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Abstract

Artificial Intelligence (AI) assists recruiting and job searching. Such systems can be biased

against certain characteristics. This results in potential misrepresentations and consequent

inequalities related to people with mental health disorders. Hence occupational and mental

health bias in existing Natural Language Processing (NLP) models used in recruiting and job

hunting must be assessed. We examined occupational bias against mental health disorders

in NLP models through relationships between occupations, employability, and psychiatric

diagnoses. We investigated Word2Vec and GloVe embedding algorithms through analogy

questions and graphical representation of cosine similarities. Word2Vec embeddings exhibit

minor bias against mental health disorders when asked analogies regarding employability

attributes and no evidence of bias when asked analogies regarding high earning jobs. GloVe

embeddings view common mental health disorders such as depression less healthy and less

employable than severe mental health disorders and most physical health conditions. Overall,

physical, and psychiatric disorders are seen as similarly healthy and employable. Both algo-

rithms appear to be safe for use in downstream task without major repercussions. Further

research is needed to confirm this. This project was funded by the London Interdisciplinary

Social Science Doctoral Training Programme (LISS-DTP). The funders had no role in study

design, data collection and analysis, decision to publish, or preparation of the manuscript.

1. Introduction

1.1 Background

Until recently, human resource (HR) professionals would manually sift through vast amounts

of resumes to determine the best fitting candidate for a job opening. Judgement calls were

made based on their own experience, gut feeling, or discussions with colleagues.
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Artificial intelligence (AI) has revolutionised this process, assisting in extracting informa-

tion about skills of applicants from resumes, social media sites and cover letters [1–3] a prac-

tice known as resume parsing. AI models that can parse resumes are so widespread that

virtually all Fortune 500 firms today use some version of them [4].

Similarly, individuals in the market for a new job had to look up openings manually. Espe-

cially online, job seekers would face a plethora of available vacancies. A scenario of potentially

overwhelming nature.

Job seekers now receive help by AI-powered job recommender systems (JRS). Job recom-

mendation system are powered by machine learning algorithms, bringing together vacancies

and job seekers based on behaviours, preferences or needs of the two parties [5].

Despite the excitement surrounding AI and JRS in HR, as it eases lives of recruiters and job

seekers alike, such systems ought to be assessed in a broader spectrum of existing organisa-

tional transformation.

1.2 Occupational bias and allocation harm

There is a rich history of bias in general recruiting against a broad spectrum of attributes,

including all protected characteristics, which have been extensively studied and summarised

elsewhere [6–8].

Although more recent research suggests a changing trend [9], there is ample evidence for

discrimination against people with mental health disorders in recruiting [10–13].

This leaves healthy people and people with mental illness, who might possess equivalent lev-

els of skills, being employed at different rates. As a result, we might see job databases labelling

mentally healthy people as more employable, and safe to work with.

Contrary to stigma, most people with mental health disorders report a desire to work

[14–16].

It is often forgotten that people with mental illness still possess knowledge, skills, and abili-

ties that can facilitate organisational effectiveness [17] and the World Health Organization

[18] stresses that under-use of skills in the workplace can aggravate mental health disorders.

1.3 Natural language processing

Natural Language Processing (NLP) encompasses a collection of methods that transform writ-

ten text passages into datasets that can subsequently be analysed using traditional statistics and

machine learning models [19, 20]. As an interdisciplinary field, NLP bridges artificial intelli-

gence, computer science, cognitive science, information processing, and linguistics, letting

computers parse and process human language [21].

Real-time applications of NLP in the business field include chatbots, sentiment analysis,

and speech recognition [22–25]. In the healthcare and pharmaceutical industries, NLP is used

to analyse large amounts of unstructured data, such as electronic health records, to gather

insights into patient behaviour, disease synthesis and prognostic predictions [26–30]. Addi-

tionally, NLP can be integrated with qualitative research methods to augment traditional text

analysis approaches [20, 31, 32] include machine translation [33], or information retrieval and

question answering [34, 35].

In the following two sections we address challenges related to occupational bias in NLP

when used in the context of recruiting and job searching.

1.3.1 Recruiting and occupational bias in NLP. For recruiting purposes, NLP can be

trained, among other things, on resumes, cover letters and social media profiles or posts

[36–39]. At this stage, such data is already influenced by an individual’s personal background.
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Language use is heavily affected by, and dependent on, culture, age, gender and personality

[40–43]. Specific word use patterns of people with mental illness have been identified: Percep-

tual and causal language are negatively correlated in schizophrenic individuals but positively

correlated in those with mood disorders [44]. Spoken language patterns might even allow for

prediction of psychosis [45, 46]. Detection of general mental illnesses and even reliable estima-

tion of population mental health is possible through analyses of social media posts, surveys,

narrative writings, and interviews [47–50]. This shows that deep learning models can detect

social media users at risk for developing a mental disorder, deduced from online posts repre-

sented with linguistic features at different levels, including messages and corresponding writ-

ing style and emotions conveyed–[51] offer similar findings.

Therefore, even if candidates appear healthy or fitting for a specific role when seen by a

human recruiter, the writing style of social media posts or cover letters might give detectable

data of psychiatric illness for an NLP system, thus resulting in exclusion of the corresponding

individual by the machine.

