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Activities such as the movement of passengers and goods, the transfer of physical or digital assets, web
navigation and even successive passes in football, result in timestamped paths through a physical or
virtual network. The need to analyse such paths has produced a new modelling paradigm in the form of
higher-order networks which are able to capture temporal and topological characteristics of sequential
data. This has been complemented by sequence mining approaches, a key example being sequential
motifs measuring the prevalence of recurrent subsequences. Previous work on higher-order networks
has focused on how to identify the optimal order for a path dataset, where the order can be thought of
as the number of steps of memory encoded in the model. In this paper, we build on these approaches
to consider which orders are necessary to reproduce different path characteristics, from path lengths to
counts of sequential motifs, viewing paths generated from different higher-order models as null models
which capture features of the data up to a certain order, and randomise otherwise. Furthermore, we
provide an important extension to motif counting, whereby cases with self-loops, starting nodes, and
ending nodes of paths are taken into consideration. Conducting a thorough analysis using path lengths
and sequential motifs on a diverse range of path datasets, we show that our approach can shed light on
precisely where models of different order overperform or underperform, and what this may imply about
the original path data.
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1. Introduction

In recent decades, technological advancements have pushed our world into an increasingly information-
rich environment. Data collection methods have been rapidly developed and adopted into our everyday
lives. In particular, the proliferation of the internet and mobile devices has enabled the collection of
more accurate temporal data in a wide variety of sectors ranging from shipping and finance to sports
and travel. With the improvement of time-resolved data into shorter and more precise timescales, the
study of temporal correlations has become a topic of great interest and importance with regard to the
modelling and prediction of dynamical complex systems [2, 17, 29, 36].

Specifically, there has been an immense growth in the availability and use of sequential data, where
the sequential order is imposed by time. Sequential data is often recorded as an ordered list of events,items,
or locations, sometimes with associated timestamps. Popular approaches to studying such data include
network theory, where the network encodes binary relations between the elements of the sequential data,
allowing for the use of network-based measures and metrics for the analysis of such systems.

Synthetic sequences can be simulated via the movement of agents on the network itself, mathe-
matically known as a random walk. This has been applied to complex real-world multi-agent systems
[26, 29], such as the movement of users between pages on a website [18]. Classically or in the simplest
approximation, the frequency of activity between two nodes is used as a proxy to determine the next
destination of an agent. However, this may not always match reality, since real-world agents typically
make decisions using both present and historical information to determine their next choice. This raises
the question of what mathematical abstraction is appropriate to cater for history-dependent decisions or
movement. Indeed, it has been shown that the standard network approach to modelling such data often
fails to capture the observed temporal dependencies and correlations [8, 31, 36].

Variable/multi/higher-order networks were devised to capture both the underlying network topology
and the path history from sequential data within a single underlying mathematical framework [3, 30, 31,
33, 36], by utilising the mathematics of variable order Markov chains [4] in a network context. These
models allow for the retention of the most recent node history of a particular length, prescribed by the
order. Prior work done by Scholtes et al. [27, 31] with the PathPy package focused on determining an
optimal highest order, i.e. how much recent memory is required in a process in order to adequately model
the system, balancing the explanatory power via the maximum likelihood versus the complexity of the
model, harnessing the nestedness properties of their model to apply Wilks’ theorem in a likelihood ratio
test. Further work with Gote et al. via the Multi Order Generative (MOGen) [11, 12] model improved
on PathPy and also includes an order detection method based on the Akaike Information Criterion [1].
These models also include other information metrics to evaluate the model, such as the cross-entropy
loss from next-element prediction. Other models such as BuildHON [36] and BuildHON+ [30] approach
generating higher order nodes if and only if the outgoing-edge distribution of the higher order node is
significantly different from the lower order node, where the statistical difference is measured with the
Kullback-Leibler divergence [16].

In this study, rather than only focusing on optimal order, we explore the representative power of
different orders using measures such as path length and motif distributions. The criteria used to detect
optimality in prior research, such as the Akaike Information Criterion, can only be used as a relative
comparison between models. Instead, looking at the absolute quality of a model in capturing features
of the data may reveal different insights. For example, we show that modelling data at an optimal order
(detected by MOGen for example) does not guarantee that other features of the data, such as the total
sequence length prediction, will be accurately represented by the model. Of particular interest for our
investigation into categorical sequential data is the study of sequential motifs. These sequential motifs
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- henceforth usually referred to as simply “motifs” - can reveal path traversal patterns that are common
among agents. For example, consider flight itineraries of passengers from all over the world. Regardless
of their specific origin, many passengers will book a return flight from origin → destination → origin
[8, 18]. This represents a temporal dependency that favours returning to the state 1 time-step before the
current location.

The paper is structured as follows: In section 2, we first introduce the concept of sequential motifs
and their significance in the study of sequential data. We then cover variable-order Markov chains
to define the higher-order network model, along with its corresponding likelihood function. The model
additionally accounts for the start and end of sequences, thereby aiming to capture the dynamics induced
by transitions from activity to inactivity of agents and processes on the network. This is followed by a
discussion of several model selection techniques often utilised to identify an optimal order for the model.
In section 3, we present the details of several datasets to which the higher-order models are applied, in
order to evaluate the performance of these models at various orders, including any optimal order chosen
by other model selection techniques. We focus primarily on the sequence length distribution and motif
frequency distribution, which are macro- and meso-scale features, respectively. Algorithmically, we
implement these models at the 1st , 2nd , 3rd and 4th order, and define appropriate metrics, such as the
Kolmogorov-Smirnov test for comparing sequence length distributions, and Studentised Residuals for
comparing motif frequencies. Finally, in section 4, we provide additional discussion of the work done,
potential areas of applicability, and further research.

2. Model and Methods

We suppose that the given data consists of a multiset D of ordered sequences S = (v1→ · · ·→ v|S|) where
|S| is the number of elements in the sequence, and each element v j ∈ V , where V is the set of nodes in
a network. Such sequences are often referred to as walks. A sequence with no repeated elements is also
referred to as a path. The length l of a sequence S is the number of steps or transitions in the sequence,
so that |S|= l +1 and S = (v1→ · · ·→ vl+1).

A finite sequence S′ = (v′1→ · · ·→ v′l′+1) of length l′ ⩽ l is a sub-sequence of S if there exists an
integer i ⩾ 0 such that ∀ j ∈ (1, . . . , l′+ 1),v′j = vi+ j. For convenience, we refer to a sub-sequence of
length 1 as a ‘hop’.

In addition to sequences, we can also construct the basic weighted directed network G = (V ,E )
with the node set V and edge set E ⊆ V ×V , with the following properties:

• ∀v ∈ V ,∃S ∈ D such that v ∈ S, and

• ∀(u→ v) ∈ E : ∃S ∈ D such that (u→ v) is a sub-sequence in S; and we can further assign a weight
W ∈ R to each edge.

