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ABSTRACT

Studying how we explore the world in search of novelties is key to understand the mechanisms that can lead to new discoveries.
Previous studies analyzed novelties in various exploration processes, defining them as the first appearance of an element.
However, novelties can also be generated by combining what is already known. We hence define higher-order novelties as the
first time two or more elements appear together, and we introduce higher-order Heaps’ exponents as a way to characterize
their pace of discovery. Through extensive analysis of real-world data, we find that processes with the same pace of discovery,
as measured by the standard Heaps’ exponent, can instead differ at higher orders. We then propose to model an exploration
process as a random walk on a network in which the possible connections between elements evolve in time. The model
reproduces the empirical properties of higher-order novelties, revealing how the network we explore changes over time along
with the exploration process.

Introduction

As humans, we experience novelties as part of our daily life.
By the term novelty we generally indicate two apparently dif-
ferent things1. On the one hand, we can think of a novelty as
the first time we visit a neighborhood, enter a newly launched
pub, or listen to a song from an artist we previously did not
know. In this case, the novelty represents a discovery for a sin-
gle individual of a place, an artist or, more in general, an item.
On the other hand, there are discoveries that are new to the
entire population, as could be a technological advancement or
the development of a new drug. However, these two cases are
not entirely distinct, as the second set of novelties, those new
to everyone, represent a subset of the first one. Analysing how
novelties emerge, both at the individual level and at the level
of the entire population, is key to understand human creativity
and the neural and social mechanisms that can lead to new
discoveries.

The increasing availability of data on human behavior and
consumption habits has allowed to study how humans explore
the world, how novelties emerge in different contexts, and
how they are distributed in time1–3. Empirical investigations
cover a broad range of different areas4, ranging from sci-
ence5 and language6, 7, to gastronomy8, goods or products9,
network science10, information11, and cinema12, to name a
few relevant examples. No matter the topic, one can always

represent data coming from real-world exploration processes
as sequences of elements or “items” that are sequentially
adopted or consumed13. For instance, the activity of a user
on an online digital music platform is turned into a sequence
of listened songs, and a novelty is defined as the first time a
song, or an artist, appears in the sequence14. Analogously,
articles published in a scientific journal can be turned into a
time-ordered sequence of concepts or keywords discovered
by the community, and a novelty can be defined, again, as the
first-time appearance of a keyword3. Under this framework,
evidence shows that—independently of the system they be-
long to—novelties seem to obey the same statistical patterns
in the way they are distributed and correlated in time1. Indeed,
a long tradition of works, started by the Yule-Simon processes
for text generation15, 16, shows that most empirical sequences
follow Heaps’17–19, Zipf’s20–24, and Taylor’s laws25.

Along with data-driven investigations, a relevant scientific
problem is that of finding plausible mechanisms to reproduce
and explain the empirical observations. What are the drivers
controlling the appearance of new items in a sequence? How
do humans explore the seemingly infinite space of possibili-
ties in search of novelties? Interestingly, an insightful answer
comes from biology, where, in 1996, Stuart Kauffman intro-
duced the concept of the adjacent possible26 (AP) referring
to “all those molecular species that are not members of the
actual, but are one reaction step away from the actual”. In-



spired by previous works by Packard and Langton27–29, the
AP provides a fresh view on the problem, for which discover-
ies (the possible) can only be found among those items which
are close (the adjacent) to what is already known (the actual).
New discoveries would then generate an expanding space
of opportunities that are only available to us in the moment
we “unlock” what is adjacent to them. Kauffman’s AP has
seen many interesting applications ranging from biology26, 30

and economics9, 31 to models of discovery and innovation1, 3, 6.
Among these, of particular interest is the recently proposed
Urn Model with Triggering (UMT)1, 6, 32. Building upon the
work of Pólya33, 34, the UMT adds to the traditional rein-
forcement mechanism of the Pólya urn’s scheme a triggering
mechanism that expands the space of possible discoveries
upon the extraction of each novelty. Being able to reproduce
the empirical laws and thanks to its simplicity, the UMT has
been used to study various systems with an expanding set of
“items”, like the rise and fall of popularity in technological and
artistic productions2, the emergence and evolution of social
networks35, and the evolution of the cryptocurrency ecosys-
tem36. One could also picture ideas, concepts, or items as
the linked elements of an abstract network. In this view, the
exploration process can be modelled as a random walk over
this network, where the AP accounts for the emergence of
the new starting from the “edge of what is known” within the
network. Approaches based on random walks have been used
to investigate the cognitive growth of knowledge in scientific
disciplines3, and further extended to account for multi-agent
systems, where the individual exploration of the agent is en-
riched by social interactions14, 37.

The idea of the AP, modelled either in terms of extrac-
tions from urns or random walks over a network, is of great
importance to understand the processes leading to novelties.
There is, however, another important mechanism of creation
of the new which is neglected by the frameworks discussed
above: novelties can arise from the combination of already-
known elements. For instance, a meaningless sequence of
words, if ordered in a different way, may generate elegant
poetry38, 39. Novel combinations of existing hashtags may
lead to new social-media trends40, 41. Different orderings of
the same musical notes may in principle generate an endless
number of songs42. The mechanics of combination of “pre-
existing” items has been studied in various fields, e.g., in
biology where new associations of various entities produce
new organisms. It has been shown that the immune system
recombines existing segments of genes to produce new recep-
tors43, 44. Also, publications and collaborations in science45

are typically combinations of research ideas46–48 and exper-
tises49–51. Similarly, in innovation economics, as originally
discussed by Schumpeter52, 53 and confirmed by recent works
on the generation of technologies54–56, new combinations of
existing factors, that interact in a technological production
process, may give rise to innovations, which rule out of the
market obsolete products and services57, 58, thus increasing
the probability of reaching further innovations (the so-called