People from different demographics write resumes differently. Variation in resume con-

tent and textual features written by different nationalities has been observed [52]. Anony-

mous resume screening aims to allow for censorship of personal identifiers including socio-

demographics. However, resumes stripped of non-job relevant information might still

contain information about job applicants in subtle ways [53]. In an arms race to evade

recruiting bias and consequently increase chance of hire, women with similar job-relevant

characteristics to men write their resumes differently. This is known as social identity—

based impression-management [54]. Women also tend to ‘man-up’ their resumes [55] while

people from an ethnic minority background might ‘whiten’ their resumes [56]. However,

these patterns can already be detected by NLP with high accuracy [57, 58] and often either

do not work as intended, or work counterproductive, actively decreasing hiring chances

[53, 54].

There has been, to our knowledge, no study investigating the resume writing style of people

with mental health disorders. Still, we argue, given the paragraph above, that the chances of an

NLP algorithm being able to detect differences between healthy people and people with mental

health disorders only from writing style are extremely high.

1.3.2 Job recommender systems and occupational bias in NLP. As argued above, even

when stripped of information directly revealing key attributes (names, DOB, nationality, medi-

cal diagnosis) NLP are still able to detect these in wording structure. NLPs are often trained to

screen for a specific role, which often assumes a mentally healthy individual. Many people, due

to psychiatric diagnosis or other attributes, revealed or not, do not fall into the desired cate-

gory, however, could still perform the job well, if they were to be hired. These individuals will

be missed by NLP models that are trained on existing job descriptions looking for healthy indi-

vudals. Furthermore, non-western or in general non-conventionally written resumes might

get mistaken for ill mental health one, i.e., a false positive scenario.

Therefore, NLP models that process input language in a fit-for-all style, run danger of

falsely ruling out substantial chunks of the general population. Hence, models predicting

employability and job suitability from resumes, cover letters and social media sources, must

factor in origins of language used, instead of inferring job unfitness.

1.3.3 NLP-based job recommender systems. While we appreciate the fact that there is an

array of JRS in the literature [59–62], often not transparently documented and being of dubi-

ous nature (For reviews: [63–65], this paper takes a special focus on NLP-based JRS. Given the

extreme variety regarding model types, structure and data going into them, assessing all types

of JRS for bias would not be feasible for a single paper.
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Focusing on NLP allows for a simultaneous assessment of resume parsing and job recom-

mendations in one paper. NLP has been a staple feature in JRS models [66–70]. We further

chose NLP since there are now multiple plugins, e.g., Ambition (https://remoteambition.com),

Mindart (https://mindart.app), Wanted Job Search (https://www.wanted.co.kr/terms), or JoPi-

lot (https://jopilot.net/home/terms), to name a few, for ChatGPT [71] a popular large language

model (LLM), allowing to search for jobs. These plugins are partially or in full powered by

NLP. ChatGPT has enormous numbers of users, perhaps the most of any generative AI, which

makes inner workings of NLP using JRS of special importance to be audited for bias.

1.3.3.1 Action needed now. The implementation of feedback loops allows LLMs to continu-

ously learn from interactions, improving their performance with each input-output cycle [72,

73] These feedback loops, however, give rise to the potential for model collapse, which

describes the problem of LLMs potentially delivering most of the language found online. An

excess of AI-generated training data leads to irreversible defects, i.e. increased errors, and

degraded performance [74, 75].

To avoid model collapse, new, clean, human-generated datasets ought to be regularly intro-

duced into the training process. It is therefore now the time to act, working with clean datasets,

free of bias and with continuous human oversight.

2. Methods

2.1 Background

Computational linguistic models used to rely on methods that interpret language by exam-

ining individual words and analysing keyword frequency in formal text analysis, which is

limiting, as it overlooks the interconnected nature of word meanings [76–78]. In recent

years, NLP systems have utilized deep learning and neural networks to effectively capture

semantic information and contextual understanding of words within extensive text datasets

[19, 79–81].

A crucial component of these techniques is the incorporation of word embeddings. Word

embeddings represent words as vectors in a multi-dimensional space, assigning more similar

vectors to words that appear in comparable contexts within the training data. These word-vec-

tors can also be visualized as points in N-dimensional space [76, 79].

The concept of N-dimensional space in NLP word vectors refers to the number of dimen-

sions used to represent a word in a numerical vector space. The number of dimensions can

vary depending on the specific word embedding technique used, but it is typically in the range

of 100–300 dimensions. The process of transforming a word into a numerical vector involves

using a word embedding technique, to map the word to a vector in the N-dimensional space.

The resulting vector represents the semantic meaning of the word, and words with similar

meanings are located closer to each. The visualization of word vectors can be done using

dimensionality reduction techniques such as PCA and t-SNE, which reduce the N-dimen-

sional space to 2 or 3 dimensions for visualization purposes [82, 83].

Word embeddings address the aforementioned limitations by creating a consistent and

continuous meaning space, where words are positioned based on their similarity to other

words, as determined by their usage in natural language samples [21, 76, 84].

