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The interplay between causal mechanisms and emerging collective behaviors is a central aspect of
understanding, controlling, and predicting complex networked systems. In our work, we investigate
the relationship between higher-order mechanisms and higher-order behavioral observables in two
representative models with group interactions: a simplicial Ising model and a social contagion model.
In both systems, we find that group (higher-order) interactions show emergent synergistic (higher-
order) behavior. The emergent synergy appears only at the group level and depends in a complex,
non-linear way on the trade-off between the strengths of the low- and higher-order mechanisms and is
invisible to low-order behavioral observables. Our work sets the basis for systematically investigating
the relation between causal mechanisms and behavioral patterns in complex networked systems with
group interactions, offering a robust methodological framework to tackle this challenging task.

Mechanisms and behaviors are two facets of the study
of complex systems: mechanisms are the structural and
dynamical rules controlling the causal evolution of the
system; behaviors, instead, refer to the measurable ob-
servables quantifying statistical interdependencies be-
tween units of a system in space and time (Fig. 1). The
nature of the relation between the two facets and the
limits of our capacity to reconstruct it is a long-standing
problem in the analysis of complex systems [1–7].

Existing methods to study each of the two facets
mostly adopt lower-order descriptions: pairwise network
representations for mechanisms [8, 9], and low-order
information-theoretic metrics for behaviors [10, 11]. De-
spite their success, these low-order methods often fail
to fully capture the intricate nuances inherent to many
complex systems [12, 13], thus beyond-pairwise methods
are being developed: higher-order network representa-
tions such as hypergraph or simplicial complexes [14] and
higher-order behavorial metrics, both topological [15] and
information-theoretic [16].

A central question is then: what is the relation between
higher-order mechanisms and behaviors? The presence of
higher-order mechanisms enhances pairwise interdepen-
dencies, measurable for instance with mutual information
or pairwise correlations. On the other hand, intuition
might suggest that observing higher-order behaviors im-
plies the presence of higher-order mechanisms. However,
this is not the case. Systems with only low-order mecha-
nisms can display higher-order behaviors: for example, a
simple system of three spins connected by pairwise anti-
ferromagnetic interactions shows a total interdependency
(higher-order behavior) significantly larger than the sum
of the three pairwise interdependencies (low-order behav-
iors) [13, 17]. As both low and higher-order mechanisms
can determine the observation of both low and higher-

FIG. 1. Mechanisms versus behaviors in complex sys-
tems. (a) Mechanisms consist of (i) the topological structure
of interactions between nodes and (ii) the rules controlling
the temporal evolution of the nodes’ states. (b) Behaviors are
the observable states of the system and encompass its spatial
and temporal patterns, interdependencies between units, and
emergent phenomena. In experimental settings, behaviors are
often the only available.

order behaviors, the connection between behavioral ob-
servables and microscopic mechanisms in systems with
pairwise and group interactions is not trivial; a system-
atic investigation of this complex relationship across dif-
ferent orders of interactions is needed [18].

Here, we explore the mechanism-behavior relation
in higher-order versions of two canonical dynamical
processes—a generalization of the Ising model [19, 20],
and a social contagion model [21]—and quantify higher-
order behavior by defining the total dynamical O-
information, an extension of transfer entropy to arbitrary
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groups of variables [16, 22]. In both systems, we uncover
an emergent synergistic behavioral signature of group in-
teractions. Synergistic behaviors manifest when infor-
mation about a group of variables can only be recovered
by considering the joint state of all variables and can-
not be reconstructed from subsets of units of the group.
Crucially, the observed behavioral signatures display a
complex non-linear dependence on the strength of the
higher-order mechanisms. While these signatures can, in
some regimes, be overshadowed by other emergent phe-
nomena in the systems (e.g. the transition to the mag-
netized phase in the Ising model), when present, they
are invisible to low-order observables and thus represent
genuine higher-order phenomena.

Quantifying higher-order behaviors. The partial in-
formation decomposition framework allows for the char-
acterization of the information-sharing interdependencies
between groups of variables [23–25]. Qualitatively, these
relations can be of three types: redundant, synergistic, or
unique. Consider three variables X1, X2 and X3. Infor-
mation is redundant if it is replicated over the variables
(i.e. recoverable from X1∨X2∨X3), synergistic if it can
only be recovered from their joint state (X1 ∧X2 ∧X3),
and unique if it can only be recovered from one variable
and nowhere else. In this framework, mutual information
has been extended to groups of three or more variables by
the O-information [16]. To generalize the O-information
of multivariate time series from equal-time correlations
to time-lagged correlations—similarly to how transfer en-
tropy extends mutual information [26]—Stramaglia et al.
proposed dynamical O-information [22]. This quantity is
defined by (i) considering n variablesX = (X1, ..., Xn) on
which we compute the O-information Ωn(X), (ii) adding
a new variable Y , and (iii) computing the variation of
O-information: ∆n = Ωn+1(X, Y ) − Ωn(X). To remove
shared information due to common history, the dynam-
ical O-information is defined by conditioning ∆n on the
history Y0 of the target variable Y :

dΩn(Y ;X) ≡(1− n) I(Y ;X|Y0) (1)

+
n∑

j=1

I(Y ;X−j |Y0)

Here, I(·; ·|·) is the conditional mutual information, Y0 =
(y(t), y(t− 1), ..., y(t− τ + 1)) the past and present of Y ,
and Y = y(t + 1) its next instance. The parameter τ is
the temporal horizon of the time-series, usually set to
a relevant time scale of the process. To quantify the
dynamical O-information regardless of source-target as-
signments, we define the total dynamical O-information
as:

dΩtot.
n (X) ≡

n∑

j=1

dΩn−1(Xj ;X−j). (2)

Total dynamical O-information inherits from O-
information the property of being a signed metric:

dΩtot.
n (X) > 0 indicates that information-sharing among

the units of X is dominated by redundancy, while
dΩtot.

n (X) < 0 indicates that it is dominated by synergy.
Dynamical systems with higher-order mechanisms.

