository at 506

https://github.com/ElsaA05/DistinguishSimpleComplex/tree/main/data and at https://zenodo.org/records/14518761. 507

Code availability 508

We made available the code of the different experiments at an open source code repository at 509

https://github.com/ElsaA05/DistinguishSimpleComplex/tree/main/analysis and at https://zenodo.org/records/14518761. 510
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Supplementary Material 1

2

3

Distinguishing mechanisms of social contagion from local network view 4

1 Contagion curves of the extreme values of the phase space 5

We investigate the speed of spreading in processes governed by the simple and the complex contagion mechanisms independently. 6

These two dynamical processes are implemented separately on an Erdős–Rényi network of 1000 nodes, with an average 7

degree of 4. We examine the speed of spreading as the function of the simple and complex spreading parameters of β or φ 8

(respectively), taking values from a broad range between 0 and 1 (cf Figure S1). High values of β characterise simple contagion 9

processes with high speed since nodes in this scenario have a higher probability to be infected, commonly after a single stimulus. 10

The opposite effect characterise complex contagion: if φ is high, the propagation is slow-downed as the proportion of infected 11

neighbours needed adoption is large. 12
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Figure S1. (central panel) Speed dependency of the simple and complex contagions on the epidemic parameters β and φ

(respectively). The purple and orange colours display respectively the areas where the simple and the complex contagions are
faster and are schematic. The number of infected nodes through time is shown on the four extremes of the parameter space, in
purple for the simple contagion and in orange for the complex contagion.

2 Selection of the algorithm of machine learning for the classification in Experiment 2 13

We investigate to find the best classification machine learning algorithm to distinguish between the simple, complex and 14

spontaneous contagions in Experiment 2. We test the following 9 algorithms: 15

16

• Naives Bayes1: algorithm which classifies instances using the Bayes’ theorem under the hypothesis that every pair of 17

features are independent. 18

• K-nearest neighbors (Knn)2: the training instances are displayed in a space of the dimension of the number of features. 19

When classifying a contagion case, it is assigned to the same category as the majority of its closest neighbors in this 20

feature space. 21

• Perceptron3: classifier that learns by iteratively adjusting weights. It utilizes a threshold function to determine the class 22

of the instances based on the dot product of input features and learned weights. 23
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• Support Vector Classification (SVM)4: algorithm that identifies an optimal hyperplane to separate data into different24

classes by maximizing the margin between the classes.25

• Linear Support Vector Classification (Linear SVM)4: variant of Support Vector Classification that specifically employs a26

linear decision boundary to classify data points into distinct categories.27

• Decision tree5: algorithm that recursively partitions data based on feature attributes to construct a hierarchical tree28

structure for classification29

• Random forest6: method which builds multiple decision trees during training and combines their predictions through30

averaging their results.31

• Ada boost7: boosting algorithm that sequentially trains weak learners by emphasizing misclassified instances in32

subsequent iterations, and thus build a strong classifier by combining the predictions of these weak learners.33

• Gradient boosting8: boosting algorithm that sequentially trains weak learners giving more weight to the misclassified34

instances based on gradients of a loss function.35

We present the mean accuracies over the whole parameter-space in the classification of the instances from Experiment 2 for36

each machine learning algorithm in Table S1. Among the algorithms displaying the highest accuracies (above 0.82), we opt for37

the Random forest method first due to its significantly faster computation times compared to SVM. Additionally, the Random38

forest algorithm, consisting of an ensemble of decision trees whose outcomes are combined, generally outperforms individual39

Decision Tree methods. Finally, we exclude the Gradient Boosting algorithm due to its limited explainability.40

Naives Bayes Knn Perceptron Linear SVM SVM Decision tree Random forest Ada boost Gradient boosting
0.66 0.81 0.68 0.81 0.82 0.82 0.82 0.75 0.83

Table S1. Average over the whole parameter-space of the accuracies on the classification of the contagion cases from
Experiment 2