Since vectors define positions in space, similarity and distance become interchangeable

concepts. Words with more similar vector representations are also spatially closer. This simi-

larity, or distance, is typically measured using cosine similarity [79, 76, 84] The set of word-

vectors can be referred to as the trained word embedding, a semantic space, or simply a word

embedding.
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The cosine similarity between two vectors is calculated as the cosine of the angle between

them with the formula:

Cosine Similarity A; Bð Þ ¼
A � B

j Aj jj � jBj jj

The dot product of the two vectors is divided by the product of their magnitudes to obtain

the cosine similarity value, which ranges from -1 to 1. A cosine similarity of 1 indicates that

the two vectors are identical, while a cosine similarity of -1 indicates that they are completely

dissimilar. A cosine similarity of 0 indicates that the two vectors are orthogonal, or completely

unrelated.

2.2 Investigating occupational bias and mental health bias in NLP

Cosine similarities between word-vectors often mirror human-rated similarities between

words [85–88]. This supports that word embeddings can reflect and investigate cultural phe-

nomena in ways that otherwise (e.g. using surveys or implicit observations) would not be prac-

tical or at all possible, while demonstrating biases and inadequacies in human language [79]

Word embeddings thus deliver a stable, reliable and valid estimate of biases [89].

This has led to a common research approach in which latent semantic dimensions (e.g.,

gender, ethnicity, minority) are paired with how words of interest (e.g., jobs, stereotypes) are

located within a dimension.

Reviews on biases in word embeddings of NLP models have been done [90–97]. Papers on

specific NLP occupational bias and potential allocation harms because of word embeddings

exist primarily related to gender and ethnicity [98–103].

First papers relating to mental health bias in NLP models have come up [85, 104, 105]. No

paper has yet combined occupational bias and mental health bias in NLP research. Our paper

is the first research examining occupational bias against psychiatric diagnoses in NLP models.

2.3 Word2Vec

Word2Vec [106] is an algorithm to produce word embeddings, pre- trained on a Google News

dataset, containing roughly 100 billion words, which gives a model of 300-dimensional vectors

for 3 million words and phrases, available at: GoogleNews-vectors-negative300. bin.gz.

Word2Vec is an established tool to investigate bias in word embeddings [107–109], espe-

cially using analogies [105, 110–115]. Word2Vec is frequently used in resume parsing [116–

120] and job recommendation [121–125].

We conducted analogies of Word2Vec embeddings in Python version 3.8.17 using the

pymagnitude package version 0.1.120. We took the Word2Vec model that was pre-trained on

GoogleNews Word2Vec model from the Magnitude library as it is and did not fine-tune,

retrain or adjusted it in any way.

We examine the results of word analogies as follows.

First, as with most other analogy papers, we look at the top-1 finding. We further examine

the similarity score, if there are other biased terms, and at which position they are.

We do not combine the upper- and lower-case versions of an identifier term i.e. “Lawyer”

and “lawyer”, to leave open the possibility of same word returns.

An analogy would be biased if words are returned that would not be of equal standing in

society. We assume a common-sense approach for judging these—for further information see

our section Examining the Validity of Word Analogies as Indicators of Bias
Since doctor and various terms regarding mental health conditions could be associated

closer to each other, mainly since they are often used together in a diagnostic scenario, we
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included enquiries regarding other medical professions. When quiring job titles analogies, we

only asked for psychosis to not exceed the frame of this paper.

We selected the employability attributes of general employability, reliability, competence,

and resilience, since these are common concerns voiced by employers to not hire people with

mental health disorders [13, 126–129].

We select job titles and fields that are associated with prestige and status, e.g., medicine,

law, engineering, finance. Competition to access such occupations is higher than in most jobs.

This, we argue, would result in potential bias against mental illness, which is often aimed at

ability, and hence being the easiest to detect.

2.4 Global vectors for word representation (GloVe)

GloVe [130] is a weighted least squares model that was trained on global word-word co-occur-

rences from a dataset of 200 million words from Wikipedia pages, available at: https://nlp.

stanford.edu/projects/glove/.

GloVe just as Word2Vec, is frequently used to parse resumes [116, 131–133] and recom-

mend jobs [134–136]. GloVe is also used to investigate bias in NLP models; this is commonly

done using graphical representations of words [91, 105, 134, 137–140].

Bias in GloVe word embeddings can be illustrated by plotting terms onto graphs to examine

relations in terms of cosine similarity—in our case psychiatric diagnoses and employability. A

pair of opposing words is used on the X axis (e.g. ‘employable’ and ‘unemployable’), another

pair of opposing words is used on the Y axis (e.g. ‘healthy’ and ‘ill’). Space between diagnoses

terms within the graph mirror mathematical distance between vector points in the word

embeddings.

We conducted graphical representations of GloVe embeddings in Python version 3.8.17

using the matplotlib package version 3.7.1. We downloaded the GloVe model from the Magni-
tude library as it is and did not fine-tune, retrain, or adjusted it in any way.

There are different dimensional models for GloVe embeddings. The dimensionality repre-

sents the total number of features that the vector encodes. The larger the dimensionality, the

more information the vector can encode [21]. We used the 300-dimension model, which is the

maximum number of dimensions available for GloVe embeddings.