In section 2.3, we assign the edge weights to represent observation frequencies and transition probabil-
ities. Generally in such problems, we assume a priori that the topology of the basic weighted directed
network is a true feature of the system described by the data. As such, all edges that are not present in
this network are assumed to be impossible. Conversely, all other combinations of traversing the network
using the edges present are assumed to be possible, even if they are not observed in the data.

2.1 Sequential Motifs

In recent years there has been renewed interest in understanding how dynamical processes unfold on
a network across various domains of applicability. In travel data, for example, people often return to
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FIG. 1. All possible two-edge sequential motifs with self-loops allowed.
Alt text: Visual representation of 2 hop motifs drawn on a basic directed graph.

their origin; for cargo and other goods transportation, paths are often dictated by supply and demand
pressures. There is scope to investigate whether these processes are representative of the temporal
correlations that emerge from a real-world agent: by observing the frequencies of repeating sub-graphs
within the network, known as motifs [21], small-scale patterns and structures can be identified and
analysed. Sequential motifs take the directedness of the network into account, increasing the specificity
of these patterns at the expense of a larger parameter space.

Sequential motifs - hereon referred to simply as motifs - are a way of identifying patterns within
sequences that are commonly observed in data [15, 18, 25]. A motif M of length l may be described
as a sequence of symbols (m1,m2, . . . ,ml+1) with mi ∈ A for some fixed symbol set A . A sequence
S = (v1→ · · ·→ vl+1) is an instance of the motif M = (m1, . . . ,ml+1) if for that sequence S there is a
function f : V → A with f (vi) = mi for 1 ⩽ i ⩽ l +1, and mi = m j =⇒ vi = v j, so f is injective. For
example, we can consider sequences representing regional locations of ships:

EXAMPLE 2.1 (2-hop motifs from shipping sequences)(
f (Mediterranean)→ f (South East Asia)→ f (Mediterranean)

)
= (A,B,A)(

f (China)→ f (South East Asia)→ f (China)
)
= (A,B,A)(

f (Red Sea)→ f (Baltic)→ f (North Sea)
)
= (A,B,C)

Above we have taken the symbol set to be the alphabet A = {A,B,C, . . .}, and for each set S the function
f is chosen to assign each new element vi that appears to the next letter in A .

Note that we also consider sequences and networks with self-loops, i.e. where A→ A transitions
are allowed. While self-loops may not seem intuitive in the context of physical movement through a
network, they may arise as a way of representing an agent remaining in a location for a time step, or
through a merging together of nodes. For example, in the shipping dataset used later in our experiments,
the nodes originally representing ports were merged into 26 regions. In that context, a self-loop repre-
sents a ship moving between two ports within the same region. An example in virtual networks where
self-loops make sense is modelling sequences of tokens/letters [26] where self-loops are a double letter.

EXAMPLE 2.2 (1- and 2-hop sequential motifs) The only 1-hop motifs possible are all isomorphic
to (A,B) (an edge) or (A,A) (a self-loop). There are five 2-hop motifs, all isomorphic to (A,B,C),
(A,B,A),(A,B,B),(A,A,B) and (A,A,A). These are shown in fig. 1

For a given length l = |S|−1, there is a fixed number of motif permutations, denoted a|S| = al+1 (so
the above example shows a2 = 2 and a3 = 5). This corresponds to the number of ways to partition a
set of |S| labelled objects into unlabelled non-empty subsets, well known in combinatorics as the Bell
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numbers (or exponenential numbers) [24]- see oeis.org/A000110. The Bell numbers are obtained
from the recurrence relation

al+1 =
l

∑
j=0

(l
j

)
a j, with a0 = a1 = 1.

2.2 Variable Order Markov Chains

At the beginning of this section, we defined variable length sequences, which may inherently contain
higher order correlations. For example, if we only consider the frequency of movements between all
possible node pairs and generate new sequences, this effectively ignores any potential sequential cor-
relations. However, if at every node in the sequence, we concatenate it with the previous k nodes, we
can encode more of the recent history of the sequence. A priori, one would not know what the cor-
relation length k should be, e.g should we model paths as (vi→ v j) → (v j → vk) or as (vi→ v j → vk) →
(v j → vk → vl)? Furthermore, previous research has indicated an additional need to account for the vari-
ability in sequence length, to ensure that sequences shorter than the selected historical correlation length
are meaningfully modelled. This problem has been studied in the literature through variable order
Markov chains, which provides the mathematical foundation for the higher-order network representa-
tion.

The basic model is the standard Markov chain [13], which has been extensively used in sequence
modelling as a next-element prediction task. It is formally defined by the transition probabilities

P(vi|v1→ · · ·→ vi−1) = P(vi|vi−1), (2.1)

defined in terms of the elements in a sequence S = (v1→ · · ·→ vl+1). This is a ‘memoryless’ Markov
model, where only the current element (state) is known, and carries no memory of which prior elements
have passed. We can generalise this to higher-order Markov chains that predict the next element of
the sequence based on the previous k elements [4, 6], so that the transition probabilities satisfy the
following:

P(vi|v1→ · · ·→ vi−1) =

{
P(vi|vi−k → · · ·→ vi−1) for k ⩾ 1,
P(vi) for k = 0.

(2.2)

The integer k is called the order: it corresponds to having a short-term memory of length k influencing
each transition probability. The standard (memoryless) Markov chain (2.1) has order k = 1.

Written explicitly, we can treat nodes in a k-length ‘memory’ as a single k-vector node, that is

v⃗(k)i = (vi−k+1→ . . .→ vi),

and refer to this representation as a higher order node - in this case, an order k node. A standard Markov
chain transition probability between two order k nodes is then equivalent to a higher-order Markov
transition probability, of kth order:

P
(⃗
v(k)i |⃗v(k)i−1

)
= P(vi|vi−K → · · ·→ vi−1). (2.3)

While transition probabilities allow us to construct a sequence node-by-node, they do not provide
any additional insight into which element sequences begin from and when sequences end. This is
crucial in constructing finite-length sequences, where how sequences start and end may greatly affect

https://oeis.org/A000110
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the properties of the sequence, such as the total length of the sequence, the number of unique nodes
visited, etc. A lack of information about how sequences start and end hinders the modelling of agents
becoming active or inactive on the network in a realistic manner. We account for this by introducing
an initial and a final state, denoted ∗ and † respectively, to account for the start and end of sequences.
The initial transition probability is then given as P(v1|∗). The final transition probability is given as
P(†|vi−k+1→ . . .→ vi) for a kth order Markov chain. This can be represented in the sequence itself by
appending ∗ and † before v1 and after v|S| respectively: S = (v1→ · · ·→ v|S|)→ (∗→ v1→ · · ·→ v|S|→ †).