We consider two discrete higher-order dynamical mod-
els: a simplicial Ising model and the simplicial model of
social contagion [21]. Both are defined on simplicial com-
plexes, a class of hypergraphs [14] that encode multi-node
interactions as simplices and respect downward closure.
The first model we consider is a simplicial Ising model.

This model is an extension of the Ising model [19, 20] with
group interactions of different strengths for simplices of
different sizes. We consider a simplicial complex K with
average generalized degrees {⟨kℓ⟩}, where each of the N
nodes has two possible states: spin-up (Si = +1) or spin-
down (Si = −1). The model is defined by the Hamilto-
nian:

H =− J0

N∑

i=1

Si+ (3)

−
ℓmax∑

ℓ=1

Jℓ
⟨kℓ⟩

∑

{σ∈K:|σ|=ℓ}

[
2
⊗

i∈σ

Si − 1

]

where ℓmax is the maximal order of K and:

n⊗

i=1

Si = δ
(
S1, ..., Sn

)
=

{
1 if S1 = ... = Sn

0 otherwise
(4)

is the Kronecker delta for an arbitrary number of bi-
nary arguments. Inserting the Kronecker delta—instead
of the product [27–29]—in the coupling terms is neces-
sary to preserve the symmetry under spin flip at all sites
of the dyadic model with no magnetic field (J0 = 0). We
consider the dynamics of this system to be the sequence
of Monte Carlo moves performed with the Metropolis-
Hastings acceptance-rejection rule [30] at temperature T .
The second model we consider is the simplicial model of

social contagion [21]. Following the SIS framework [31],
we associate to each of the N nodes of a simplicial com-
plex K a binary variable xi(t) ∈ {0, 1}, corresponding
to the susceptible or infected state of agent i at time
t. At the initial time step t0, a fraction of infected
agents ρ0 =

∑
i xi(t0)/N is placed in the population.

At each time step, susceptible agents (xi(t) = 0) be-
come infected with a probability βℓ if they belong to a
ℓ-simplex where all other nodes are infected. Infected
agents (xi(t) = 1) recover independently with probability
µ. We introduce the usual rescaled infectivity parameter
of order ℓ: λℓ = βℓ⟨kℓ⟩/µ.
For computational feasibility, we limit ourselves to

group mechanisms and interdependencies up to three
nodes (i.e. ℓmax = 2). The results shown are obtained
in random simplicial complexes with N = 200 nodes and
average degrees ⟨k1⟩ = 20, ⟨k2⟩ = 6. The Ising model
was simulated for 3 × 104 time steps, and the contagion
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model for 104 time steps. Other parameters were set to
T = 1 (Ising) and µ = 0.8 and ρ0 = 0.3 (contagion).

Emergence of synergistic signatures of group interac-
tions. We simulate the two systems for different values
of the control parameters and compute the total dynam-
ical O-information dΩtot.

3 on the resulting time-series for
different types of node triplets: 2-simplices, 3-cliques,
and uniformly randomly chosen triplets of nodes. The
2-simplices are the true higher-order interactions as the
nodes belonging to them will interact through the 3-body
ferromagnetic coupling in the Ising model and the group
infection rate in the contagion model. The 3-cliques can
be thought of as “spurious” higher-order interactions as
the nodes belonging to them are all interconnected but
through pairwise couplings only. In both cases, we set
the delay of the dynamical O-information to τ = 1 as
both systems are Markovian. Increasing the strength of
group interactions (J2, the three-body coupling in the
Ising model, and λ2, the group rescaled infection rate
in the contagion model), we observe an increasing co-
occurrence of higher-order mechanisms and synergistic
higher-order behaviors (Fig. 2). In both systems, all
types of triplet groups display synergistic higher-order
behaviors (dΩtot.

3 < 0); however, and crucially, as we
increase the relative strength of the higher-order mecha-
nisms, we see that 2-simplices, i.e. the genuine higher-
order interactions, display significantly stronger synergis-
tic behaviors than the other groups.

Complex dependence of higher-order behaviors on
higher-order mechanisms. To go further, we now show
(Fig. 3) how the total dynamical O-info dΩtot.

3 changes as
the strength of group mechanisms is increased (J2 and λ2,
respectively), relatively to its value without group mech-
anisms (J2 = 0 and λ2 = 0, respectively). We see that, as
we increase this group coupling strength, the dΩtot.

3 mea-
sured on 2-simplices (solid lines) shows a relative increase
with respect to the case without group mechanisms, re-
gardless of the (color-coded) pairwise coupling strength
(J1 and λ1, respectively). Moreover, total dynamical O-
info measured on 3-cliques (dashed lines) stays roughly
constant as J2 and λ2 increase. These two facts con-
firm the results from Fig. 2, showing that group mech-
anisms promote higher-order synergistic behavior. More
importantly, we see that the relative dΩtot.

3 response of
2-simplices is qualitatively different in the two systems.
First, the response appears to be roughly linear (until the
transition to the ferromagnetic phase occurs, see Supple-
mental Material [32]) in the simplicial Ising model, but
non-linear in the simplicial contagion model. Second,
although the relative dΩtot.

3 depends on the pairwise cou-
pling strength (J1 and λ1, respectively) in both systems,
it does so in opposite ways: an increase in the pairwise
coupling yields a larger relative dΩtot.

3 in the simplicial
Ising model, but yields a lower relative dΩtot.

3 in the sim-
plicial contagion model. These results indicate a com-
plex and system-dependent interplay between low- and
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FIG. 2. Synergistic signature of higher-order mech-
anisms. We show box plots of the distributions of total dy-
namical O-info dΩtot.