We used synonyms to assess for the consistency of our findings. In Graph 2 we use ‘reliable’

and ‘unreliable’ as well as ‘normal’ and ‘abnormal’. We further added physical diagnoses and

very healthy control attributes.

2.5 Word analogies

Analogies are equations formulated as A: B:: C: D. In plain speech: A is to B as C is to D. When

supplied with words representing A, B, C, the model returns a word that it deems representa-

tive of D in the analogy. Embeddings of analogies, or word relationships enables analogical

questions to be solved by vector addition and subtraction [141].

Example: Tokyo (A) is to Japan (B) as London (C) is to X (D). We expect X to be England
(D), or some variation of this term, e.g., Great Britain, United Kingdom. There is more than

one possibility for X (D). The model can return an arbitrary number of items, determined in

descending order of similarity to C. We ran this analogy on the Word2Vec algorithm. The

result (X-1) is Britain, with a vector similarity of 0.72. X-2, the second most similar item to

London (given the analogy), is UK, vector similarity of 0.68, hence close to X-1. Jumping fur-

ther down the line, at position X-9, we get Scotland, vector similarity 0.51, and at X-10 conti-
nental_Europe, vector similarity 0.51. We can thus see, the further away from X-1, the smaller

the vector similarity gets, accompanied by a plethora of wrong answers.
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We use this approach to explore the relationships between psychiatric diagnoses, occupa-

tions, and perceived occupational fitness/employability. Examining relationships within word

embeddings through vector arithmetic word analogies are a popular research approach [94,

141, 142], as they have become a proxy for bias [89, 94, 105, 137, 143, 144].

2.5.1 Alternative methods. We appreciate the fact that there are other quantitative analy-

ses methods of biases in word embeddings, such as the WEAT [85] or MAC [145] which all

have their own shortcomings which have been discussed in detail by Schroeder and colleagues

[146] SAME is the latest method described to overcome limitations of the prior two [146].

Still, we side with Straw & Callison-Burch [105] in that, when starting an initial investiga-

tion into the combination of mental health biases within occupations and consequent alloca-

tion harms, an open-ended analogy approach allows for a wider scope of discovery, since

analogies can demonstrate bias with simple examples [89, 92, 94] and have become a bench-

mark method of examining word embeddings [143, 147, 148].

2.5.2 Examining the validity of word analogies as indicators of bias. The utilisation of

word analogies for investigating linguistic bias has garnered contention within the research

community. Varied interpretations of the same results have led to ambiguous conclusions,

accentuating the need for a thorough examination of this methodology.

Petreski & Hashim [149] critique the use of analogies for bias detection in word embed-

dings, terming them “inaccurate and incompetent diagnostic tools for bias in word embed-

dings” (pp. 978). Conversely, Ushio et al. [143] argue that analogies “misguide or hide the real

relationships existing in the vector space” (pp.3). Despite the difference in assertions, both sets

of authors cite the same seminal works—Gonen & Goldberg [150] and Nissim et al. [151]—to

support their arguments.

In the following, we look at both these publications, Gonen & Goldberg and Nissim et al.

Nissim et al. align with the scepticism surrounding the efficacy of analogies as bias diagnos-

tics. They themselves also reference Gonen & Goldberg to substantiate their claims.

However, a closer inspection reveals that Gonen & Goldberg were primarily focused on the

limitations of existing bias removal techniques, particularly in the context of gender-neutral

modelling.

Schröder et al. [146] offer insights into the findings of Gonen & Goldberg, proposing two

plausible explanations: either the debiasing methods were inadequately executed or the stereo-

typical groups identified were reflective of other relations unrelated to the bias attributes, thus

misguiding the classification task. They argue that these factors could potentially account for

the observed persistence of bias, thereby challenging the assertion that cosine-based metrics

are ineffective for investigating bias in word embeddings, based on findings by Gonen & Gold-

berg alone.

Moreover, Gonen and Goldberg acknowledge that, while bias direction can facilitate the

measurement of a word’s bias association, it doesn’t conclusively determine it. This suggests

that bias direction serves as a tool for detecting bias association, but its efficacy in revealing the

true extent of bias remains under question: Bias can be detected, the magnitude of it might be

hidden.

Considering the above discussions, it becomes imperative to further scrutinise the argu-

ments presented by Nissim et al. against the use of word analogies as proxies for bias.

Nissim et al. did not present empirical evidence undermining the accuracy of using analogy

as a proxy for bias; their critique is primarily methodological. They posit that the customary

formation of analogies could skew the results, as the model is compelled to generate a distinct

concept from the input terms. They label this phenomenon a “dangerous artefact” (pp. 488)

when words are desired to be the same—exemplified by the analogy ‘man is to doctor as

woman is to doctor’.
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The argument of Nissim et al. may not hold in scenarios where ample synonyms exist,

which could provide alternative, yet equally valid, outputs when investigating bias through

analogies. Our empirical examination, as illustrated in Tables 1–3 (utilizing a Word2Vec

model which was discussed in detail above), demonstrates that reversing the analogy (e.g.,

Table 1. Top-10 returns from the word2vec algorithm when asked the word analogy query “woman is to doctor

what man is to X”.