Combining the higher order Markov transition probabilities with the initial and final state transition
probabilities, we can map any sequence S = (v1→ · · ·→ v|S|) to a multi-layer higher order sequence S̃
with maximum order k, that is

∗→
order 1︷︸︸︷

v1 →
order 2︷ ︸︸ ︷
(v1,v2)→ ··· →

order k︷ ︸︸ ︷
(v1, . . . ,vk)→ (v2, . . . ,vk+1)→ ··· → (v|S|−k+1, . . . ,v|S|)→ †, (2.4)

using the higher order node representations described in equation (2.3), and from D we can construct D̃ ,
the corresponding collection of higher order sequences. A convenient result of this mapping is that the
length of S̃ remains the same at every order, and is equal to the original sequence length when ignoring
∗ and †.

The state-space of all possible combinations of k sequential nodes v⃗(k) can be constructed using V k,
the kth power of the node set V . Note that not all possible combinations will be present in the data: since
observable combinations will be restricted by the 1st order network topology, we define the observed set
of higher order nodes V (k) ⊆ V k where ∀⃗v(k) ∈ V (k)∃S̃ ∈ D̃ with v⃗(k) ∈ S̃.

Input data: D =
{
(v1 → v2 → v3 → v4),(v3 → v4 → v3 → v2)

}

FIG. 2. Example of a 1st order network (basic directed network) and the corresponding 2nd and 3rd order network, based on 2
sequence input data. Edge weights correspond to observed frequency.
Alt text: Visual representation of higher order networks with the addition of initial and final states, highlighting the differences
between orders.

In other words, V (k) only contain higher order nodes of order k that is observed in the data. Alter-
natively, one can think of the kth order nodes as the edges of the (k−1)th order network. We can then
connect these higher order nodes using the same rules as one would use to construct a standard directed
weighted network. In the example shown in figure 2, each order 1 edge between nodes that are not ∗
or † becomes a higher order node in the order 2 network. Similarly, the edges between order 2 nodes
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becomes a higher order node in the order 3 network. In the 1st order network, there are two potentially
endless loops from v2→ v3→ v2 and v3→ v4→ v3, which is not present in either 2nd or 3rd order network.
In the 2nd order network, the node (v3,v4) adds uncertainty into the trajectories of random walkers on
the network. This is not present in the 3rd order network. This simple example illustrates how higher
order networks induce different topologies.

2.3 Likelihood

In the previous subsection, we defined a method to generate a (multi-layer) higher order representation S̃
of any sequence S, as shown in equation (2.4). This representation naturally includes a correlation length
defined by the order, as well as initial and final states, ∗ and †, which correspond to how sequences
start and end, respectively. The higher-order Markov transition probabilities between regular nodes are
then reduced to the standard Markovian transition probabilities between higher order nodes, as shown in
equation (2.3). This also allows for a convenient network representation akin to De Bruijn graphs, which
we call a higher-order network, where the higher order correlations are sufficiently captured by dyadic
edges between higher order nodes. This allows us to easily define the weighted directed adjacency
matrix A, where each element Au,v counts the number of observed transitions (u→ v) ∈ S̃ for each S̃ ∈ D̃ .
Crucially, however, we note that unlike traditional networks, u and v may also represent higher order
nodes, as well as the initial and final states ∗ and † respectively.

Having defined a methodology to generate a higher-order network and its adjacency matrix, we now
turn to address how to create a stochastic generative model from the higher-order network. We can do
this by defining a transition matrix T , where each entry Tu,v represents the transition probability P(v|u)
from u→ v. The parameters Tu,v can then be estimated by maximising the likelihood over the observed
dataset D . The formula for the likelihood of observing a single sequence S = (v1→ · · ·→ v|S|) is given as

L
(

S =
(
v1→ · · ·→ v|S|

))
=P(v1|∗)×

k

∏
i=2

P(vi|v1→ · · ·→ vi−1)

×
|S|

∏
j=k+1

P(v j|v j−k → · · ·→ v j−1)×P(†|v|S|−k+1→ · · ·→ v|S|).

(2.5)

EXAMPLE 2.3 (likelihood of a sequence) Taking the sequence S = (v1→ v2→ v3→ v4→ v5), and applying
the likelihood defined above, the probability of observing the sequence under a k = 3 higher-order
network model is

L (S̃) = P(v1|∗)×P(v2|v1)×P(v3|v1,v2)×P(v4|v1,v2,v3)×P(v5|v1,v2,v3)×P(†|v3,v4,v5)

= T∗,v1 ×Tv1,v2 ×T(v1,v2),(v2,v3)×T(v1,v2,v3),(v2,v3,v4)×T(v2,v3,v4),(v3,v4,v5)×T(v3,v4,v5),†.

The total likelihood across all sequences in the dataset is then simply the product of the likelihood
of each sequence. We can then group factors of repeated observed transitions into powers to simplify
the calculation. Thus, we can express the likelihood of observing the entire dataset D̃ as [11]

L
(
D̃ = {S̃, . . .}

)
=

(
∏
v∈V

P(u|∗)A∗,u

)
×

(
k

∏
i, j=1

∏
v∈V (i)

[
P(†|v)Av,† × ∏

w∈V ( j)

P(w|v)Av,w

])
, (2.6)
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where we recall that Au,v is the element of the weighted adjacency matrix, i.e. the number of observa-
tions of (u→ v). We can then perform a maximum likelihood estimation of the parameters, namely the
transition probabilities P(v|u), using the method of Lagrange multipliers [34] under the constraints that
1−∑v P(v|u) = 0 for all u. This yields the following result:

P(v|u) = Tu,v =
Au,v

∑w Au,w
, (2.7)

for any (higher order) nodes u,v, where the sum in the denominator is over all nodes w.

Sample dataset D =
{
(a,b,c, . . .), . . .

}
Multi-layer adjacency matrix A

A † a b · · · a,b b,c · · ·

∗ 0 A∗,a A∗,b · · · · · · 0 · · ·

a Aa,†
. . . Aa,(ab) 0 ...

b Ab,† 0 0 Ab,(bc)

...
...

. . . · · ·
. . .

a,b A(ab),†
. . . 0 A(ab),(bc) ...

b,c A(bc),† 0 0 0

...
...

. . . · · ·
. . .

Multi-layer transition matrix T

T † a b · · · a,b b,c · · ·

∗ 0 T∗,a T∗,b · · · · · · 0 · · ·

a Ta,†
. . . Ta,(ab) 0 ...

b Tb,† 0 0 Tb,(bc)

...
...

. . . · · ·
. . .

a,b T(ab),†
. . . 0 T(ab),(bc) ...

b,c T(bc),† 0 0 0

...
...

. . . · · ·
. . .

FIG. 3. Example of an order 2 adjacency matrix (left) and transition matrix (right) of an example dataset. The only transitions
allowed are (1) from the starting state ∗ to order 1 nodes, (2) from order 1 to order 2 nodes, (3) from order 2 nodes to other order
2 nodes, and (4) from any node to the state †. All other transitions are prohibited, highlighted in red. For the transition matrix,
each row is normalised such that all elements in the row sum to 1.
Alt text: Two matrices representing an adjacency matrix and a transition matrix of the higher order network.