“creative destruction”).
In this context, the aim of this paper is to explore a more

general notion of novelty, including novel combinations of ex-
isting elements. We thus investigate the dynamics of “higher-
order” novelties, i.e., novel pairs, triplets, etc., of items in a
sequence. In particular, we focus on the Heaps’ law, which
characterizes the growth of the number of novelties in the
sequence as a power-law, whose exponent is a proxy for the
rate of discovery18 in the related process. Namely, we in-
troduce higher-order Heaps’ laws to characterize the rate at
which novel combinations of two and more elements appear
in a sequence. We then analyse various types of empirical
sequences, ranging from music listening records, to words in
texts, and concepts in scientific articles, finding that Heaps’
laws also hold at higher orders. We discover that processes
with a similar rate of discovery of single items can instead
display different rates of discovery at higher orders, and can
hence be differentiated by looking at higher-order novelties.
We therefore propose a new model which is capable of repro-
ducing various empirically observed features of higher-order
Heaps’ laws. In our model the process of exploration is de-
scribed as an edge-reinforced random walk with triggering
(ERRWT) on a network. In our framework, the novelties at
different orders (nodes and links visited for the first time by
the walker) shape the growth of the network by reinforcing
traversed links, while triggering the addition of new elements
through the expansion and exploration of the adjacent possi-
ble. This expansion can happen whenever a node is visited
for the first time, making other nodes accessible to the ex-
plorer, but also whenever a link is firstly used. In this case, the
newly established connection will trigger novel combinations
between previously explored nodes. By fitting the contribu-
tions of the two mechanisms of reinforcement and triggering,
the ERRWT model is able to reproduce well the variety of
scaling exponents found in real systems for the Heaps’ laws
at different orders.

Results
Higher-order Heaps’ laws
An exploration process can be represented as an ordered set of
T symbols S = {a1,a2, . . . ,aT} sequentially explored. Such
a set describes the sequence of “events” or “items” produced
along the journey, e.g., the songs listened by a given individ-
ual over time, the list of hashtags posted on an online social
network, the list of words in a text, or any other ordered list
of items or ideas generated by single individuals or social
groups1, 13, 37, 59. Similarly, in the context of some recent mod-
elling schemes of discovery, the sequence S can be made of
the colors of balls extracted from an urn1, 37, 59, or the nodes
visited over time by a random walker moving on a network3.
Although real-world events have an associated time, here, for
simplicity, we focus only on their sequence, i.e., the relative
temporal order of the events, neglecting the precise time at
which they happen. For instance, if a person listens to song
a1 at time t1, song a2 at time t2, song ai at time ti, and so on,

2/15



with t1 < t2 < · · ·< ti < .. . , we neglect these times and only
retain the order of the songs in the sequence {a1,a2, . . . ,aT}.
In other words, we assume that a1 is associated to the discrete
time t = 1, a2 is associated to time t = 2, and so forth.

Among the different ways to characterize the discovery rate
of a given process, the Heaps’ law, D(t)∼ tβ , describes the
power-law growth of the number of novelties as a function of
the number of items in the sequence, i.e., how the number D(t)
of novel elements in the sequence S scale with the sequence
length t18. The so-called (standard) Heaps’ exponent β , that
from now on we indicate as 1st-order Heaps’ exponent β1, is
thus a measure of the pace of discovery of the process that
generated the considered sequence. Given that the number
of different elements D1(t)≡ D(t) is smaller (or equal) than
the total length t of the sequence, the value of β1 is always
bounded in the interval [0,1], with the extreme case β1 = 1
reached by a process that generates new elements at a linear
rate.

Here, we propose to go one step beyond and look at nov-
elties as novel pairs, triplets, and higher-order combinations
of consecutive symbols in a sequence60. For instance, when
exploring a network, a novel pair is represented by the first
visit of a link. In order to measure the pace of discovery
of these higher-order compounds starting from a sequence
of events S1 ≡ S , we first create the surrogate sequence
of overlapping pairs S2 = {(a1,a2),(a2,a3), . . . ,(aT−1,aT )}.
Considering for example the sentence “One ring to rule them
all”, from the sequence of events S1 = {one, ring, to, rule,
them, all } we obtain the sequence of overlapping pairs S2 =
{(one, ring), (ring, to), (to, rule), (rule, them), (them, all)}.
From S2 we can then compute the number D2(t) of different
pairs among the first t ones, with t ≤ T −1. Notice that, in this
manuscript, we consider the pairs (one,ring) and (ring,one)
as two different pairs, i.e., order matters. By construction,
we always have D1(t) ≤ D2(t) ≤ t, since, on the one hand,
for each new element added to S1 there is a new pair in S2,
and, on the other hand, there cannot be more than t different
pairs among t items. From the power-law scaling D2(t)∼ tβ2 ,
we can then extract the value of β2, which we refer to as the
2nd-order Heaps’ exponent. This definition can be naturally
extended to any order n, considering the sequence Sn of con-
secutive overlapping n-tuples present in S1. Notice that, if
|S1|= T , then |Sn|= T −n+1. We can hence compute the
number Dn(t) of different tuples among the first t tuples in
Sn, and extract the nth-order Heaps’ exponent βn ∈ [0,1] from
Dn(t) ∼ tβn . Notice also that the nth-order Heaps’ exponent
can also be interpreted as the first order Heaps’ exponent of
a sequence whose events are the overlapping n-tuples of the
original sequence. Finally, it is worth remarking that such an
approach is close to the analysis of Zipf’s law in linguistic data
for n-grams or sentences61, 62. In this context, studies showed
that as one moves from graphemes, to words, sentences, and
n-grams, the Zipf’s exponent (reciprocal of the Heaps’ ex-
ponent for infinitely long sequences19) gradually diminishes.
This implies that n-grams or sentences are characterized by a

larger novelty rate than words, a behavior analogous to what
we have discussed above.