3 in (a) the simplicial Ising, and (b) the
simplicial contagion models. Distributions are over all occur-
rences of three types of groups of nodes: 2-simplices, 3-cliques,
and random triplets, and are shown for increasing values of
the group mechanism strengths (J2 and λ2). As strength
increases, higher-order interactions become more synergistic
(negative dΩtot.

3 ) than lower ones. Symbols “ns” and “****”
indicate a non-significant and significant (p ≤ 10−4) differ-
ence, respectively, between the distributions (t-test).
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FIG. 3. Complex dependence of higher-order behav-
iors on higher-order mechanisms. We show the rela-
tive variation of total dynamical O-info dΩtot.

3 measured on
2-simplices as a function of the strength of higher-order mech-
anisms (a) the simplicial Ising, and (b) the simplicial conta-
gion models. The dashed line shows the same quantity for
3-cliques.

higher-order mechanisms and behaviors, which requires
further investigation.
Insufficiency of lower-order metrics. Despite the

strong synergistic behaviors displayed by genuine higher-
order interactions, we still do not know the extent of
this correspondence, nor whether low-order observables
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could already detect—and to what degree—the presence
of higher-order interactions. Moreover, we need to de-
termine whether group behaviors are truly higher-order,
or the byproduct of low-order interdependencies. To an-
swer these questions, we compare our higher-order met-
ric with a lower-order metric over the parameter space of
both systems. For the latter, for each triplet, we compute
the sum of the transfer entropies between the time series
of the three possible node pairs. For both metrics, we
quantify the difference in behavior between 2-simplices
and 3-cliques via the statistical distance d [33] [34]. For
two distributions—here, P2 for 2-simplices and P3 for 3-
cliques—over a common alphabet χ, d is defined as:

d(P2, P3) =
1

2

∑

x∈χ

|P2(x)− P3(x)| , (5)

which we denote d23 ≡ d(P2, P3) for short. The distance
d23 quantifies the overlap of the two distributions. By
definition, it takes values in [0, 1]: d23 = 0 if the two
distributions are identical, and d23 = 1 if the two distri-
butions take non-zero values on non-overlapping subsets
of χ [35].

In both systems, we find two main results. First, the
low-order behavioral metric does not see differences be-
tween the lower- (3-cliques) and higher-order mechanisms
(2-simplices), whereas the higher-order metric does. In-
deed, this is indicated by the uniformly low values of
d23 with low-order metric (Fig. 4a,c) with respect to
the large values exhibited by d23 with the higher-order
metric, the total dynamical O-information (Fig. 4b,d).
The latter is consistent with the synergetic signature
results shown in Fig. 2. So, the higher-order mech-
anisms can be identified—and distinguished from low-
order mechanisms—by the higher-order behavioral met-
ric and not by the low-order one.

Second, focusing on dΩtot.
3 , we see that the differ-

ence between the 2-simplices and 3-cliques is large (large
d23, dark blue) over a finite region of parameter space
(Fig. 4b,d). This region corresponds to the co-occurrence
of higher-order mechanisms and synergistic higher-order
behavior (Fig. 2). This occurs for sufficiently large values
of the strength of the higher-order mechanisms.

These findings apply to both models, but each model
has its specificities. While explaining the full shape of
the dark blue region is a hard task, we can explain some
of its features. In the Ising model (Fig. 4b), the large d23
≳ 0.5 region (dark blue) does not extend above Jcr.

1 = 1
(dashed line), which is the magnetization threshold of
the pairwise model with no magnetic field [36]. This is
because, above that value, the system magnetizes, and
no information can be recovered. Below (J1 < 1), the
region appears above a certain strength of the three-body
coupling J2 ≳ 0.5, and that value seems to decrease as
J1 increases.

In the contagion model (Fig. 4d) the large d23 region
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FIG. 4. Low-order metrics do not see the synergis-
tic signature of higher-order mechanisms. We show the
statistical distance d23 between the distributions of the behav-
ior of 2-simplices and 3-cliques for two metrics: (a), (c) sum
of transfer entropies (low-order) and (b), (d) total dynamical
O-information (higher-order). Two models are shown. (a),
(b) The simplicial Ising model, where the dashed line is the
critical coupling strength of the pairwise model Jcr.

1 = 1 with
no magnetic field. (c), (d) The simplicial contagion model,
where the two dashed lines are, respectively, the epidemic
threshold of the pairwise SIS model λcr.

1 = 1 and the crit-
ical value of the rescaled 2-simplices infectivity rate above
which the system shows the discontinuous phase transition
and bistability λcr.

2 = 1, and the dash-dotted line represents
the points (λ1, λ2) where the system undergoes a discontinu-
ous transition [21]. The three white symbols in (b) and (d)
correspond to the parameter values shown in Fig. 2.

displays larger values (0.7 ≲ d23 ≲ 1.0). It does not ap-
pear to be bounded from above. However, it is bounded
from below. First, for λ1 < 1 (left of the vertical dashed
line), the region appears only above λcr. = 2

√
λ2 − λ2

(dashed-dotted line). These values are known: λ1 = 1
is the epidemic threshold of the pairwise version of the
model (SIS on an Erdős–Rényi graph), and λcr. is the
value where the discontinuous transition occurs [21]. Be-
low that value, only the epidemic-free state exists, for
which no higher-order behaviors are expected. Second,
the region does not appear to extend below λ2 = 1 (hori-
zontal dashed line), below which no discontinuous transi-
tion can exist, and we thus expect the system to behave
more like its low-order variant. Finally, for larger λ1,
the region starts above values of λ2 that are larger as λ1

increases, suggesting that their ratio plays a role.

In conclusion, by exploring the relation between mech-
anisms and behaviors in two systems with higher-order
interactions, we uncovered emergent synergistic signa-
tures characterizing group mechanisms. Quantifying
higher-order behaviors using dΩtot.