Position Return Item Similarity

1 physician 0. 64

2 doctors 0.58

3 surgeon 0. 57

4 dentist 0.55

5 cardiologist 0.54

6 neurologist 0. 52

7 neurosurgeon 0.52

8 urologist 0.52

9 Doctor 0.52

10 internist 0.51

https://doi.org/10.1371/journal.pone.0315768.t001

Table 2. Top-10 returns from the word2vec algorithm when asked the word analogy query “man is to lawyer what

woman is to X”.

Position Return Item Similarity

1 lawyer 0.68

2 attorneys 0.67

3 Attorney 0.62

4 Attorneys 0.56

5 prosecutor 0.55

6 counsel 0.54

7 solicitor 0.54

8 Attorney_Stephen_Houze 0.53

9 lawyers 0.53

10 Attorney_Ralph_Capitelli 0.53

https://doi.org/10.1371/journal.pone.0315768.t002

Table 3. Top-10 returns from the word2vec algorithm when asked the word analogy query “man is to doctor what

woman is to X”.

Position Return Item Similarity

1 gynecologist 0.70

2 nurse 0.64

3 doctors 0.64

4 physician 0.64

5 pediatrician 0.62

6 nurse practitioner 0.62

7 obstetrician 0.60

8 ob gyn 0.59

9 midwife 0.59

10 dermatologist 0.57

https://doi.org/10.1371/journal.pone.0315768.t003
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’woman is to doctor what man is to X’) as well as the original, and another control within the

field of Law, yields desirable and ‘correct’ terms, underscoring the potential for mitigating the

identified issue through methodological adjustments due to the availability of synonyms.

Therefore, including multiple ‘correct’ answers might render this first critique point super-

fluous. Suggestions similar to ours were made by Newman-Griffis et al. [152].

Second, Nissim et al. argue, morphosyntactic and semantic levels are not always distinct,

i.e., there is a correct, grammatical answer to be expected when asking “man is to actor what

woman is to X”–the term actress is morphosyntacticly correct. The same applies when asking

“London is to England what Tokyo is to X”, Japan is factually the correct answer. Therefore,

Nissim et al’s argument goes,

“querying man:doctor:: woman:X, is one after a morphosyntactic or a semantic answer, and

what would be the correct one?” (pp. 490). As they state themselves, morphosyntactically doc-
tor, should be returned, which, however, violates the all-terms-different-constraint. This prob-

lem has been discussed in our previous paragraph; It remains the semantics: Nissim et al. see

no single predefined term that “correctly” completes the analogy.

We argue, some answers are more or less biased than others, whereby some even appear

plain wrong or not applicable. When asking ‘man:doctor:: woman:X’, and the model returned

tree, this would be non-applicable. If the model returns nurse, it is biased, if it returns some

variation or synonym for doctor, it is not biased. Same for ‘man:attorney:: woman:X’. If the

model gave back table, it would be non-applicable, if it gave back paralegal, it would be biased,

if it gave back some variation of attorney, it would not be biased.

Nissim et al. further note, “In order to claim bias, one should also conceive the expected

unbiased term” (pp. 490). This is easily done, and we will abide to this in this paper. In this, we

assume common sense in readers to know what qualifies as biased, as discussed in the para-

graph above.

To sum up, Nissim et al, when subtracting the points made by us, rather than showing anal-

ogies to be inaccurate, explained best practices in how to use analogies to detect bias. Analogies

remain a sound method for diagnosing bias in word embeddings. They have been getting a

tainted reputation in the literature through flawed assessment as well as citation of statements

taken out of context.

3. Results

3.1 Word2Vec word analogies

Tables 4 & 5 show cosine similarity scores for top-10 returned words when querying two anal-

ogies regarding employability and mental health in general. The psychosis related analogy

Table 4. Words to complete the analogy ‘healthy is to employable as psychosis is to X’.

Position Return Item Similarity

1 psychotic symptom 0.5148

2 psychotic disorders 0.5094

3 mental illness 0.4869

4 unemployable 0.4844

5 schizophrenia 0.4670

6 psychiatric disorder 0. 4611

7 psychopathology 0.4603

8 psychotic 0.4587

9 mental disorder 0.4532

10 psychiatrist 0.4456

https://doi.org/10.1371/journal.pone.0315768.t004
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features one biased item in total, which is on position 4 (unemployable, Cosine Similar-

ity = 0.4844); the depression related analogy features one biased item in total, which is on posi-

tion 1 (unemployable, Cosine Similarity = 0.4899). This suggests bias to be present in both

queries, however, strongest for the depression related analogy.

3.1.1 Psychosis. See Table 4.

3.1.2 Depression. See Table 5.

Tables 6–8 show cosine similarity scores for top-10 returned words when querying analo-

gies regarding employability, mental health and high earning/prestige professions. No analogy

features a biased word in the top-10 returned items. This indicates that the model might see

people with mental illness as equally able to enter and/or perform in high earning professions

as healthy individuals.