Analysis of real-world data sequences
We start investigating the emergence of novelties of different
orders in empirical exploration processes associated to three
different data sets. These data sets are substantially different
in nature, since they refer, respectively, to songs listened by
users of Last.fm, words in books collected in the Project
Gutenberg, and words of titles of scientific journals from
Semantic Scholar (more details on the data can be found in
Materials and Methods). In Fig. 1(a-c) we plot the average
temporal evolution of the number Dn(t) of novelties of order
n, with n = 1, 2, 3, in the three data sets (from left to right,
respectively, Last.fm, Project Gutenberg, Semantic Scholar).
In order to avoid spurious effects due to different lengths of
the sequences, we restrict these averages to the sequences of
length T greater than the median length T̃ in the corresponding
data set (see Fig. S1 in the Supplementary Information (SI) for
their distribution). Each continuous curve, plotted up to length
T̃ , is obtained by averaging Dn(t) over all such sequences,
while the shaded area represents one standard deviation above
and below the mean. We also perform power-law fits (see
Materials and Methods for details on the procedure), and plot
the resulting curves as dashed lines, with the fitted function
shown in the legend. Focusing first on the broadly-studied
(1st-order) Heaps’ law, notice how the power-law fit is only
accurate in the last part of the sequence. This highlights that
the Heaps’ law starts after a transient phase, where most of
the events are new for the individual, as also reported in Ref.1

and similarly reported in other contexts63–67. Secondly, notice
how the nth-order Heaps’ law, with n = 2,3, is valid across
the data sets, but with different values of the fitted exponents,
especially for n = 2. Finally, as expected from their definition,
the fitted Heaps’ exponents of order n + 1, i.e., βn+1, are
higher than the lower-order ones, that is, βn+1 ≥ βn.

To explore the gain in information brought by the higher-
order Heaps’ exponents with respect to the 1st-order Heaps’,
we now look directly at individual sequences. In Figure 1(d-i)
we show the scatter plots of β2 (d-f) and β3 (g-i) against β1,
where each point refers to a single sequence from Last.fm
(d,g), Project Gutenberg (e,h), or Semantic Scholar (f,i), with
colors representing how dense points are (see color bar at the
bottom of the figure). Here, we filter out sequences whose
fitted exponent has a standard error above the 0.05 threshold
(see Table S1 in SI for more details), for which the Heaps’ law
cannot be considered valid. This filtering removes only 30
(3.37%), 8 (0.04%), and 5 (0.03%) sequences in the three data
sets, respectively. Furthemore, we have removed sequences
for which the extracted value of β2 is higher than the associ-
ated value of β1, or for which β3 > β2, since Dn(t)≤ Dn+1(t)
as previously discussed. This filtering removes 53 (6.16%), 7
(0.04%), 6 (0.03%) in the three data sets, retaining a total of
807, 19 622, and 18 909 sequences, respectively. Looking
at Figure 1(d), we see how users of Last.fm sharing the same
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Figure 1. Higher-order Heaps’ exponents in real-world data sets. (a-c) Average number Dn(t) of novelties of order n, with
n = 1, 2, 3, as a function of the sequence length t, and fit of the associated Heaps’ laws (dashed lines), with estimated
exponents shown in the legend. Shaded area represents one standard deviation above and below the average. (d-i) Scatter plots
between the (1st-order) Heaps’ exponents β1 and the nth-order exponents βn, with n = 2 (d-f) and 3 (g-i). Each point refers to a
different sequence, with colors representing the density of points (see color bar). Each panel also reports histograms of
exponents distributions, the bisector y = x (dashed gray line), as well as the fitted linear model (dotted red line) with the value
of its coefficient of determination R2. Each column refers to a different data set: (a,d,g) Last.fm, (b,e,h) Project Gutenberg and
(c,f,i) Semantic Scholar, respectively.
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value of β1 can have very different values of β2. Conversely,
the other two data sets present stronger correlation between
β2 and β1. To quantitatively characterize this, we fit a linear
model with an ordinary least squares method, displayed in
each plot as a red dotted line. In the legend we also report
the value of the related coefficient of determination R2, which
represents the percentage of variance of the dependent vari-
able explained by the linear fit with the independent variable.
For the Last.fm data set, points are much more spread around
the linear fit compared to the other two data sets, as also con-
firmed by the values of R2, indicating a greater variability in
listening habits compared to writing habits. Moreover, the
values of the parameters of the linear fit greatly change across
data sets and orders. In particular, Last.fm is characterized by
a much lower slope and intercept compared to the other data
sets for the same order. Furthermore, we notice how, for each
data set, the values of β3 are much much higher and more
spread than the respective values of β1 and β2, resulting in
lower values of R2 in the linear fit between β1 and β3.

At an aggregate level, we observe that at all orders the dis-
tribution of the Heaps’ exponents are very different across
data sets (see Fig. S2 in SI for a comparative figure, while
further statistical information on the Heaps’ exponents dis-
tribution can be found in Table S2 in SI). The exponents are
more spread in Last.fm, which also shows a higher average
of β1 and β2, but a lower one for β3 compared to the other
data sets. Distributions for Project Gutenberg and Semantic
Scholar, which are both related to linguistic data, are more
peaked. Such peaks appear at higher values for the latter data
set. This could be the result of how titles of scientific papers
are written with respect to books or poems, that is, concentrat-
ing the whole message of a scientific work in a few significant
and specialised words, avoiding stop-words and repetition.
In addition, scientific advancements tend to favor the com-
binations of previously existing scientific concepts to form
new ones, while the same does not apply to non-scientific
literature in general, where instead similar constructions tend
to be repeated across the piece.