The higher order adjacency and transition matrix takes on properties of a multi-layer network adja-
cency matrix, where each layer only contains nodes of a specific order, up to a maximum order. An
example is shown in figure 3. For a given maximum order k, the matrix elements are:

• ⩾ 0 from the initial state ∗ to the 1st order layer,

• ⩾ 0 from any ith order layer to the final state †,

• ⩾ 0 from the ith order layer to (i+1)th order layer, up to i = (k−1),

• ⩾ 0 entries from kth order nodes to other kth order nodes,

• 0 in all other entries.

A potentially useful alternative and equivalent expression is to combine transitions from lower
orders ⩽ k up to order k (where possible), written as
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T∗,v1 ×
k

∏
i=2

T(v1,··· ,vi−1),(v1,··· ,vi) = T ′
∗,(v1,...,vk)

, (2.8)

where T ′ is a structurally different transition matrix. While it is mathematically equivalent in terms
of the likelihood function, it is computationally different as it reduces the number of redundant orders.
Therefore, lower order transitions from initial state ∗ immediately jump to the highest order node, skip-
ping potentially multiple intermediary transitions between the lowest and highest order nodes.

EXAMPLE 2.4 (comparing a multi-layer transition to a highest-order transition) Consider the higher
order sequence with k = 3:

S̃ = (∗
T∗,v1−−→ v1

Tv1 ,(v1 ,v2)−−−−−→ (v1,v2)
T(v1 ,v2),(v1 ,v2 ,v3)−−−−−−−−−→︸ ︷︷ ︸

T ′
∗,(v1 ,v2 ,v3)

(v1,v2,v3)
T···−→ (v2,v3,v4)

T···−→ ·· ·)

This can alternatively be represented as

S′ = (∗
T ′
∗,(v1 ,v2 ,v3)−−−−−−→ (v1,v2,v3)

T ′
···−→ (v2,v3,v4)

T ′
···−→ ·· ·). (2.9)

In this example, the number of steps (transitions) needed to go from ∗ to (v1,v2,v3) in S̃ is 3 steps,
while in S′ only 1 step is required. When generating new sequences using a stochastic process such as
a random walk, each step computationally requires the generation of a random number. Reducing the
number of these random choice operations can improve the efficiency of simulating new sequences. The
highest-order transition matrix T ′ does this while maintaining the exact same probability distribution of
sequences as the multi-layer transition matrix T .

2.4 Expected Sequence Lengths

As each individual sequence must terminate at the final state †, we can think of † as an absorbing state
in a Markov chain, with all other states being transient. Absorbing Markov chains have been extensively
studied [14], with analytical derivations for the expected number of steps before a random walker hits an
absorbing state. However, the multi-layer transition matrix T , as defined in the previous subsection, is
not a transition matrix of an absorbing Markov chain. The initial and final states ∗ and † are convenient
labels to help with conceptualising the network, however computationally they are assigned as the same
state, i.e. the 0th index state. Nonetheless, the matrix structure of T bears some similarities to absorbing
Markov chains that we can utilise. For a higher-order network containing n nodes in addition to the ∗
and † states, the transition matrix T of this network can be partitioned into

T =


T∗,† T∗,a T∗,···

Ta,† Ta,a · · ·

T··· ,†
...

. . .

=

 T∗,† T∗,Q

TQ,† Q

 , (2.10)
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Sample dataset D =
{
(a,b,c, . . .), . . .

}
Highest-order transition matrix T ′

T ′ † a b · · · a,b b,c · · ·

∗ 0 T ′
∗,a T ′

∗,b · · · T ′
∗,(ab) T ′

∗,(bc) · · ·

a T ′
a,†

. . . . . .

b T ′
b,† 0 0

...
...

. . . . . .

a,b T ′
(ab),†

. . . 0 T ′
(ab),(bc) ...

b,c T ′
(bc),† 0 0 0

...
...

. . . · · ·
. . .

FIG. 4. Example of a highest order 2 transition matrix of the sample dataset, compared to the multi-layer transition matrix in
figure 3. In contrast to the multi-layer matrix approach, the highest order matrix immediately transitions from the initial state ∗
to the highest order nodes (where possible). Transitions from ∗ to a node with order < k is forbidden, unless the node itself is an
entire sequence.
Alt text: Adjacency matrix of a higher order network with a different construction process.

where Q is the n× n sub-matrix of T that contains all the transition probabilities between transient
states, which in this case are all the (higher order) node-to-node transitions. T∗,Q is the 1× n matrix
containing all the initial transition probabilities, TQ,† is the n×1 matrix containing all the final transition
probabilities, and T∗,† = 0. An advantage from partitioning the network this way is that the submatrices
TQ,† and Q are identical to that of a true absorbing Markov chain, which can be written in the canonical
form as

B =

 1 01×n

TQ,† Q

 .

The main difference between T and B is in the upper blocks, where (B×B)0,0 = 1 and thus the 0th

index state is absorbing as it always maps onto itself. With the additional information on the initial
probabilities T∗,Q, the expected sequence length E(L) is then given by [14]

E(L) = ∑
i, j
[(T∗,Q)T (In×n −Q)−1]i, j, (2.11)

where In×n is the n× n identity matrix. Notably, this equation only holds for the multi-layer transition
matrix T .

2.5 Overview of Model Selection Techniques

In the previous subsections, we describe our methodology to generate a higher-order network model at
any given order from a dataset of sequences. This yields a set of possible models at various orders, which
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naturally raises a common model selection problem: which order provides the best model? Broadly
speaking, this typically corresponds to selecting the model that has maximum explanatory power and
minimum complexity. Model selection techniques provide statistically rigorous measures to discrimi-
nate between models, and these techniques have been widely implemented in many fields. However, the
higher-order network model selection problem introduces some undesirable features, especially regard-
ing the model complexity. The number of parameters required to specify the model increases exponen-
tially with the order. This means that the measures defined by various information criteria may not be
close to their asymptotic limits, and may therefore be prone to inaccuracies [7]. As there is no single
‘best’ information measure for this task, we instead take a consensus approach by applying multiple
information measures. Prior work on PathPy [31] and MOGen [11] used the likelihood ratio test [35]
and the Akaike Information Criterion (AIC) [1]. In addition to applying these two methods, we also
compare them with the Bayesian Information Criterion (BIC) [23, 32].

There are two key factors that play an important role in all three measures: the likelihood function
in equation 2.6 evaluated at its maximum L̂ , and the number of degrees of freedom δ . Intuitively, the
likelihood function measures the goodness-of-fit of the model, while the number of degrees of freedom
acts as a penalty term for increasing model complexity. With higher-order networks, the maximum
likelihood, as a function of the order, monotonically increases in the range (0,1]. Its logarithm is
negative, so − ln(L̂ ) is therefore a monotonically decreasing function in the range (0,∞). On the other
hand, the number of degrees of freedom δ monotonically increases with order.