3.1.3 Law. See Table 6.

3.1.4 Medicine. 3.1.4.1 Doctor. See Table 7.

3.1.4.2 Surgeon. See Table 8.

More queries can be found in the S1 –S15 Boxes in S1 File. There is no order to which anal-

ogy results were included in the main manuscript and which went to the supporting informa-

tion, except the analogy regarding employability and depression, since this was the only

analogy with a biased item on position 1.

Table 5. Words to complete the analogy ‘healthy is to employable as depression is to X’.

Position Return Item Similarity

1 unemployable 0. 4899

2 mental illness 0. 4846

3 mental disorders 0. 4711

4 mental illnesses 0. 4683

5 depressive illness 0. 4643

6 depressive episode 0. 4612

7 undergone electroshock therapy 0. 4581

8 attempters 0. 4533

9 psychotic disorders 0. 4520

10 bipolar disorder 0. 4495

https://doi.org/10.1371/journal.pone.0315768.t005

Table 6. Words to complete the analogy ‘healthy is to lawyer as psychosis is to X’.

Position Return Item Similarity

1 lawyer 0. 5526

2 attorney 0. 5462

3 psychiatrist 0. 5153

4 attorney Norm Pattis 0. 5069

5 barrister 0. 5054

6 lawyers 0. 5029

7 prosecutor 0. 4914

8 forensic psychologist 0. 4887

9 solicitior 0. 4878

10 attornies 0. 4766

https://doi.org/10.1371/journal.pone.0315768.t006
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3.2 GloVe

3.2.1 Reading the chart. Figs 1 and 2 display the t-SNE cosine proximities of the multi-

dimensional embeddings produced from the GloVe algorithm. The x-axis of the graph repre-

sents the "healthiness" of a concept. As an example, the fact that the word depression is being

displayed on the x-axis around -.10 means that it is closer to the ill end of the spectrum than to

the healthy end. This is likely because depression negatively affects moods and thoughts. It’s

important to note again that the position of a word on the x-axis of this graph is based on its

similarity to the vector obtained by subtracting the vector for ill from the vector for healthy
using GloVe embeddings. Therefore, the position of a word on the x-axis does not necessarily

reflect its actual, real world, epidemiological healthiness or illness. Rather, it reflects how simi-

lar the word is to the vector that represents the concept of "healthiness" versus "illness" in the

GloVe embedding space. The same applies to employability on the y-axis.

3.2.2 Diagnoses, health, and employability. 3.2.2.1 Diagnoses and health. From the list

we supplied to the model, depression is seen as the most ill psychiatric diagnosis (similarity to

healthy is -0.097983), ADHD as the healthiest (similarity to healthy is 0.088889). Depression,

together with bipolar (-0.082122) and psychosis (-0.069086) are visibly the least healthy,

shown in the bottom left corner. Schizophrenia shows up in the lower mid-field (-0.022633).

Eating disorder (0.040484), OCD (0.035088) and anxiety disorder (0.033978) are all seen as

similarly healthy in the midrange. Most of physical control diagnoses are also in the mid-

healthy section. An outlier is back pain, which is seen as ill as bipolar and psychosis and only

Table 8. Words to complete the analogy ‘healthy is to surgeon as psychosis is to X’.

Position Return Item Similarity

1 psychiatrist 0. 572

2 neurosurgeon 0. 550

3 neurologist 0. 496

4 psychiatrists 0. 475

5 Psychiatrist 0. 5103

6 ’forensic_psychologist’ 0. 467

7 ’forensic_psychiatry’ 0. 456

8 ’Surgeon’ 0. 452

9 ’psychiatric’ 0. 451

10 ’urologist’ 0. 450

https://doi.org/10.1371/journal.pone.0315768.t008

Table 7. Words to complete the analogy ‘healthy is to doctor as psychosis is to X’.

Position Return Item Similarity

1 psychiatrist 0. 6376

2 psychiatric 0. 5388

3 psychiatrists 0. 5316

4 neurologist 0. 5170

5 Psychiatrist 0. 5103

6 physician 0. 5057

7 psychotic_episodes 0. 5037

8 paranoid_psychosis 0. 4934

9 forensic_psychologist 0. 4880

10 psychologist 0. 4863

https://doi.org/10.1371/journal.pone.0315768.t007
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slightly healthier than depression. Obesity (0.127438) is seen as the healthiest attribute, even

healthier than favourable physical attribute control terms handsome, good looking or tall and

even healthier than olympic gold medallist, professional footballer, and professional tennis
player.

3.2.2.2 Diagnoses and employability. The least employable psychiatric diagnosis is depres-
sion (similarity to employable is -0.07907), slightly less employable than anxiety disorder
(-0.074401) and schizophrenia (-0.055556). The most employable psychiatric diagnosis is
OCD (0.089468). Paralysed is the least employable physical ailment as well as overall item

(-0.158639), heart disease is the most employable physical diagnosis and overall item

(0.099992).

3.2.3 GloVe, diagnoses, normality and reliability. To estimate stability of findings, we

repeated our analyses with two comparable words, i.e., normal abnormal and reliable

unreliable.

3.2.3.1 Diagnoses and normality. Whereas depression was in the previous figure seen as the

most ill (similarity to healthy is -0.097983), in this figure, depression is seen as the most normal

of all mental health diagnoses (similarity to normal 0.002462). Psychosis is seen as the most

Fig 1. 300 dimensions GloVe word vectors. Vectors of words ‘employable’ and ‘unemployable’ as poles on the Y axis. The X axis contains words ‘ill’ and ‘healthy’.