Finally, similar results are obtained also for more coarse-
grained sequences generated by using artists and stemmed
words instead of songs and words (see Fig S3 in SI). Further-
more, in Fig S4 in SI we analyse higher-order novelties in the
collective sequences obtained by randomly concatenating all
the individual sequences of each data set1.

Analysis of existing models
After studying higher-order Heaps’ laws in real data, we check
whether the observed patterns can be reproduced by the avail-
able models of discovery processes. We start this analysis
from the Urn Model with Triggering (UMT). In such a model,
sequences of events are generated by the extraction of col-
ored balls from an urn1, where different colors correspond to
different events or items being discovered or adopted. Here,
an event in the sequence is simply represented by the color
extracted. In the UMT, for each extracted ball, the correspond-

ing color is reinforced by adding ρ additional balls, of the
same color, to the urn. At the same time, whenever a novel
color is drawn, the discovery triggers the addition of ν + 1
balls of new different colors to the urn (see detailed model
definition in Materials and Methods). The reinforcement pro-
cess ensures the wide-spread adoption of items or concept
that were frequently adopted in the past. Conversely, the trig-
gering mechanism mimics the adjacent possible expansion,
since each novelty makes the space of possible colors expand.
Intuitively, these two parameters modulate the exploit-explore
tendency of the system, with a more pronounced exploratory
behavior for larger ν/ρ ratios.

Previous studies have shown that the 1st-order Heaps’ law
is verified in sequences generated by UMT simulations1, 6. In
particular, the number of novelties in the model grows asymp-
totically as D1(t)∼ t

ν
ρ when ν < ρ , while a linear behavior

is found for ν > ρ . We hence focus on the most interesting
case ν ≤ ρ , studying how variations of the two parameters
ρ and ν , respectively representing the reinforcement and the
increase in size of the adjacent possible, affect the Heaps’
law at various orders. Since the pace of discovery effectively
depends only on the fraction ν/ρ , we fix ρ = 20 and numeri-
cally simulate the UMT with ν = 1, 2, 3, . . . , 20 for T = 105

time-steps, obtaining sequences of length comparable to the
data sets (see Fig. S1 in SI). For each set of parameters we
run 100 simulations, generating a total of 2×103 synthetic se-
quences. Then, for each generated sequence, we compute the
temporal evolution of the number of novelties Dn(t), and esti-
mate a power-law fit, extracting the related nth-order Heaps’
exponent βn. In Fig. 2(a), we show how the extracted values
of β2 change with respect to β1 across simulations. The color
represents the value of the parameter ν , as indicated by the
color bar. We observe that, although the exponents span the
interval (0,1), the points (β1,β2) are aligned just above the
bisector (gray dashed line). In other words, the values of β2
are highly correlated with the related values of β1. We can
derive an analytical approximation of the higher-order Heaps’
exponents for this model, as we show in Sec. S3.2 of the
SI. We obtain that the number of unique pairs for the UMT
approximately grows as

D2(t)≈ atβ2 , with β2 = β1 +
c

d + log(t)
, (1)

where a, c, d > 0 depend on the parameters ρ and ν , and β1 =
ν/ρ . Although the predicted 2nd-order exponent is slightly
higher than the 1st-order one, their difference just depends on
the sequence length, and vanishes at larger times. Therefore,
the difference between β1 and β2 observed in the simulations
is only due to finite time effects, revealing how the UMT
cannot reproduce the empirical patterns of Fig. 1. Due to
the same reason, notice how the fitted values of β1 in the
simulations of the UMT are lower than the asymptotically
expected value of β1 = ν/ρ for high values of ν , as also
shown in Fig S6(a) in SI.

We repeat the analysis for two other generative models
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Figure 2. Higher-order Heaps’ exponents in existing models. Scatter plots of the (1st-order) Heaps’ exponent β1 against the
2nd-order exponent β2 in: (a) the urn model with triggering (UMT), no semantic correlations (η = 1), and ρ = 20,
ν = 1, 2, . . . , 20; (b) the urn model with semantic triggering (UMST) with η = 0.1 and ρ = 4, ν = 1, 2, . . . , 20; (c) the
edge-reinforced random walk (ERRW) on a small-world network (average degree ⟨k⟩= 4 and rewiring probability p = 0.168)
with edge reinforcement ρ ranging geometrically from 0.1 to 10. Each point refers to a different simulation of the related
model, with colors representing the value of the free parameter (see color bar). Each panel also reports histograms of exponent
distributions on the respective axes, and the bisector y = x (dashed gray line). All simulations have run for 105 time steps.

for discovery and exploration processes, i.e., the Urn Model
with Semantic Triggering (UMST)1 and the Edge-Reinforced
Random Walk (ERRW)3, which have been proved to generate
sequences obeying to the Heaps’ law. These models share
the same foundations of the UMT, but with some crucial dif-
ferences. The UMST builds on top of the UMT introducing
also semantic groups for colors. This addition effectively
diminishes the probability to draw colors outside the seman-
tic group of the last extracted color by a factor η ≤ 1. The
ERRW, instead, is formulated as a network exploration rather
than a process of extractions from an urn. Instead of a se-
quence of extracted balls, the ERRW generates a sequence
made of the nodes sequentially visited by the edge-reinforcing
random walker over a weighted network, where the weight
of the visited edges are reinforced by ρ when crossed. A
full description of the models can be found in Materials and
Methods.