In the AIC formulation, the optimal model is the model that minimises the following measure

AIC = 2δ −2ln(L̂ ), (2.12)

where the penalty term is 2δ . This safeguards against higher orders where the number of parameters
grows approximately exponentially. Note that while the − ln(L̂ ) term scales with the size of the data (as
it will increase the number of terms in the product of the likelihood function), the penalty term generally
does not. Additionally, the − ln(L̂ ) term scales faster at lower orders. Put together, as more data is
added to the observation, the − ln(L̂ ) at lower orders increases faster than at higher orders, while the
penalty term 2δ generally remains constant. Thus, increasing the number of observations in the dataset
can allow higher order models to be selected. In the limit where the data size |D | → ∞, AIC will tend
to select the highest order possible, i.e. k = max({|S| : S ∈ D}); in practice, this is less of a concern
as the increase in data size required to observe this effect is typically several orders of magnitude. An
illustration of this effect is shown in figure 5.

The BIC measure is similar to AIC in that it uses the same goodness-of-fit term −2ln(L̂ ), but has
a stricter penalty term that depends on the size of the dataset |D |:

BIC = δ ln(|D |)−2ln(L̂ ), (2.13)

where the penalty term is δ ln(|D |). Notably, in contrast to the AIC measure, the penalty term scales
with the data size as well, and is therefore less sensitive to the number of observations. As ln(|D |)> 2
in most cases, the penalty term is much larger in BIC than AIC. Further discussion of the use and
comparison between AIC and BIC can be found in [7].

The last criterion used is the likelihood ratio test between two higher-order models Mk and Mk+1 of
orders k and k+1 respectively [31]. Given the likelihood ratio Λ , Wilks’ theorem states that −2ln(Λ)
asymptotically converges to a χ2 distribution under the null hypothesis H0 that the two models Mk and
Mk+1 are not statistically distinguishable [35]:
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FIG. 5. Illustration showing the effects of data size and order on AIC measure, for some arbitrary data size. The order that
minimises the AIC measure for each data size is marked by a black ×. The trend shows that as the data size increases, the order
that minimises the AIC measure increases as well.
Alt text: Illustrated plot displaying the change in the Akaike Information Criterion measure with network order, based on varying
data size. This shows how more data can justify using a higher order in the Akaike Information Criteria regime.

lim
d→∞

−2ln
(

L̂ (Mk)

L̂ (Mk+1)

)
∼ χ

2
δk+1−δk

(2.14)

We can then obtain a p-value for accepting the alternate hypothesis Halt , which corresponds to selecting
the higher order model Mk+1 over Mk. In this paper, we choose p = 0.05, so that higher order models
are only chosen if they have a significantly higher maximised likelihood with respect to the increased
number of parameters. The likelihood ratio test is then performed iteratively, comparing consecutive
orders until the null hypothesis is accepted.

2.6 Macroscale and mesoscale metrics to evaluate model performance

The model selection techniques discussed in the preceding subsection may not adequately fully evaluate
how well a model represents the system that generated the data. Notably, the measures used in these
techniques are relative measures between models. A challenge therefore is to identify whether the
models are objectively good. The selected best model may still be a poor representation of the system if
all other models are worse. Therefore, unless a good model is in the pool of potential models, or some
mechanistic knowledge of the system is known a priori, it remains an issue that needs to be addressed.
As such, we consider other measures from the perspective of identifying a model that can generate
sequences that reflect certain features of the data that we used to parameterise the model. To do this,
one has to define what ‘agreement’ between data and model output looks like. There are a number of
options available for this.

First, we propose investigating macroscale statistics such as sequence lengths and their distribu-
tions, and require that the sequence length distributions from the data and those generated by the models
are similar. Good agreement at this scale guarantees that sequences of varying lengths are captured
correctly. We evaluate the model’s ability to reproduce the observed sequence length distribution via
a random walking process on the transition matrix using the Kolmogorov-Smirnov (KS) test. Using
models of different order, we simulate multiple stochastic walks and compare statistics from these sim-
ulations to those derived directly from the data. The KS test is a non-parametric statistical test to evaluate
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whether two samples could be randomly drawn from the same underlying distribution. However, agree-
ment with respect to the KS test does not imply that sequences visit nodes in the right order. Hence,
additional measures of agreement between data and models are required. We also propose considering
the frequency of different motifs over 3 and 4 nodes, measured from both the data and from simulated
sequences generated by the model. This is then evaluated by comparing the residuals between the data
and model simulations.

Based on previous work, one might expect that the best agreement between data and model will be
achieved at the optimal order [11, 31, 36]. We extend this to also study the change in accuracy of these
macro- and meso-scale metrics as a function of the order.

3. Results

We tested our model by analysing several datasets:

• Bike share services [10, 20, 28]: data contains the movement of bikes between docking stations
recorded over a period of time. Two datasets were obtained from different cities, one in Los
Angeles and the other in London.

– L.A. [20]: recorded 21,078 rides from 2016-07-07 to 2017-03-31.

– London [28]: recorded 44,543 rides from 2023-01-16 to 2023-01-22.

• User clickstream data from MSNBC [10]: recorded 989,818 sequences of pages visited by users
on the MSNBC website.

• US flight itinerary survey [5]: recorded 8,570,568 flight itineraries indicating the states visited in
the US.

• Taxis in Porto [22]: data contains the pickup and drop-off locations and time-stamps of taxi rides
in Porto, Portugal. A total of 302,688 sequences were recorded over the period from 2013-07-01
to 2014-07-01.

• Proprietary global shipping data: records the movement of ships between 26 geographical regions
around the globe from 2016-01 to 2020-01, for a total of 9,505 sequences. Ships are split into 5
types, which correspond to the class of the ship based on their maximum tonnage.

All datasets apart from the shipping dataset, which is subject to a Non Disclosure Agreement, are acces-
sible from open online sources.

We created higher-order network models of the data using the method described in the previous
section, exploring various orders from 1 up to 4. Orders beyond order 4 were avoided not only because
they were computationally taxing, but they also tended to display over-fitting tendencies. This is due to
the exponentially growing number of parameters fitted to the model, where the upper bound is given by
∑

k
i=1 |V |i ≈ |V |k.

These models were then evaluated against the data by simulating new random sequences via a ran-
dom walk process, described by the following algorithm:

1. Initialise an empty sequence list S.

2. Set the current node u as the initial state *.
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3. Choose the next node v at random with probabilities equal to Tu,v (or T ′
u,v).

4. Append node u to S.

5. Set node u = v.

6. Repeat steps (3-5) until v=† is chosen.

7. Terminate and record S.

For all datasets, unless stated otherwise, we simulated 1,000,000 random walk sequences per order.
Measurements on the simulated sequences provide the expected model outcome for the measurement.

3.1 Model Selection of Higher-Order Networks

Introducing higher order correlations into networks naturally gives rise to the question: what is the
‘right’ correlation length or order? In the previous section, we discussed a variety of model selection
techniques, aiming to identify the optimal order for the model. However, higher-order networks intro-
duce an added layer of complication due to the vastly different sizes of parameter spaces at different
orders. This poses a meta issue where the ‘best’ model selection technique itself is not definitively
known. We propose taking a consensus approach by applying and comparing 3 common techniques:
the Akaike Information Criterion [1] (as seen in MOGen), the Bayesian Information Criterion [23], and
the likelihood ratio test [35]. The results are shown in table 1.