3 , we showed that in
both models, an increase in the strength of the parame-
ter controlling the group mechanisms in 2-simplices led
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(non-linearly) to significantly larger synergistic values of
dΩtot

3 . We have also shown that the synergistic behav-
ioral response of the groups of nodes to the variation of
the driving higher-order mechanisms is non-linear and
shows system-dependent characteristics. Crucially, low-
order observables did not capture the groups’ behavioral
signatures, supporting the importance of higher-order ob-
servables to study group interdependencies. For example,
we present in the Supplemental Material a simple method
leveraging these synergistic signatures for the detection
of higher-order interactions from the nodes’ states’ time-
series. By exploring the control parameter spaces of the
two systems, we showed that synergistic signatures are
not ubiquitous and can be overshadowed by other emer-
gent phenomena (e.g. the magnetization transition in
the Ising model). We expect our results to be relevant
for any attempts at reconstructing [15, 29, 37, 38] and
predicting [7, 39] complex interacting systems from sig-
nals, and for the ongoing discussion about the nature and
importance of higher-order systems [40].
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scribed by a mean-field description [20], which has critical
temperature given by Tcr./J = q where q is the coordina-
tion number of the lattice. Fixing the temperature T = 1
and with q = ⟨k1⟩ in our Hamiltonian Eq. (3), we obtain
the critical value of the pairwise coupling: Jcr.

1 = 1.
[37] S. Piaggesi, A. Panisson, and G. Petri, in Learning on

Graphs Conference (PMLR, 2022) pp. 55–1.
[38] A. Levina, V. Priesemann, and J. Zierenberg, Nature Re-

views Physics 4, 770 (2022).
[39] C. Murphy, V. Thibeault, A. Allard, and P. Desrosiers,

Duality between predictability and reconstructability
in complex systems (2023), arXiv:2206.04000 [cond-
mat.stat-mech].

[40] V. Thibeault, A. Allard, and P. Desrosiers, Nature
Physics , 1 (2024).



Supplemental Material

I. HIGHER-ORDER NETWORK STRUCTURES

Complex networks theory is the study of phenomena that result from the interplay among many distinct parts
interacting in a non-trivial way [S1]. Examples of such phenomena are everywhere: the spread of fake news on social
media, the interaction network of proteins in an organism, the activation of neurons in the brain, climate networks,
etc.. Over the past decades, various complex systems have been successfully described as graphs whose interacting
pairs of vertices are connected by edges. An important limitation of traditional networks, however, is that only
pairwise interactions can be represented [S2]. This means that the evolution of the system under study can only come
from dyads of elements influencing each other. In this framework, interactions between groups of agents are typically
neglected or projected down as combinations of pairwise interactions (see Fig. S1). In recent years, there has been
a growing interest of the network science community towards finding and analyzing explicit representations of group
interactions, between any number of units in interconnected systems.

The natural candidates for providing such descriptions are hypergraphs and simplicial complexes. Hypergraphs are
the straightforward generalization of graphs, allowing to encode interactions among arbitrary numbers of nodes. A
hypergraph is defined by a set V , whose elements are known as vertices or nodes, and by a family E of subsets of
V , known as hyperedges. A k-hyperedge σ is a set of k + 1 nodes σ = [p0, p1, ..., pk] with p0, ..., pk ∈ V . Simplicial
complexes are a special case of hypergraphs and offer another approach. In a simplicial complex, a hyperedge is called
a simplex. Contrary to hypergraphs, in a simplicial complex K all subfaces of a simplex σ (for example, the edges of
a triangle) need to be included in the simplicial complex. This is called the inclusion condition and can be written
as:

σ ∈ K → ∀ν ⊂ σ, ν ∈ K (S1)

where ν is a sub-simplex of σ. Although more constrained than hypergraphs, simplicial complexes provide access to
powerful mathematical formalisms from algebraic topology [S3].

A. Random Simplicial Complexes

The Random Simplicial Complex (RSC) model is a generalization of the Erdos-Renyi model for pairwise networks.
The RSC model generates simplicial complexes with simplices of different dimensions, controlling the expected local
connectivity [S4]. The RSC model with simplices up to dimension D has D + 1 parameters: the number of vertices
N and D probabilities {p1, ..., pk, ..., pD}, where pk ∈ [0, 1] controls the probability for the creation of k-simplices.
In the case D = 2 (used in the main text for generating the structures in our analysis) the simplicial complexes are

(a) (b)

FIG. S1. In a system with group interactions when we consider a traditional network representation (a) the group interactions
are either projected down or neglected; instead using a higher-order representation (b) such as a simplicial complex allows for
the explicit representation of group interactions using simplices.
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produced as follows. Given the N vertices we connect any two nodes i, j with probability p1 (this is equivalent to the
G(N, p) ensemble for Erdős-Rényi random graphs). Then for any three nodes l,m, n we add a simplex (l,m, n) with
probability p2. At this point, the average generalized degree ⟨k2⟩ (average number of 2-simplices incident in a node),
is given by:

⟨k2⟩ =
(N − 1)(N − 2)

2
p2 (S2)

The structure generated up to now does not satisfy the inclusion condition in general—additional 1-simplices need to
be added to ensure that all 2-simplices are “closed”. These new 1-simplices will contribute to increasing the 1-degree
of the nodes.

The average degree ⟨k1⟩ can now be computed in terms of the probabilities. The contribution of the addition of
1-simplices to the expected degree k1,i of a node i can be divided in the following scenarios:

• Incremented by 2 for each 2-simplex (i, j, k) such that neither the link (i, j) nor the link (i, k) are already present.
This occurs with probability (1− p1)

2.

• If either the link (i, j) is already present but not (i, k), or vice-versa, the addition of the 2-simplex (i, j, k)
increases the degree of i by 1. Since each case happens with the same probability p1(1− p1) the contribution is
therefore 2p1(1− p1).