We simulate the UMST with parameters η = 0.1 (semantic
parameter), ρ = 4 (reinforcement parameter), ν = 1, 2, . . . , 20
(triggering parameter), while the simulations of the ERRW run
over small-world networks69, 70 (with average degree ⟨k⟩= 4
and rewiring probability p = 0.1 following the procedure of
Ref.68), with edge reinforcement ρ ranging from 0.1 to 10.
Similarly to the UMT, we perform 100 simulations for each set
of parameters, and report the results in Fig. 2(b-c). For both
UMST and ERRW, we find that the values of β2 do not differ
much from their corresponding value of β1—as shown by the
great proximity of the points (β1, β2) to the bisector. This
means that also these models fail to reproduce the empirical
variability of higher-order Heaps’ exponents with respect to
the 1st-order one. Moreover, we notice in (b) that for the
UMST we only obtain exponents with either very low (up to
0.4) or very high (close to 1) values. We indeed see an abrupt

transition between these two extremes, with the model not
able to cover the values in between, which are instead present
in the empirical data reported in Fig. 1 (see also the relation
with analytical results in Fig S6 in SI). Further simulations of
both the UMST and ERRW with other sets of parameters are
reported in Fig. S7 of the SI. Also in these other cases, these
models are unable to generate sequences with β2 different
from β1.

Overall, the analyses above indicate that, while the existing
models of discovery and innovation dynamics are able to
reproduce the empirically observed pace of discovery of new
items (singletons) as captured by the 1st-order Heaps’ law,
they fail to capture the distributions of Heaps’ exponents of
higher order.

The ERRWT: a model for higher-order Heaps’ laws
In order to fill the gap between empirical observations and
models, we introduce here a new model that can generate
synthetic sequences with tunable discovery paces both at the
first order and at higher orders. As for the previously dis-
cussed ERRW, our model is formulated in terms of network
exploration. Namely, in the model: (i) the items to be ex-
plored correspond to the nodes of the network, (ii) the links
between nodes represent semantic associations between items
that one can use to move from one to another, and (iii) the
exploration process is modelled as a random walk over the
network and the sequence is obtained from the ordered list
of visited nodes. Under these assumptions, the first visit of a
node corresponds to a 1st-order novelty, while the first visit
of a link corresponds to a 2nd-order novelty. Such defini-
tion can be straightforwardly extended to higher orders. In
this manuscript, for simplicity, we limit our attention to the
first two orders. The ERRW proposed in Ref.3 consists of
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a random walk on a network whose topology is fixed, i.e.,
the links cannot change in time, but the link weights can be
modified by the passage of the random walker. By contrast, in
our model not only the weights, but the entire network struc-
ture co-evolves with the exploration process, and new nodes
and new links can be triggered. Thus, in analogy with the
UMT1, we name the model Edge-Reinforced Random Walk
with Triggering (ERRWT). More specifically, on top of the
edge reinforcement mechanism of the ERRW, the model is
based on two different triggering mechanisms that add new
edges and new nodes every time a novelty appears. Similarly
to the previous models analysed before, the first visit of a node
triggers the expansion of the adjacent possible, as new nodes,
neighbors of the discovered node, become now accessible.
As an example of this mechanism, think for instance to the
invention of the transistor, which made it possible to create
mobile phones, among other things. Moreover, differently
from the previous models, here the first visit of an edge is
also considered a novelty, and as such, it triggers new edges.
The idea is that whenever two elements are associated for the
first time, new possible combinations involving one of these
elements are then triggered. For instance, once photo-cameras
and mobile phones were firstly combined, this association
made clear that many more functions could be added to the
latter, e.g., a music player, a game console, a GPS, etc. More
formally, the model considers that the adjacent possible can
be expanded at various orders, i.e., not just by introducing
new nodes, but also by triggering new links.

The basic mechanisms of the ERRWT model are illustrated
in Fig. 3. Suppose that at a given time t, the walker is located
at node i of a network. At this point, some nodes and links,
represented by full circles and solid lines in Fig. 3(a), have
already been visited, while others, shown as empty circles and
dashed lines, are part of the adjacent possible. In Fig. 3(b),
the walker moves from node i to node j, crossing in this way
an already explored link. Consequently, the weight of such
link is increased by a positive quantity ρ , meaning that the
association between the two nodes i and j becomes stronger
and thus more likely to be used again. This is the same edge
reinforcement mechanism adopted in the ERRW model3. In
addition to this, if instead the walker moves from node i to
node k, traversing an edge for the first time, as displayed in
Fig. 3(c), this event is considered a 2nd-order novelty and
triggers the creation of new edges. In particular, ν2 +1 new
edges connecting node k to other already-visited nodes are cre-
ated (green dashed lines). Finally, the third mechanism of the
ERRWT model is analogous to the triggering mechanism of
the UMT model. As illustrated in Fig. 3(d), when the walker
moves from i to a node l, visiting node l for the first time, this
event triggers the expansion of node l’s adjacent possible with
the addition of new nodes and new links. Namely, ν1 +1 new
nodes are added to the network and connected to the node l
itself. In addition to this, ν2 +1 new links to already known
elements are created, since whenever a node is explored for
the first time, also the link leading to it is explored for the first

Figure 3. The Edge-Reinforced Random Walk with
Triggering (ERRWT) model. An exploration process is
modelled as a random walk on a growing weighted network.
(a) At time t, the walker is at the red node i. Nodes that have
been already visited by the walker are colored in black, in
white those left to be visited. Similarly, traversed (old) and
not-traversed (new) links are respectively depicted with
continuous and dashed lines, whose widths represent their
weights. At time t +1, the walker can move to each of the
neighbours of i, e.g. nodes j, k, or l, with a probability
proportional to the weight of the respective link. (b) If the
walker moves to j, the weight of the link (i, j) is reinforced
by ρ (Edge Reinforcement mechanism), but no new nodes or
links are added to the network, since the link (i, j) is old; (c)
if the walker moves to node k, since link (i, k) is new but
node k is old, in addition to the edge reinforcement,
ν2 +1 = 2 new edges (in green) between k and old nodes are
added to the network (Edge Triggering mechanism); (d)
finally, if the walker moves to l, since both the link (i, l) and
the node l are new, in addition to the edge reinforcement and
the edge triggering, ν1 +1 = 3 new nodes (in green) are
added to the network and connected to l (Node and Edge
Triggering mechanism).
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time. More details about the ERRWT model can be found in
Materials and Methods.