Data AIC BIC Likelihood Ratio
Ship Type 1 2 1 2
Ship Type 2 1 1 2
Ship Type 3 2 1 2
Ship Type 4 2 1 2
Ship Type 5 2 1 2

MSNBC 3 2 3
Bike (L.A.) 1 1 1
Bike (Lon) 1 1 1
US Flights 3 2 3

Taxi 3 2 3

Table 1. Optimal order selected by 3 different criteria: the Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC), and the likelihood ratio test via Wilks’ theorem. The general trend shows that AIC and the likelihood ratio agrees most of
the time, while BIC tends to select 1 order lower than either AIC or the likelihood ratio test.

Table 1 displays the optimal order obtained via the 3 model selection techniques. The trend shows
that AIC and the likelihood ratio test agrees for most datasets, with the exception of Ship Type 2.
Meanwhile, BIC tends to select 1 order lower than AIC, which is an expected result due to the harsher
penalty term in BIC. However, these information measures do not provide an absolute measure of how
well the model captures the data; they mainly provide a relative comparison between models. Thus, we
investigate other metrics in the following subsections at various orders in addition to the optimal order.
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3.2 Sequence Length Distribution

Real world data often comes in the form of finite variable length sequences. Finitude is a natural con-
straint of real world systems, while variability arises from other random factors. The inclusion of the
initial state and final state offers a framework for initiating a random walk process that self-terminates,
in order to better emulate how real-world agents or processes enter and leave the network. Biases
in where/how sequences start may significantly impact its evolution, particularly for short sequences.
Similarly, biases in where/how sequences terminate may dramatically alter the final length of the dis-
tribution. A simple initial test used to validate that the model is working as intended is to calculate the
expected sequence length based on the transition matrix, as shown in equation 2.11. Our results (see the
caption of figure 6) present an accurate match with the data. This provides confidence that the model is
generating sequences that are, at the very least, comparable with the data. However, averaging sequence
lengths discards a lot of information about the variability in the sequence lengths. We therefore focus
on comparing the distribution of sequence lengths in order to better understand the similarities and
differences between the simulations and data.

In order to compare the sequence length distributions between the data and random walk simulations,
we employ the Kolmogorov-Smirnov (KS) test [19]. The KS statistic DKS is measured as the maximum
absolute distance between two cumulative distribution functions (CDFs). Naturally, DKS ⩽ 1. A p-
value can be then obtained, under the null hypothesis that both distributions can be explained as being
generated by the same underlying distribution. This is a particularly strong condition for accepting the
null hypothesis. The KS test, however, does not have any penalty term for the complexity of the model,
and therefore we need to be cautious with regards to over-fitting. Figure 6 shows an example of the two
CDFs at order 1 to 4, as well as the location of the KS statistic and the p-value, from the Ship Type 1
dataset. We present our findings in table 2, showing the order at which the KS-test shows acceptance
(or none, if no acceptance was found between order 1 and 4), as well as the KS statistic and the p-value
at that order.

Our findings suggest that for certain datasets (some Ship Types, Bikes and Flights) the order required
to reproduce the path length distribution observed in the data is generally higher than that estimated by
optimal order selections. The bike datasets show the lowest order for acceptance, which is both expected
and surprising. Bikes themselves do not have any agency in their movement, and therefore we do not
expect any temporal correlations. However, this would suggest that the KS test should be accepted at
order 1, rather than order 2. One possible explanation for this would be that certain users are docking
and re-using the same bikes in succession, possibly due to time limits on the riding time between docks.
For the Flight dataset, the main discrepancy occurs for sequences of length 4, which corresponds to
double-layover return-flights. Due to this, at order 3 the KS statistic observed at sequence length 4 is
too large to be acceptable, but at order 4 the KS statistic is too small due to the model over-fitting. In
the MSNBC data, our findings suggests that the increase in order is not warranted as the difference in
accuracy of simulated versus observed data is not significant (at least up to the 4th order). A possible
explanation is that the mechanism underlying the sequence termination is not related to its past; for
example, agents looking for specific pages might leave the website after finding the page they want.
Similar ideas can be applied to other datasets where no order is accepted from the KS test. A potential
factor to consider is that sequences may be truncated by external factors related to the data collection or
processing itself. This effect is suspected to be at play in the London Bike and Taxi datasets.
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FIG. 6. Example plot of the empirical cumulative distribution function (CDF) from observed and simulated sequence lengths,
from Ship Type 1. The magnitude and location of the KS statistic and p-value are shown as well. The results show a general
improvement in the KS-statistic as the order increases. The p-value is within an acceptable range at order 3. The expected
sequence lengths obtained from equation 2.11 gives a value of 25.09... for all orders, which agrees with the data.
Alt text: Graphs showing the cumulative distribution function of the data vs. simulations at orders 1 to 4, with statistical p values
calculated at each order.

Walk Length Distribution
Data Selected Order KS Statistic p-value

Ship Type 1 3 0.03 30.1%
Ship Type 2 3 0.07 9.0%
Ship Type 3 None1 - -
Ship Type 4 3 0.02 43.2%
Ship Type 5 None1 - -

MSNBC None1 - -
Bike (L.A.) 2 0.008 18.7%
Bike (Lon) 3 0.006 93.5%
US Flights 42 0.001 96.5%

TAXI None1 - -

Table 2. Selected order is the minimum order that passes the KS test (i.e. p ⩾ 5%), up to a maximum order of 4, across all
datasets. This differs from the optimal orders obtained from model selection techniques as shown in table 1. 1A p-value ⩾ 5%
was not observed at any order, which suggests that there is a more complex behaviour behind the ship movements. 2The high
p-value suggests that the model is over-fitting, which seems to be the case for the Flight data as majority of itineraries contain ⩽ 4
flights, and therefore at order 4 many sequences are entirely encoded in the network.
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3.3 Motifs

3.3.1 Observation and Counts Sequence length distributions alone are not a conclusive indicator of
a model’s accuracy, since the right sequence length does not guarantee that paths are traversing nodes
in the right order. Motifs provide another method of analyzing smaller scale features of the network.
The expected fractions ⟨F⟩ of motifs under some higher-order network model can be estimated using
random walk simulations on the network. By comparing the simulations to the data, we can evaluate
how well the real-world motif dynamics are reflected in the model. First, we define Ml to be the set of
l-hop motifs. As we can only compare motifs of the same length together, we will drop the subscript l.
For each motif M ∈M, the observed count of M in a sequence set D (which may be real or simulated)
is NM,D . The expected fraction ⟨F⟩M of motif M from the model can be estimated from