Psychiatric diagnoses (green) physical diagnoses (blue) and favourable physical attribute control terms (red) as well as very healthy control terms (yellow). This

examines how different psychiatric labels correspond to concepts of employability and health.

https://doi.org/10.1371/journal.pone.0315768.g001
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abnormal (similarity to normal -0.276995) OCD, PTSD, ADHD, Schizophrenia and bipolar are

all similarly seen as abnormal, shown in the bottom left corner. Mania and anxiety are simi-

larly in the lower midfield, whereas borderline and eating disorder are closer to depression and

therefore seen as normal.

Most of physical control diagnoses are also in the mid-normal section. An outlier is para-
lysed, which is seen as considerably more normal than any mental or physical ailment. Physical

attributes like handsome or good-looking are seen about as normal as eating disorders and bor-
derline. The most normal seen by far is tall, interestingly followed by paralysed, which is the

most normal physical ailment by far.

3.2.3.2 Diagnoses and reliability. Physical control conditions are seen as similarly, but

slightly more reliable than anxiety disorders, depression and borderline as well as anxiety disor-
der and ADHD. Cancer is the most reliable physical health condition. It is even mor reliable

than tall and only slightly worse than handsome. Psychosis is seen as the least reliable, close to

OCD, bipolar and psychosis. Favourable physical control terms handsome and tall are seen as

considerably more reliable than most other items supplied to the model. Paralysed, while

being the most normal physical condition, is the least reliable term overall.

Fig 2. 300 dimensions GloVe word vectors. Vectors of words ‘reliable’ and ‘unreliable’ as poles on the Y axis. The X axis words ‘normal’ and ‘abnormal’.

Psychiatric diagnoses (green) physical diagnoses (blue) and favourable physical attribute control terms (red) as well as very healthy control terms (yellow). This

examines how different labels vary in the relationship to the concepts of ‘unemployable’ and ‘healthy’.

https://doi.org/10.1371/journal.pone.0315768.g002
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4. Discussion

To our knowledge, this is the first investigation of NLP models and bias against people with

mental health disorder in the context of employability.

Out of eleven analogies to investigate mental health bias and employability and correspond-

ing attributes, none but one exhibits a bias in the top-1 returned item is an applicable, biased

term (Analogy: “healthy (A) is to employable (B) as depression (C) is to _ (D)?” D =

unemployable).

Some analogies yield discriminatory items at second returned item (Analogy: "healthy (A)
is to employable (B) as anxiety disorder (C) is to _ (D)?” D at Top-2 = unemployable; Analogy:

“healthy (A) is to reliable (B) as psychosis (C) is to _ (D)?” D at Top-2 = unreliability), and some

at the third returned (Analogy: “healthy (A) is to reliable (B) as anxiety disorder (C) is to _ (D)?”
D at Top-3 = unreliable) and fourth (Analogy: “healthy (A) is to employable (B) as psychosis (C)
is to _ (D)?” D at Top-4 = unemployable). These are in all cases very close to the first hit. Nissim

et al. [151] suggest considering at least the top-5 up to the top-10 returned items. However,

even when looking at perfect analogies, top-10 returns contain unrelated words, London is to
England what Tokyo is to X, Ronaldo (.512) and rooney (.502) come positions two and three,

not far from Japan (.547), with many others not related or incorrect, such as America (.495) at

five or juan at six (.490). It is therefore questionable how much weight should be given to sec-

ond or further down positions in analogy answers. There remains no gold-standard or rule for

this situation. It is furthermore expected that accuracy would decrease, the further one goes

away from the top-1.

We do, however, note an interesting point: When querying the reverse, i.e. Tokyo is to
Japan as London is to X, the model gives more sensible answers. This might speak for the fact

that more is being written about London and the UK than there is about Tokyo and Japan,

thus resulting in those words featuring more in the training text corpus, resulting in more

accurate embeddings. In the same notion, there might be more written about depression, how-

ever less about schizophrenia, thus resulting in more embeddings for depression, thus leaving

more room for discrimination.

This would leave embeddings for schizophrenia be less accurate, however, at the same time,

less discriminating. Individuals with schizophrenia would therefore, by accident due to fewer

text and word embeddings, be discriminated less.

No analogy investigating bias against specific job titles shows evidence of bias. All returned

top-1 items are of equal desirability to (B). Furthermore, while in the analogies investigating

employability attributes biased terms were found in the top-2 or top-10, when investigating

high earning professions, in most cases all top 10 returned items are of equal desirability.

This is in stark contrast to most other papers using similar methodology to ours, who found

profound evidence of bias against marginalised groups [105, 110, 145].