Balancing edge reinforcement and node and edge triggering
mechanisms through the parameters ρ , ν1 and ν2 of the ER-
RWT model, it is possible to control the pace of discovery of
new nodes and edges, and consequently tuning the exponents
of the 1st-order and the 2nd-order Heaps’ law associated to the
sequences produced by the model. To systematically explore
this, we simulate the ERRWT model with parameters ρ = 10,
ν1 = 0, 1, . . . , 20, and ν2 = 0, 1, . . . , 2ν1, running 100 simu-
lations for each set of parameters. Higher values of ν2 have
not been considered since they produce the same exponents
as those for ν2 = 2ν1. In Fig. 4(a) we report the increase in
the number of 1st-order and 2nd-order novelties (continuous
lines) for a specific set of parameters as an example. The
power-law fits (dashed lines) highlight that the Heaps’ law
is verified at the 2nd order too, leading to an increase of the
exponent values (from β1 = 0.56 to β2 = 0.87). The relation
between the different orders is explored in the scatter plot
between the 1st- and 2nd-order Heaps’ exponents reported in
Fig. 4(b). Each point refers to a different simulation, and we
use the color to indicate the value of the parameter ν1 used
(see color bar). We notice that the ERRWT model can pro-
duce a wide range of values for the exponents at both orders,
and that the 2nd-order exponents are not trivially correlated
to the 1st-order ones, as it happened in the models considered
in the previous section. This is even more clear when we
look at Fig. 4(c), where the Heaps’ exponents are averaged
across simulations for each set of parameters. Each curve in
the figure refers to a different value of ν1, with ν1 increasing
from 1 to 20 from bottom left to top right of the panel. The
color represents instead different values of the parameter ν2
from 0 to 2ν1. For reference, we also flag using a red dot the
pair of exponents related to the parameters used in Fig. 4(a).
We can immediately notice how the 1st- and 2nd-order Heaps’
exponents increase as ν1 gets larger. More interestingly, we
observe the combined role of the two parameters. For each
curve, by increasing ν2, therefore triggering new links in the
network, the difference between β1 and β2 becomes larger,
and the point (β1, β2) moves away from the bisector, in a way
that depends on the specific value of ν1. In particular, for
low values of ν1, the curves are almost vertical, with only β2
increasing. Instead, for higher values of ν1, especially when
ν1 ≥ ρ , an increase of ν2 produces a decrease of β1, while the
value of β2, which is close to its upper bound value 1, does
not change. Intuitively, this happens because the creation of
more and more new links between explored nodes increases
the chance to exploit nodes already discovered, while still
exploring never traversed links.

It is also possible to perform an analytical investigation
of a simplified version of the ERRWT model, which leads
to results in agreement with the simulations (see Sec. S4 in
SI). In particular, for such a simplified model, we can prove
that the values of the asymptotic Heaps’ exponents β1 and
β2 depend on the two ratios ν1/ρ and ν2/ρ . Moreover, we

find that, for ν1/ρ > 1, the 2nd-order Heaps’ exponent is
asymptotically equal to 1, while the 1st-order one depends
on ν1/ν2, as seen in Fig. 4(c). Finally, the exponents are
asymptotically bounded by β1 ≤ β2 ≤ 2β1, as also observed
in the simulations in Fig. 4(c). This also explains why the
exponents do not change when we increase ν2 above 2ν1.

Comparison between ERRWT and real-world data
To show that the ERRWT model is able to reproduce the
properties observed in real-world processes, we now fit the pa-
rameters of the model to the three data sets analyzed (Last.fm,
Project Gutenberg and Semantic Scholar). Given an empirical
sequence and its pair of 1st- and 2nd-order Heaps exponents
(β1, β2), we compute the Euclidean distance between the
pair (β1, β2) and each of the pairs of exponents (β ′

1, β ′
2) ob-

tained by simulating the ERRWT model using the sets of
parameters considered in the previous section. We then se-
lect the best model parameters by minimizing the average
distance over 100 simulations for each set, and repeat the pro-
cedure for all the sequences of the three data sets. Figure 5(a)
shows the probability density distribution of the distances
between the empirical sequences and the simulations of the
best-performing ERRWT model. Notice how these distances
are almost all below 0.1, that is the uncertainty we expect
on the values of the parameters. Indeed, being ν1, ν2 inte-
gers and ρ = 10, the maximum precision we can gain on the
estimate of the best parameters is about 1/ρ = 0.1. The per-
centage of sequences with higher distance than this threshold
is 7.67%, 0.73%, and 0.05% for Last.fm, Project Gutenberg,
and Semantic Scholar, respectively. The scatter plots of the
best-fitted parameters ν1 and ν2 for the three data sets are
shown in Fig. 5(b-d). The colors here indicate the number of
empirical sequences which are best represented by each pair
of parameters ν1 and ν2. We notice that most of the sequences
of Last.fm are characterized by relatively large values of ν1.
Since ν1 is related to the triggering of new nodes, this result
indicates that the discovery of a new song exposes the user
to a large variety of related songs, previously not accessible,
which can now be discovered. Conversely, the parameter ν2,
which controls the triggering of new edges between already
existing items in the model, takes values in a larger range,
predominantly skewed towards the lower end. This suggests
that, once a new association between two songs is established
by a user, there is a high probability that the same association
will be repeated over and over. Consequently, the user will
preferably listen to songs in a similar order, instead of creating
new associations. We point out that we cannot distinguish if
this is due to individual preferences or is pushed by the pres-
ence of recommender systems in music listening platforms. In
the case of Project Gutenberg, most sequences have ν2 > ν1.
This implies that writers tend to frequently generate new word
associations instead of using words never used before in the
text, highlighting the incredible variety of expressions we can
make by combining a limited set of words. Finally, Semantic
Scholar exhibits values of ν1 and ν2 similar to those found
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in the Project Gutenberg data set. However, some sequences
of Semantic Scholar have a relatively high value of ν1 with
respect to ν2. This is an indication that, when choosing words
for titles, authors tend to use more original words, while the
pace of creation of new word associations remains similar.