⟨F⟩M =
NM,Dsim

NM,Dsim

, where NM,Dsim = ∑
M∈M

NM,Dsim ,

and 0 ⩽ ⟨F⟩M ⩽ 1
(3.1)

and Dsim is a set of simulated sequences generated by the model. To compare the model to data Ddata,
we multiply the expected fraction of each motif by the total number of motifs in the data:

⟨N⟩M = ⟨F⟩M ×NM,Ddata (3.2)

This is to account for the discrepancies in the absolute counts in the data versus simulations. Addition-
ally, we can obtain an estimate of the variance σ2

M through the variance of the motif counts within each
sequence itself. The studentized residual RM is then calculated as [9]

R2
M =

(NM,Ddata −⟨N⟩M)2

σ2
M

(3.3)

We evaluate motifs using several measures, including (1) absolute observed vs expected counts, (2)
percentage difference between observed and expected counts, and (3) a studentized residual measure of
goodness-of-fit. The absolute counts and percentage differences provide us with a more intuitive grasp
of how close the expected motif counts from the model are compared to the observations. However,
they do not provide us with an evaluation of whether the observations lie within an expected range of
our model’s predictions. The studentized residual gives us an approximate measure of the statistical
‘goodness-of-fit’ of the model compared to the data. We begin first by observing the direct counts from
the data compared to the simulations, where it is much easier to intuitively gauge which motifs are well
represented and which are not.

In figure 7, we show the counts of 2- and 3-hop motifs in one Ship Type dataset. To compare with
existing models, we also included predictions from [18] based on an unweighted order k DeBruijn graph,
for k = 2 or 3 correspondingly. Strikingly, this method yields a poor match with the data, performing
on-par with or worse than the order 1 network across all the datasets. This highlights that though
DeBruijn graphs share similar topology to higher-order networks, edge weights significantly influence
the dynamics of flow on the network. This difference is prominent on motifs with self-loops, as they
are combinatorially rare. The order 1 network, though marginally better than the unweighted DeBruijn
graph, is still a poor representation of the observed data.

On the other hand, as expected the order 2 network is sufficient to reproduce the 2-hop motif (e.g
ABA) distribution in simulations. More generally, for H-hop motifs, an order H network is sufficient to
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FIG. 7. (Top): Counts of 2-hop motifs from data and from model simulations. Models include higher-order networks of order 1,
2 and 3. Results for an unweighted order 2 DeBruijn graph as seen in [18] are shown for comparison. We observed agreement
at order 2 (pink) and above, which is expected. At order 1 (purple), the AAA motif and ABC motif are underrepresented while
all other motifs are overrepresented. (Bottom): counts of 3-hop motifs from data and from model simulations. Models used are
our higher-order networks of order 1,2,3, and an unweighted order 3 DeBruijn graph. Similarly, we observe agreement at order
3 (orange). At order 2 (pink) we observe relatively good representation of the observed motif counts for all 3-hop motifs except
ABBA and ABBC. In both 2 and 3 hop motifs, we find that the unweighted DeBruijn graph is a poor estimate for the data.
Alt text: Grouped bar charts displaying the observed vs. expected simulation frequency of 2 and 3 hop motifs of a single ship
type dataset. The trend shows improvement in the expected simulated frequency as order increases, reaching a perfect agreement
when the order equals the motif length.

reproduce the observed motif distribution. This is because H-hop motifs can directly be mapped from
the edges in the order H network. A more interesting point of investigation is to look at the order (H−1)
HO network at the motif distribution compared to the observed data. In this paper, to avoid the large
sample space of longer-hop motifs, we focus primarily on comparing how a 2nd order network performs
to a 3rd order network. However, the analysis here can be generalised to longer motifs, provided that
there is a reason for extending to higher orders.

For 3-hop motifs, we can see that at order 2, many motifs are well represented by the model com-
pared to the data, with the main exceptions being the motifs ABBA and ABBC. The ABBA motif is
underrepresented in the data, while ABBC is overrepresented. Intuitively, both of these motifs can be
seen as an ABB motif chained with an AAB motif. The order 2 model correctly captures the frequency of
both of 2-hop motifs; however, it lacks the correlation length to ‘choose’ the right AAB motif such that
it correctly predicts the frequency of ABBA and ABBC motif. This suggests that ABBA and ABBC are
‘genuine’ 3-hop motifs, in that they cannot be directly explained as a random chain of two 2-hop motif
with based on 2nd order probabilities. In this dataset and in general, the genuine 3-hop correlations cor-
relations are dominant in only a few specific motifs. In certain cases, we may be able to attribute such
motif patterns to an expected real-world behaviour as well. We can further examine which 3-hop motifs
are the most over/under-represented compared to the 2nd order network by observing the difference in
observed and expected counts, and ranking them accordingly.

The results from figure 8 show that for Ship Type 1, the motifs ABBC and ABBA are the worst
represented motifs. Additionally, majority of the other 12 motifs are under a 2% difference, which
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FIG. 8. Difference between the observed and expected percentages in the number of 3-hop motifs at various orders. The results
obtained from the unweighted (UW) order 3 DeBruijn graph method from [18] was also shown for reference. The 3 largest
percentage differences at order 2 (pink) are indicated by the numbers (rank) above the bars. (Top): Data shown for Ship Type 1,
the motifs ABBC, ABBA show the largest difference, constituting over 2.5% of the total motif counts each, followed by ABAB.
(Bottom): Data shown for Bike London, the motifs ABCA, AABC and AAAB are the worst performing motifs; however, the
deviation is extremely small, and therefore is not significant.
Alt text: Grouped bar charts showing the percentage difference in observed vs. expected simulation frequencies of 3 hop motifs
in 2 datasets. The largest 3 differences are highlighted.

suggests that a 2nd order network captures most of the sequential correlations in the data very well.
This trend is generally present in other datasets as well: most motifs show a small deviation between
simulations and data, except for a few large deviations. Finally, as expected, we can see that for most
motifs, the 2nd order network performs better than the 1st order network and the unweighted DeBruijn
graph.

Worst Represented 3-Hop Motifs (∆ %)
Data 1 2 3

Ship Type 1 ABBC (-3.88%) ABBA (+3.43%) ABAB (+1.36%)
Ship Type 2 AAAA (+2.50%) ABBB (-2.04%) AAAB (-2.02%)
Ship Type 3 ABBB (+2.67%) AAAB (-2.64%) AAAA (-2.63%)
Ship Type 4 ABAB (+1.86%) ABBB (-1.67%) AAAB (-1.64%)
Ship Type 5 AAAB (2.16%) ABBB (-2.08%) AAAA (-2.05%)

MSNBC AAAB (-2.38%) AAAA (+2.34%) ABBA (+2.14%)
Bike (L.A.) ABCD (-0.46%) ABCA (+0.34%) ABBA (+0.15%)
Bike (Lon) ABCA (+0.23%) AABC (-0.15%) AAAB (-0.13%)
US Flights ABAB (-19.1%) ABCD (+9.32%) ABCA (+8.36%)

Taxi ABBB (-1.95%) AAAA (+1.86%) AAAB (-1.77%)