Straw & Callison-Burch [105] are the only study investigating bias within NLP against men-

tal health, looking at demographic categories, not at occupations. Our absence of evidence for

much bias against NLP might therefore be explained by investigating a different section of

mental health bias. Furthermore, Straw & Callison-Burch’s queries were in the format A is to
mental health disorder (B) as C is to D, example: Grandparent is to Depression, as Adolescent is
to _ (W4)? Or British is to Depression, as Irish is to _ (W4) or Christian is to Depression, as Athe-
ist is to _ (W4). This was done since they were looking at clinical misuse of NLP, i.e., which

demographics were most likely to be associated with which disorder and therefore might be

under or over diagnosed due to their demographic group. This framing is assuming a differ-

ence in magnitude, not in classification, as a pathology was expected and even all but forced to

be returned, which is fine for their kind of framing of the research question. Another way of
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thinking about this is, if they substituted diagnoses for fruit, they would be asking Christian is
to liking apples, as atheist is to X, the return would be very likely what fruit or at least what gen-

eral food atheist would like.

In contrast, we put emphasis on the diagnoses, not the demographic, i.e. we did not ask

which demographic is associated with which diagnosis, as Straw & Callison-Burch did. We

asked which diagnoses are most associated with which profession, hence allowing for an unbi-

ased return, i.e., psychosis is as much associated with being a CEO as healthy is associated with

being a CEO. We could have also played the same way as Straw & Callison-Burch, asking

which profession is associated with which condition, however, in the context of occupational

bias, this is not as insightful as in the context of clinical diagnostic bias. These queries would

however definitely help when investigating which professions are more associated to which

diagnoses when clinical NLP models are used.

Word2Vec is trained on a large corpus of Google News articles. There is some evidence sug-

gesting that reporting in the news about mental health has become more positive and liberat-

ing in recent years [153–155], which might contribute to lesser associations of mental health

disorder and stigma related to employability mirrored in word embeddings.

In GloVe embeddings, we first see no clear clusters, i.e. there is a large amount of overlap

between points belonging to physical and mental health, as well as controls.

Furthermore, severe mental health disorders such as bipolar and psychosis/schizophrenia

and PTSD are seen more employable than common mental health disorders such as depres-

sion and anxiety. Psychiatric diagnoses and physical control conditions are overall similarly

seen as employable. Physical conditions are both the most and the least employable.

At the same time, bipolar, psychosis and mania are more employable than very healthy

controls such as member of parliament, landscape gardener and marathon runner. Profes-
sional tennis player appears slightly more employable than psychosis. OCD is more employ-

able than professional footballer, PTSD is more employable than airline pilot and Olympic
gold medallist.

Therefore, GloVe embeddings do exhibit bias against some mental health disorders, pri-

marily depression, painting it as less employable than other, more severe, and rare conditions

such as schizophrenia/psychosis or bipolar. This does not reflect actual real-world data, as suf-

ferers of psychosis/schizophrenia and bipolar are less often in employment than people with

common mental disorders or physical disorders such as back pain, while schizophrenia suffer-

ers are more employed than people with bipolar [11, 156, 157]. In fact, back pain is one of the

most common physical health disorders, especially in the workforce [158, 159].

GloVe embeddings, therefore, like Word2Vec, show limited bias against people with mental

health disorders, mostly seeing them similar to somatic and very healthy control terms. Both

algorithms appear thus safe for downstream use in job and/or candidate recommending or

resume parsing, as the threat of allocation bias against the disorders we investigated appears

low.

4.1 Limitations

Absence of evidence does not indicate evidence of absence of bias against mental health disor-

ders in recruiting and job recommending in word embeddings. We did not find much occupa-

tional bias in the analogies we queried, however, we only looked at three diagnoses for

Word2Vec analogies (psychosis, anxiety, depression), only a limited number of professions,

and only high earning ones at that. Furthermore, we only looked at a handful of employability

attributes. Other diagnoses, professions at lower salary levels or other employability attributes

might contain bias.
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4.2 Future research

There are more sophisticated bias investigation tools than word embeddings. A natural exten-

sion of our work is to repeat investigations into occupational and mental health bias using

WEAT [85] MAC [145] or SAME [146] methods. Context-aware embeddings like BERT [160]

and ELMo [161] outperform context-independent embeddings such as Word2vec and GloVe

across various NLP tasks [162, 163]. Hence, there is a chance that downstream task developers

might switch to BERT and ELMo for resume parsing or job recommending. This would call

for a repeating of this study using such embeddings; these results might be different than ours,

as not only co-occurrences are captured by more advanced models, but complex relationships

between words within sentences.

5. Conclusion

Word2Vec embeddings perceive psychosis, anxiety disorder and depression as similarly

employable to healthy controls. GloVe embeddings perceive some mental health disorder as

being less healthy and less employable when compared to more severe mental health disor-

ders and most physical health conditions. Overall, as with Word2Vec embeddings, GloVe

appears to perceive a parity in physical and psychiatric disorders in terms of healthiness and

employability. Our findings should make job seekers with mental health disorders hopeful,

as our findings support the notion that they could openly disclose their condition to employ-

ers without facing discrimination. For future research, the use of sophisticated bias investiga-

tion tools and context-aware embeddings holds promise for a more nuanced discernment of

occupational and mental health bias. This, in turn, could significantly bolster the robustness

and fairness of intelligent applications within occupational recruitment, helping to build a

fairer hiring landscape that provides better opportunities and uses human capital more

efficiently.
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