Discussion
The extraction of the Heaps’ exponent from empirical se-
quences has recently allowed to characterize the pace at
which discoveries occur in different contexts1–3, 71, 72. How-
ever, there is more and more evidence that discoveries are
often made from novel combinations of already known ele-
ments46, 48, 49, 55, 56. In this manuscript we have proposed to
explore higher-order Heaps’ laws and to extract higher-order
Heaps’ exponents as a way to characterize novel combinations
in an exploration process. The key idea is to look at novel-
ties not only as discoveries of single items, but also as the
first appearances of new combinations of two or more items.
More precisely, the Heaps’ exponent of order n measures the
rate of discovery of novelties of order n, i.e., combinations of
n items. Notice that our approach differs and complements
other measures of the pace of discovery recently proposed.
For example, the authors of Refs.8, 73 have investigated the
number of all possible valid combinations that can be created
by using the elements acquired so far as a proxy of the level
of innovation of a given system. In this way, the potential
for new discoveries is accounted for, rather than the actual
number of novel combinations observed in a system and their
rate of appearance.

As we have shown through the analysis of empirical se-
quences of music listening records, higher-order Heaps’ ex-
ponents can be used to further classify users of Last.fm with
the same rate of discovery of new songs or new artists. The
higher-order Heaps’ exponent can indeed tell apart different
ways to explore the same set of songs in terms of number of
different associations of consecutive pairs or triples of songs.
Analogously, we found that higher-order Heaps’ exponents
can uncover different patterns in the use of words in different
texts. Titles of peer-reviewed papers published in scientific
journals show more creative combinations of words, than the
texts of narrative books. They indeed exhibit many more new
n-grams, even if the total set of words used is similar in length.
Overall, our analysis shows that the space of possibilities
grows in a complex way, which does not depend solely on the
balance between old items to exploit and new ones to explore,
but also on the structure of their associations. Notice, however
that in our framework we have considered all associations
of consecutive items in a sequence as possible discoveries.
This is certainly a strong assumption, which might not always
be valid. For instance, in the context of a written text, the
last word of a paragraph and the first word of the following
paragraph, are not necessarily related to each other and could
be discarded from the sequence of pairs to be analyzed. The
problem can be solved by filtering out all such cases, as we
have done for books in Gutenberg in Fig. S5, obtaining similar

results in terms of 1st-order and higher-order Heaps’ expo-
nents. In other contexts, it might be necessary to better tailor
the precise definition of “novel combination” according to
the nature of the sequence being analysed and the underlying
research question.

We have then focused our attention in understanding the
underlying mechanisms that can trigger higher-order novelties.
We have proposed a new modelling framework, the ERRWT
which takes into account not only the exploration rate of new
items, but also the propensity to explore the same content in
a more creative way. Considering that pairs of items can be
seen as the links of a network, the model is based on a process
of network exploration and on the co-evolution of the network
structure with the dynamics of the exploration process. The
model considers a reinforcement of the visited links and the
triggering of new nodes and links whenever new nodes or
links are explored. Not only the ERRTW model is able to
reproduce the higher-order Heaps’ exponents extracted from
real data, but also provides a new intuition of how the space
of possibilities grows over time, shedding light on the under-
lying mechanism in which novel elements and combinations
emerge.

We acknowledge there are various ways in which our model
can be improved and generalized. For example, future work
should investigate the interplay between initial knowledge, ei-
ther of the individual or of a group, and the pace of discovery
at various orders during the exploration process, or the influ-
ence of recommendation algorithms. In our model, we have
supposed that the links all start with the same weight, which
can be a too strong assumption in certain contexts. More-
over, we have assumed to trigger new links with a uniform
probability. It would be interesting to study cases in which
the space has some preferential pathways, for example rep-
resented by an underlying network structure. This could be
implemented in our model by limiting the addition of new
links to only those permitted by an underlying network given
as an input to the model. Alternatively, more complex ways
to trigger edges, such as preferential attachment mechanisms,
could be considered 74, 75. Finally, we have not considered the
presence of semantic correlations in the temporal sequence
of visited items, which can be a consequence of the interplay
between the network topology and a predisposition to move
within items semantically close to the recent ones, reinforc-
ing a clustered structure. It would indeed be interesting to
use higher-order Heaps’ exponents and the ERRWT model
to study phenomena related to waves of novelties2 and popu-
larity76. Moreover, the ERRWT model could be extended to
a multi-agent model to study how different agents would co-
operate and diffuse knowledge14, 37, also taking into account
the presence of a limited attention capacity and memory that
could influence the rise and fall of popular items77. We believe
that our model can be directly used to answer these questions
and, more in general, to better understand the fundamental
mechanism behind innovation and creativity.
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Methods
Data
In this work we consider three different data sets: music
listening records (Last.fm), books (Project Gutenberg), and
scientific articles (Semantic Scholar).