Thus we can write, for p1, p2 ≪ 1:

⟨k1⟩ ≃ (N − 1)p1 + 2⟨k2⟩(1− p1) (S3)

We can invert Eqs. (S2)-(S3) to compute the values of p1 and p2 that results in prescribed values of the average
degrees as:

p1 =
⟨k1⟩ − 2⟨k2⟩
N − 2⟨k2⟩ − 1

(S4a)

p2 =
2⟨k2⟩

(N − 1)(N − 2)
(S4b)

We show in Fig. S2 some examples of RSC with N = 20 and different values of ⟨k1⟩ and ⟨k2⟩. The generation of these
structures and their visualization, as well as the rest of the analysis carried out in this paper relies on the XGI Python
package [S5]. This library provides data structures and algorithms for modeling and analyzing complex systems with
higher-order interactions.

II. INFORMATION THEORETIC MEASURES

In the following section we present the two information theoretic measures that are used in the main text to probe
low and higher-order behaviors, namely transfer entropy and total dynamical O-information.

A. Transfer Entropy

The Transfer Entropy (TE) is an information-theoretic measure of the directed (time-asymmetric) information
transfer between two random processes [S6]. Given two variables X and Y , the TE from X to Y is defined as the
mutual information between the present of X and the future of Y , conditioned on the past of Y :

T (X → Y ) = T (X;Y ) ≡ I(Xt, Yt+1|Yt) = H(Xt, Yt+1) +H(Yt, Yt+1)−H(Xt, Yt+1, Yt)−H(Yt) (S5)

The definition of the TE is asymmetric to capture the directed influence of the past of one variable on the future
of another. In the main text we use TE as a low-order counterpart to the total dynamical O-information that we use
to probe higher-order behavior. As we wish to consider the total transfer entropy present in a group of three nodes
we sum up all the possible source-target combinations of the three nodes states. Given three variables X1, X2, and
X3 this is given by:

T tot.(X1, X2, X3) =T (X1;X2) + T (X2;X1) + T (X1;X3)+

+ T (X3;X1) + T (X2;X3) + T (X3;X2) (S6)
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〈k1〉 = 1, 〈k2〉 = 0.0 〈k1〉 = 1, 〈k2〉 = 0.2 〈k1〉 = 1, 〈k2〉 = 0.5

〈k1〉 = 2, 〈k2〉 = 0.0 〈k1〉 = 2, 〈k2〉 = 0.2 〈k1〉 = 2, 〈k2〉 = 0.5

〈k1〉 = 3, 〈k2〉 = 0.0 〈k1〉 = 3, 〈k2〉 = 0.2 〈k1〉 = 3, 〈k2〉 = 0.5

FIG. S2. Realizations of the Random Simplicial Complex (RSC) model with N = 20 and different values of ⟨k1⟩ and ⟨k2⟩.

B. Total dynamical O-information

The partial information decomposition (PID) framework is a well-established approach to characterize the
information-sharing interdependencies between a group of three or more variables [S7–S9]. Qualitatively, these
relations can be of three types: redundant, synergistic, or unique. Consider three variables sharing information,
X1, X2 and X3. Information is said to be redundant if it is replicated over the variables (that is, recoverable from
X1 ∨X2 ∨X3), synergistic if it can only be recovered from their joint state (X1 ∧X2 ∧X3), and unique if it can only
be recovered from one variable and nowhere else.

In this framework, mutual information has been extended to groups of three or more variables by the so-called
O-information (shorthand for “information about Organizational structure”) [S10], which on a vector of n random
variables X = (X1, ..., Xn) is given by:

Ωn(X) ≡ (n− 2)H(X) +
n∑

j=1

[H(Xj)−H(X−j)] , (S7)

where H(·) is the Shannon entropy [S11] and X−j = X \ Xj (see [S10] for a detailed presentation of this metric’s
properties). For our purposes, the relevant property of O-information is that it is a signed metric: Ωn(X) > 0
indicates that information-sharing is dominated by redundancy, Ωn(X) < 0 indicates that it is dominated by synergy,
and Ωn(X) = 0 indicates a balance between both.

Total Dynamical O-information. To generalize the O-information of multivariate time series from equal-time cor-
relations to the time-lagged correlations, Stramaglia et al. proposed dynamical O-information dΩ [S12]. It is defined
by (i) considering n random variables X = (X1, ..., Xn) on which we have defined the standard O-information, and
(ii) adding a new random variable Y . In this way, the O-information of the joint state between set X and the new
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variable Y becomes:

Ωn+1(X, Y ) = Ωn(X) + ∆n (S8)

where:

∆n = (1− n)I(Y ;X) +

n∑

j=1

I(Y ;X−j) (S9)

where I(·; ·) is the canonical mutual information between two variables [S11]. The additional term in ∆n quantifies the
variation of the total O-information induced by the addition of Y , effectively measuring the informational character of
the circuits linking Y to the variables in X. In particular, if ∆n is positive, Y receives mostly redundant information
from the set of variables X, whilst if ∆n is negative, then the influence of X on Y is dominated by synergistic
effects. To remove potentially confounding shared information due to common history or input signals, the dynamical
O-information is defined by conditioning Eqs. (S8)-(S9) on the history Y0 of the target variable Y :

dΩn(Y ;X) ≡ (1− n)I(Y ;X|Y0) +
n∑

j=1

I(Y ;X−j |Y0). (S10)

Here Y0(t) = (y(t), y(t− 1), ..., y(t− τ + 1)) and Y = Y (t) = y(t+ 1) are the samples of Y corresponding to what we
consider the past and present of the variable and to its next instance, respectively. The parameter τ is the temporal
horizon of the time series and can typically be set to a relevant time scale of the process.

To quantify the dynamical information within a group of n units, regardless of source-target assignments, we define
the total (or symmetrized) dynamical O-information as:

dΩtot.
n (X) ≡

n∑

j=1

dΩn−1(Xj ;X−j). (S11)

When considering a delay τ = 1, as in our work, we can rewrite the dynamical O-information using the transfer
entropy in the following way:

dΩn(Y ;X) ≡ (1− n)T (Y ;X) +
n∑

j=1

T (Y ;X−j) (S12)

In the case τ = 1 it is straightforward to see that the relation between the dynamical O-information and the transfer
entropy is the same as the one between the O-information and the mutual information.