Table 3. Table with the worst represented 3-hop motifs ranked in order of magnitude, calculated using the percentage observed
counts minus the percentage expected counts. Positive percentages represent more observations in the data.
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Our results for the worst motifs are shown in Table 3. Interestingly, we see that across 4 of the 5
ship types, the motifs ABBB and AAAB are consistently poorly represented. This suggests a common
behaviour across these 4 ship types that result in a similar sequential correlation. Notably, ABBB and
AAAB are motifs involving the shorter AAA motif, which further implies that the correlation (and there-
fore the implicit mechanistic behaviour underlying the correlation) mainly stems from the transitions
into and out of the AAA motif. In order words, tendencies for ship to self-loop might involve even
higher order correlations, or other more complex behaviours. For both Bike datasets, the worst perform-
ing motifs still only show small deviations, which further suggests that there are little to no higher order
correlations in the movement of these bikes. For the Flight dataset, the ABAB motif is highly under-
represented in the real data compared to simulations. This matches our expectations as we expect a high
density of ABA motifs due to the predominance of return flights, which results in an overestimation of
ABA chaining into ABA in the 2nd order model.

3.3.2 Statistical Tests While the absolute and percentage counts can provide an intuitive glimpse into
the expected versus observed frequencies of motif patterns in the various systems, it does not provide a
statistical handle on whether these differences are expected under random statistical noise. Due to the
sequential nature of the motifs, they are not independent and identically distributed (I.I.D) variables; the
previous motif affects what the next motif could be. However, individual paths themselves are I.I.D.
Therefore, by taking a sample of many paths, we can obtain a good estimate of the expected counts and
variance of these motifs. This allows us to use the studentized residuals RM as defined in equation 3.3.

Assuming that the expected counts of each motif are approximately normally distributed, good
agreement between observations and expectations occurs when RM ≲ 1. Non-normality in the motif
count distributions will generally result in a larger calculated value of RM due to fat-tailed distributions.

Our results in table 4 show some interesting features. Firstly, for the ship type and bike datasets,
the average 3-hop motifs are still well represented at order 2, which suggests that there are little to no
higher order correlations beyond length 2, apart from 4 of the ship types which display at least one 3-
hop motif that has a statistically significant difference. The MSNBC and taxi datasets show higher order
correlations, evident by the fact that the 3-hop motifs are not well modelled by a 2nd order network. The
US flights residuals yield some unexpected results, where the H-hop motif at order H still yields high
values of RM . This is likely due to the non-normality of the expected motif count distributions, where
the variance does not capture the variability well.

4. Conclusions

In this paper, we have set out to investigate in detail how models at orders leading up to the optimal order
perform when tested by comparing features of simulated and real data. This is a multifaceted task, as
features of paths can be considered from micro- to macroscale, from frequency of motifs to path lengths
and their distribution. We believe that this is an important stress test, since often the identification of the
right model/order and the inference of its parameters is followed by a prediction stage, where the next
move/state is forecasted. The absolute quality of a model cannot be fully discerned from information
theoretic measures alone, such as AIC, and our analysis revealed the need to find appropriate metrics
to measure the quality of fit between simulated and real data. Selecting these metrics required careful
consideration, especially where no asymptotic results for the distributions of interest exist.

More precisely, we were able to investigate the performance of higher-order networks at different
orders, corresponding to the sequential correlation length, with the additional inclusion of an initial
and final node. We then evaluated the dynamics predicted by the model via a random walk process on
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Studentized Residual RM

2-hop motifs 3-hop motifs
Order Mean Max Mean Max

Ship Type 1 2 0.1 0.1 1.0 3.0
3 0.1 0.1 0.1 0.1

Ship Type 2 2 0.1 0.1 0.3 1.5
3 0.1 0.1 0.1 0.1

Ship Type 3 2 0.1 0.1 1.7 6.6
3 0.1 0.1 0.1 0.1

Ship Type 4 2 0.1 0.1 1.1 4.2
3 0.1 0.1 0.1 0.1

Ship Type 5 2 0.1 0.1 0.8 2.8
3 0.1 0.1 0.1 0.1

MSNBC 2 0.6 0.7 14.2 95.8
3 0.5 1.3 0.6 1.5

Bike (L.A.) 2 0.1 0.1 0.5 1.9
3 0.1 0.2 0.2 0.4

Bike (Lon) 2 0.2 0.3 0.3 1.0
3 0.2 0.5 0.2 0.6

US Flights 2 2.3 5.0 62.6 368.8
3 1.4 2.6 3.9 7.9

Taxi 2 0.2 0.5 6.1 16.5
3 0.4 0.5 0.4 0.7

Table 4. Table showing the mean and max studentized residual RM of 2 and 3-hop motifs over order 2 and 3 higher-order networks,
across all datasets. Numbers shaded in red represent residuals that are beyond an acceptable range of statistical uncertainty. RM ≲ 1
are seen as good fits between simulation and observation.

the higher-order network, measuring the sequence lengths and motif distribution compared to observa-
tions. Our results show that the model’s ability to reproduce the sequence length distribution observed
in real-world data is inconsistent, with certain datasets failing to converge at sufficiently low orders.
Other datasets that do converge generally still require a higher order than would be expected from
other information criteria, such as AIC and BIC. Meanwhile, the motif distributions measuring H-hop
motif frequencies compared to the (H − 1)th order predictions reveal that not all motifs are equally
misrepresented. Certain motifs contribute heavily to the overall deviation, and therefore result in mis-
representation of the data by the model. Taken together, these two results show that the higher transition
probabilities of order k, which assume dependence on the previous k states, can represent some sys-
tems or some parts of a system well, but may struggle in other areas. Optimal orders as estimated by
information criteria do not always guarantee a good representation of the system, and so a more careful
evaluation of which measurements are important is required.

During our analysis we also identified areas where this work could be extended. A significant but
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unaddressed issue in this paper is the time dimension in which these paths sit. Effectively, our work
considers only the order of elements in a sequence and loses information about the time spent in one
location or the time taken to reach another. It also treats the paths as happening independently, both
of each other, and of the agents performing them. An additional feature worth considering in future
analysis is other attributes of path hops: one feature that is relevant to taxis/ships is which path hops
are empty, and which ones are carrying passengers/cargo, respectively. In both of the latter examples,
agents are motivated to minimise the time they spend moving without passengers/cargo, so it would
be reasonable to assume that their next movements depend not just on where they were for the last
1,2, . . . ,k steps but whether each of those movements were empty or not. Future work should therefore
consider including additional temporal characteristics and hop attributes in the models developed.

As part of this paper’s contribution, we developed a Python package which can be installed from
[GitHub repository will be made public upon first revision/acceptance]. With this package, users can
efficiently extract different characteristics of their path data, including sequential motifs of arbitrary
length, construct multi-order network models of a given maximal order k, and generate simulated paths
from these models. Also provided in this repository are scripts for reproducing the experiments in this
paper (apart from for the proprietary shipping data).
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