3 Distribution of the features of the random forest of Experiment 241

The features of the random forest have been chosen to present different values according to the mechanisms of adoption. As42

depicted in Figure S2, the distributions of most features differ for the simple, complex and spontaneous adoptions. The degree43

is the only feature which is not related to the propagation itself but to the structure of the network. While it does not present44

significant differences in the distributions within Erdős–Rényi networks, we keep it due to the potential influence of a node’s45

degree in other type of networks.46

4 Best subset of features for the random forest on Experiment 247

To evaluate the significance of the features of the random forest method on Experiment 2 and 3, we train algorithms with48

all possible subsets of the eight features. Figures S3 and S4 present the subset with the highest accuracy (y-axis) for each49

subset length (x-axis), respectively for Experiments 2 and 3, across the all parameter-space, with corresponding accuracy values50

indicated in blue. Looking at the results from Experiment 2, enlarging the feature set from one to three increases the accuracy,51

but a plateau is reached for subsets larger than four. In other words, in most regions of the parameter space, only three features52

are necessary to achieve the same accuracy as with more features. However, this optimal subset varies through the parameter53

space. Also, adding features increases the accuracy when φ is high, but does not have any effect when the value of φ is small.54

Differently, the set of feature for the classification of Experiment 3 does not have a great influence on the accuracies, as the55

obtained values for different length of subsets are very similar. In contrast, the selection of features for the classification in56

Experiment 3 has a limited influence on the accuracies, as the obtained values for different subset lengths are very similar.57
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Figure S2. Distribution of the features of the random forest algorithms across the parameter space : degree (panel a), number
of infected neighbours (panel b), proportion of infected neighbours (panel c), sum of stimuli (panel d), standard deviation of
stimuli (panel e), number of stimuli by neighbours (panel f), time since the first infected neighbour (panel g) and time since the
last infected neighbour (panel h). The displayed values, taken from Experiment 2, are grouped by their dynamical processes
(simple, complex or spontaneous).
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Figure S3. Subsets of features giving the best accuracies (y-axis of each subplot) in the parameter space (β ,φ) for a certain
length of subset (x-axis of each subplot) in the classification with the random forest of Experiment 2. The corresponding
accuracies are displayed in blue. If several subsets give the same best accuracies, we compute the frequency of apparition of
each feature in those subsets. In most of the cases, only three features is enough to obtain the same accuracy values than with
the total set of features, but those three features are different across the parameter space.
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Figure S4. Subsets of features giving the best accuracies (y-axis of each subplot) in the parameter space (β ,φ) for a certain
length of subset (x-axis of each subplot) in the classification with the random forest of Experiment 3. The corresponding
accuracies are displayed in blue. If several subsets give the same best accuracies, we compute the frequency of apparition of
each feature in those subsets. In most of the cases, only three features is enough to obtain the same accuracy values than with
the total set of features, but those three features are different across the parameter space.

5 Accuracies of the different methods on different networks on Experiment 2 58

To understand how network structure influences process distinguishability, we apply the classification methods on Experiment 59

2 and 3 on various networks (Figure S5). The values of accuracies remain consistent across the Barabási-Albert, Watts Strogatz 60

and stochastic block model networks. However, we observe a decrease of 0.02 on the accuracy average considering a true 61

Twitter network, but with the machine learning method with unknown parameters. Indeed, one of the most important feature of 62

this method is the degree (Figure 3), which present larger variation with the Twitter network. 63
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Figure S5. Accuracies obtained by classifying the infection instances from Experiment 2 and 3 on different networks (x-axis)
and with different methods (y-axis). The values of accuracies do not depend on the structure of the network.

6 Accuracies of the classification of spontaneous adoption on Experiment 364

We assess the classification accuracies of the simple, complex and spontaneous cases from Experiment 4 with the random65

forest algorithm, using different values of filtering on the values of β̂ and φ̂ (40%, 60%, 80% and 100%). The accuracies of66

the classification of the simple and complex instances increase while the percentage of the filtering diminishes (Figure S6),67

even though all the obtained values remain above the accuracy of the random classification (0.33). We choose to work with a68

filter of 80% which presents accuracies above 0.65 while keeping most of the values of the distribution. The accuracies of the69

classification of the spontaneous instances (Table S2) are consistently low, regardless the percentage of data filtering employed70

in Experiment 3. This is attributed to the inability to assess the rate of infection r.71
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Figure S6. Parametrization and accuracy of the classification of Experiment 4 constructed based on the #GiletsJaunes Twitter
dataset. The distributions of β̂ and φ̂ respectively panels a-b and c-d are filtered keeping their 40%, 60%, 80% or 100% lower
values. The accuracy values of the classification of the simple contagion (panel e) and the complex contagion (panel f) increase
while the percentage of filtering increases.

Percentage of filtering 40 60 80 100
Accuracy of the St 0.07 0.12 0.23 0.50

Table S2. Accuracy of the classification of the spontaneous adoptions on the Experiment 4 with the random forest
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