Using the same notation of Eq. (S5) we can specialize Eq. (S10) to the case τ = 1 as:

dΩn(Y ;X) ≡ (1− n)I(Yt+1;Xt|Yt) +
n∑

j=1

I(Yt;X−j,t|Yt). (S13)

where we see that conditioning on the past (Yt) is applied in the same way to the two measures.

C. Computation of information theoretical metrics

The computation of the information theoretical metrics Eq. (S6) and Eq. (S11) is based on the computation of the
entropy of a random variable. In the two systems considered in our work the random variables under consideration—
i.e. the state of the nodes in the simplicial complex—are binary. Given a set of M observations {xi} ∈ [0, 1]N of the
state of a binary random variable X taking values x ∈ [0, 1], we compute the empirical entropy of X as:

H(X) = −
∑

x

px log px (S14)

where:

px =
1

M

M∑

i=1

δxi,x (S15)
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is the observed frequency for x. The extension of Eq. (S14) to the multidimensional random variables is straightfor-
ward.

The computational tools developed in this work to compute the information theoretical metrics are now part of
the publicly available HOI Python package (https://brainets.github.io/hoi/). The HOI package uses high-
performance numerical computing tools to mitigate the high computational costs involved in exploring higher-order
interdependencies.

III. HIGHER-ORDER DYNAMICAL MODELS

A. Simplicial Ising model

Low-order Ising model. The Ising model is a mathematical model of ferromagnetisms in statistical physics [S13].
It was originally defined on lattices and later extended to complex networks. We consider the general case of the
model being defined on a graph G = (V,E), with N = |V | nodes. To each node i ∈ V we associate a binary state
variable Si ∈ {±1}, corresponding to the spin state of the node, which can either be up (Si = +1) or down (Si = −1).
The global state of the system is controlled by the Hamiltonian:

H = −
∑

i

hiS
i −

∑

⟨i,j⟩
JijS

iSj (S16)

where {hi} are the local magnetic fields and {Jij} are the magnetic couplings for the neighbouring nodes {⟨i, j⟩}.
A special case of Eq. (S16) that allows for an exact analytical treatment in one and two-dimensional systems and
a simple mean-field formulation is obtained with no magnetic fields (i.e. hi = 0 ∀i ∈ V ) and a positive uniform
magnetic coupling Jij = J ∀⟨i, j⟩ ∈ G with J > 0. In this case, the Hamiltonian of the systems takes the form:

H = −J
∑

⟨i,j⟩
SiSj (S17)

The energy of the system described by Eq. (S17) is minimized when all spins are aligned. The order parameter of
these Ising models is the magnetization:

m =
1

N

∑

i

Si (S18)

This parameter takes values in the interval [−1,+1]. The system described by Eq. (S17) undergoes a second-order
phase transition between a fully disordered state (m = 0) and magnetized state (|m| = 1) at a critical value of the
temperature T .

Extension to higher-order. The extension of the Ising model to incorporate many-body interactions is not a recent
question in statistical physics [S14–S16]. Notably, so-called plaquette interactions involving groups of 4, 8, 16, etc.
nodes appear when performing real-space renormalization on a square lattice, and higher-order terms appear when
performing other renormalization procedures [S17]. Moreover, the p-spin model [S18], a generalization of the disordered
Ising model given by Eq. (S16) with infinite range interactions between groups of spins of size p, is extensively studied
in the spin glass literature. Recently, a direct extension of Eq. (S17) has been proposed to describe an Ising model
on a simplicial complex of order ℓ = 2 [S19]. This model has a Hamiltonian given by:

H = −J0
∑

⟨i,j⟩
SiSj − J1

∑

⟨i,j,k⟩
SiSjSk (S19)

where J1 and J2 are the strengths of two-body and three-body interactions, and ⟨i, j⟩ and ⟨i, j, k⟩ denote the two-
body and the three-body connections in the 2-simplicial complex, respectively. However, as was already noted in the
first analysis of the Ising model with three-body interactions, the extension provided by Eq. (S19) breaks the parity
symmetry under spin flip at all sites of the dyadic model without magnetic field [S15]. This can be easily understood
considering the energy of systems constituted by three spins S1, S2, and S3 connected in a 2-simplex. There are
two states with all spins aligned: all spins pointing up and all spins pointing down. These two configurations are
symmetric upon flipping all spins, yet their energies when computed using Eq. (S19) are different, favoring the state
with spins pointing up. To preserve the symmetry of the original low-order Ising model we propose an alternative
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formulation of the extension of the Ising model to simplicial complexes of arbitrary order. For every simplex σ—of
all orders—we consider its only configuration favored in energy to be the one with all the spins aligned. This leads to
formulating a new Hamiltonian for the simplicial Ising model:

H = −J0

N∑

i=1

Si −
ℓmax∑

ℓ=1

Jℓ
∑

{σ∈K:|σ|=ℓ}

[
2
⊗

i∈σ

Si − 1

]
(S20)

where:

n⊗

i=1

Si = δ
(
S1, ..., Sn

)
=

{
1 if S1 = S2 = ... = Sn

0 otherwise
(S21)

is the Kronecker delta with an arbitrary number of binary arguments and ℓmax is the maximal order of K. For ℓmax = 1
Eq. (S20) reduces to the low-order model with uniform magnetic field J0 and pairwise coupling J1. Upon rescaling
the couplings by the corresponding generalized degrees, we obtain the Hamiltonian used in our work.

Monte Carlo dynamics. We consider the dynamics of this system to be the Markov chain of Monte Carlo moves
performed with Metropolis-Hastings acceptance-rejection rule [S20] at temperature T . Monte Carlo dynamics are
not defined to be dynamical models but rather numerical methods for solving statistical physics problems. However,
the Metropolis-Hastings acceptance-rejection rule defines Markovian transitions between configurations of the model
which we consider—to our scope—to be the dynamic of the system. We start from a random configuration in which
each spin has equal probability of being in one of the two states. At each time step t we randomly select a set of
independent spins (i.e. sites in the simplicial complex K that are not first-neighbors). For each selected spin we
propose a flipping move. In the case considered in the main text—simplicial complex with ℓmax = 2 and no magnetic
field, J0 = 0—the energy variation given by the flipping of spin i is given by:

∆Ei(t) = 2
J1
⟨k1⟩

∑

j∈∂i

[
2δ

(
Si (t) , Sj (t)

)
− 1

]
+ 2

J2
⟨k2⟩

∑

(j,k)∈∇i

[
2δ

(
Si (t) , Sj (t) , Sk (t)

)
− 1

]
δ
(
Sj(t), Sk(t)

)
(S22)

where ∂i is the set of nodes in K connected to node i by an edge and ∇i is the set of pairs of nodes in K forming a
2-simplex with node i. The acceptance or rejection of the proposed move is based on the Metropolis-Hastings rule,
with the acceptance probability given by:

P
(
Si(t) → −Si(t)

)
=

{
exp

[
−∆Ei(t)

T

]
if ∆Ei(t) > 0

1 otherwise
(S23)

In other words, if we select a new state that has an energy lower than or equal to the present one, we should always
accept the transition to that state.

B. Simplicial contagion model

The simplicial contagion model [S4] is a dynamical model that describes social contagion processes such as opinion
formation or the adoption of novelties, where complex mechanisms of influence and reinforcement are at work. The
model is defined on a simplicial complex K with N nodes. In this model, the standard susceptible-infected-susceptible
(SIS) compartmental model for contagion processes [S21] is extended to account for group interactions. Following
the SIS framework [S22], to each node of a simplicial complex K we associate a binary random variable xi(t) ∈ {0, 1}
such that at each time step we divide the population of individuals into two classes of susceptible (S) and infectious
(I) nodes, corresponding respectively to the values 0 and 1 of the state variables xi(t). At the initial time step a
finite fraction of infected agents ρ0 is placed in the population. At each time step, each susceptible agent (xi(t) = 0)
becomes infected with a probability βℓ if it belongs to a ℓ-simplex where all the other ℓ nodes are infected. The
infected agents recover independently with probability µ. The order parameter of this model is the density of infected
agents at time t, given by:

ρ(t) =
1

N

∑

i

xi(t) (S24)
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Rescaled infectivity rates. In the original paper [S4], the authors provide an analytical characterization of the
mean-field description of this model on simplicial complexes with ℓmax = 2. Given the set of infection probabilities
{βℓ} and the recovery rate µ, assuming homogeneous mixing and the independence between the states of different
nodes, the mean-field expression for the temporal evolution of the density of infected nodes ρ(t) is:

ρ̇(t) = −µρ(t) +

ℓmax∑

ℓ=1

βℓ⟨kℓ⟩ρℓ(t)[1− ρ(t)] (S25)

This expression can be simplified and treated analytically by rescaling time by a factor µ and introducing the rescaled
infectivity rates {λℓ = µβℓ/⟨kℓ⟩}. These rescaled infectivity rates are the control parameters we consider in our work.

IV. NUMERICAL VALUES OF THE TOTAL DYNAMICAL O-INFO

In the main text, we focus on the statistical distance between the distributions of the total dynamical O-info of
2-simplices and 3-cliques. In Fig. S3a,b we show the numerical values of dΩtot.

3 in the parameter space. For additional
reference, we also show in Fig. S3c,d the numerical values of the order parameter of the two models (see Eq. (S18)
and Eq. (S24)). In the Ising model (panels a,c), we see that in the phase in which the system is not magnetized all
groups of three nodes (2-simplices, 3-cliques, and random triplets) behave synergistically, with the 2-simplices showing
more negative values of dΩtot.

3 . As the system magnetizes—this is particularly evident above the threshold of the
pairwise model—information is duplicated across units of the system and thus the groups of nodes share redundant
information, dΩtot.

3 ≥ 0. In the simplicial contagion model (panels b,d), we see that overall the groups of three nodes
in the system behave synergistically with the 2-simplices always displaying more negative values of dΩtot.

3 with respect
to the other groups of three nodes. The reason for the fact that in the simplicial contagion model groups don’t behave
redundantly—as instead happens in the Ising model—when the order parameter is large (i.e. in the endemic phase of
the contagion model) is because infected nodes recover independently one from the other and independently from the
global state of the system. For this reason, even in the endemic phase, the state of nodes is not frozen as happens in
the magnetized phase of the Ising model and thus the synergistic behavior dominates over the redundant contribution
and the dΩtot.

3 remains negative.

We can explicitly see the non-linearity of the relation between higher-order behaviors and higher-order mechanisms—
mentioned in the main text when looking at the dependency of the relative higher-order behavior on the strength
of the parameters controlling the group interactions—in Fig. S4. In the figure, we show the dependence of the total
dynamical O-information of 2-simplices and the strength of the parameters controlling the group interactions (J2 and
λ2 respectively). The jump in the Ising model for J1 = 0.67 is due to the transition to the magnetized phase, resulting
in a redundancy-dominated interdependency between the units of the 2-simplices.

V. DIFFERENCES BETWEEN THE BEHAVIOR OF 3-CLIQUES AND RANDOM TRIPLETS

In the main text, we focus mainly on the difference measured by the information-theoretical metrics for behavior
between 2-simplices and 3-cliques. In Fig. S5 we show the statistical distance between the distributions of low and
higher-order observables of behavior between 3-cliques and random triplets (i.e. groups of three nodes not connected
by a 2-simplex or a 3-clique). We see that overall the sum of transfer entropies provides a better discrimination
between 2-cliques and random triplets with respect to total dynamical information. This is a comforting result for
two reasons: (i) low-order observables provide some discrimination between the interactions in the system and random
group of nodes and (ii) as observed in the main text from the higher-order point of view 3-cliques and random triplets
show similar behaviors. In the Ising model (panel a) we see that the statistical distance for the low-order observables
is larger in the vicinity of the critical point of the pairwise system. This echoes known results about the inverse Ising
problem on graphs allowing for solutions based on mean-field inverse correlations near the critical point [S23]. In the
simplicial contagion model (panel b) the statistical distance between the sum of transfer entropies in 3-cliques and
random triplets is large in the majority of the space of the parameters. There are two regions in which the statistical
distance is slightly smaller: for small values of both λ1 and λ2 (bottom left corner) and for large values of both the
parameters. The reduced statistical distance in these two regions can be understood considering the dynamic of the
system. When λ1 and λ2 are small the number of infected agents in the system is small or null, thus the state of
nodes does not change much in time and we see no difference between interacting and disconnected nodes. Likewise,
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FIG. S3. (a)-(b) Numerical values of the dΩtot.
3 . (c)-(d) Order parameters (magnetization and density of infected agents).

(a) Ising model. Results are obtained on a random simplicial complex with N = 200 nodes and average degrees ⟨k1⟩ = 20,
⟨k2⟩ = 6, running the Monte Carlo dynamics for 3× 104 time steps with J0 = 0 at temperature T = 1. The dashed line is the
critical coupling strength of the pairwise model Jcr.

1 = 1 with no magnetic field. (b) Simplicial contagion model. Results are
obtained on a random simplicial complex with N = 200 nodes and average degrees ⟨k1⟩ = 20, ⟨k2⟩ = 6, running the contagion
dynamic for 104 time steps with µ = 0.8 and ρ0 = 0.3. The two dashed lines are respectively the epidemic threshold of the
pairwise SIS model λcr.

1 = 1 and the critical value of the rescaled 2-simplices infectivity rate above which the system shows the
discontinuous phase transition and bistability λcr.
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FIG. S4. Non-linearity of the relation between the total dynamical O-information of 2-simplices and the strength of the
parameters controlling the group interactions (J2 and λ2 respectively). (a) Ising model. (b) Simplicial contagion model.
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FIG. S5. Statistical distance between the distributions of low (sum of transfer entropies) and higher-order
(total dynamical O-information) observables of behavior of 3-cliques and random triplets. (a) Ising model.
(b) Simplicial contagion model.

when λ1, λ2 ≫ 1 the majority of the nodes are infected and thus also the states of non-interacting nodes are more
correlated.

VI. SYNERGY-BASED DETECTION OF HIGHER-ORDER INTERACTIONS

We can exploit the relation between higher-order mechanisms and behaviors to detect interactions from dynamic.
We set ourselves in the case in which we want to discriminate between true higher-order interactions (2-simplices)
and spurious ones (3-cliques) having access to the nodes’ states’ time series, the low-order structure of the system
and its average generalized degree of order ℓ = 2. This setup reproduces the situation in which we have access to the
node-level activity of a system, its pairwise structure, and some coarse information about nodes’ neighborhoods in
terms of their higher-order connectivity (e.g. through local samples).

The heuristic method proceeds as follows. Given ⟨k2⟩ and the number of nodes N , the expected number of 2-
simplices in the system is n△ = N⟨k2⟩/3. Given n△, we compute the total dynamical O-information for all triplet
groups connected by pairwise connections (i.e. the 3-cliques in the skeleton of the simplicial complex K under study),
rank them by their values of dΩtot.

3 and mark as “predicted” higher-order interactions the n△ most synergistic ones.
Fig. S6 shows the results of the method in terms of accuracy scores, which retrace our previous observations based

on the different higher-order behaviors of 2-simplices and 3-cliques. While reconstruction scores are larger for the
contagion (accuracy ∼ 0.9) than for the Ising model (accuracy ∼ 0.7), in the region of synergistic signatures they are
always significantly better than random choice accuracy (0.3, see below). These scores show also a complex non-linear
dependence on the higher-order mechanisms’ strength (Fig. S6b,d), which is a byproduct of the non-linear response
of higher-order behaviors to the variation of higher-order mechanisms. Applying this method to more general set-ups
(e.g. group interactions among all possible combinations of three nodes) leads to similar results.

A. Random choice accuracy

The random choice accuracy score in our detection method is given by the ratio between n△ and the number of
3-cliques in the skeleton of the simplicial complex under study. The nominator of this ratio is computed using the
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FIG. S6. Detection of higher-order interactions using higher-order synergistic behavior. We show the accuracy
(fraction of true positives) of the detection of higher-order interactions for (a)-(b) the Ising and (c)-(d) the simplicial contagion
models. (a), (c) Full parameter space, and (b), (d) show three example curves corresponding to the dashed lines in (a) and (c).
The dotted lines in (b) and (d) indicate the random choice accuracy.

generalized degree as:

n△ =
N × ⟨k2⟩

3
(S26)

In the systems used for our results, the denominator in the accuracy ratio can be easily computed, as the skeleton
of a random simplicial complex is an Erdős–Rényi (ER) random graph. The number of 3-cliques in a ER random
graph with N nodes and edge probability p (and average degree ⟨k1⟩ = ⟨k⟩ = p(N − 1)) is given by:

EN,p[# of 3-cliques] =

(
N

3

)
p3 =

N(N − 2)⟨k⟩3
6(N − 1)2

(S27)

Using the parameters employed in our simulations (N = 200, ⟨k1⟩ = 20, and ⟨k2⟩ = 6), taking the ratio between
Eq. (S26) and Eq. (S27) we obtain a random choice accuracy of 0.3.
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