Last.fm is a digital platform for music born in 2002, famous
for logging all listening activities of its users, providing both
personal recommendations and a space to interact with other
users interested in music78. In this manuscript, we use a data
set presented in Ref.79 and available at Ref.80. This data set
has been obtained and used according to terms and conditions
of Last.fm78, and can only be used for non-commercial use80.
It contains all listening records of about 1000 users. In order to
have sequences long enough for statistically relevant fits, only
users with more than 1000 logs have been retained. The final
data set contains 890 users having a median number of listened
records of 13 985. Each record contains the timestamp at
which a user listened to a given song. In the database, each
song is associated to a title, the artist’s name and a unique
MusicBrainz Identifier (MBID), which can be used to obtain
additional metadata81. Using this information, we are able to
create, for each user, a temporally ordered sequence of songs
together with the associated sequence of artists. It is worth
noting that the behavior of each user might be influenced
by additional factors, such as recommendation algorithms.
While the specifics of these procedures are not known in
details, we expect that they would not drastically alter our
main findings2. They may, for example, impact only the
numerical values obtained, without affecting the fundamental
mechanisms captured by our modelling approach.

Project Gutenberg is an open access text corpus containing
more than 50 000 books of different nature82. This corpus is
made of public domain books, with expired copyrights, which
can therefore be disseminated freely and legally. Here, we
make use of the Standardized Project Gutenberg Corpus83,
which allows to download and process an updated version of
the open corpus. Using Google’s Compact Language Detector
3 (cld3 package in Python), we filter out all non-English
texts. We then discard all texts with less than 1000 words,
retaining a total of 19 637 books with a median number of
50 726 words. A sequence of events for each book is hence
created with the lemmatized words, disregarding punctuation
and putting all characters in lower case. We also extract stems
from each word using the English Snowball stemmer84—a
more accurate extension of the Porter stemmer85—, which is
not as aggressive as the Lancaster stemmer86.

Semantic Scholar is a recent project with the scope of fa-
cilitating scientific analysis of academic publications87. It
provides monthly snapshots of research papers published in
all fields, publicly and freely accessible through the Semantic
Scholar Academic Graph (S2AG, pronounced “stag”)88. This
database (1st Jan. 2022 snapshot) contains about 203.6M pa-
pers, 76.4M authors, and 2B citations, obtained in accordance
with the project terms and conditions89. It also classifies each

paper into one or more fields of study90, for a total of 19
different fields. For simplicity, we associate each paper to its
first (and most relevant) field of study. To create the sequences
to analyze, for each field we consider the first 1000 journals
in terms of number of English papers. Then, for each journal,
we order the published papers based on the respective year
of publication, volume, issue, and first page. When some of
this information is not available, the Semantic Scholar unique
ID of the paper is also used in the ordering process. Thus, for
each paper, we extract and lemmatize their title, similarly to
what done for the Project Gutenberg. Finally, a sequence of
events is created for each selected journal, concatenating the
lemmatized words in the titles of each paper in their temporal
order, for a total of 19 000 sequences with median length of
9 114.5. Associated to each sequence, we also consider the
sequence of stemmed words for further analysis, similarly to
the Project Gutenberg corpus..

Power-law fit
Fundamental for the estimation of the higher-order Heaps’
exponent of a sequence is the power-law fitting procedure
for the number of novel n-tuples Dn(t) as a function of the
sequence length t, with n ≥ 1. The sequences analyzed in this
manuscript come from very different contexts, from empirical
data sets to model simulations. We thus need to take into
consideration all those cases that show a transient regime—
whose length might also depend on the system structure37—in
which the pace of discovery can fluctuate before reaching its
stationary value. Therefore, we fit each sequence according
to the following procedure. To reduce computational times,
we first logarithmically sample 1000 real points in the range
[1,T ], where T is the length of the sequence. Considering their
integer part, we discard all the duplicates that may be produced
when some sampled points differ only for the decimal part. We
thus obtain a set of k integer times {ti}i=1,...,k between 1 and
T . Due to the removal of duplicates, k can be equal or smaller
than 1000. If T ≥ 1000, that is the case of all sequences
analyzed in this manuscript, then this process results in k ≥
424 points. Taking into account that the associated sequence
of n-tuples has length T −n+1, we thus consider the points
{(ti −n+1, Dn(t))}i=1,...,k in logarithmic scale, i.e.,

(xi,yi) = (log10(ti −n+1), log10(Dn(t))) , (2)

with i= 1, . . . ,k. In order to neglect the initial transient regime,
but still have enough points for a sufficiently significant fit,
we select only the last 100 of such points. We hence look for
the best fit of {(xi,yi)}i=k−100+1,...,k by optimizing the linear
function y = a+bx, with a ≥ 0, using the tool curve fit
of the Python package Scipy91. The constraint a ≥ 0 is
necessary to avoid that the fitted Heaps’ exponent is greater
than 1, which could happen when the initial transient regime
differs significantly from the asymptotic one and could hence
produce wrong fits. Finally, if a and b are the best parameters,
then the power-law fit of the Heaps’ law is Dn(t) ≈ 10a tb,
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that is, the nth-order Heaps’ exponent is approximated by the
slope b of the fit.

Urn Model with (Semantic) Triggering
The Urn Model with Triggering (UMT) is a random gener-
ative model for discovery processes, producing a sequence
of extractions of balls of various colors from an urn. First
introduced in Ref.1, it successfully reproduces the main fea-
tures of empirical discovery processes1, 6, 59, 92. The UMT can
be thought as an extension of Pólya Urn processes33, 34, 93–95

that includes the concept of adjacent possible26 in the way
a novelty can trigger further ones2, 32. Differently from the
classic urn of Pólya in which only balls of existing colors
can be added to the urn, the UMT features a growing number
of colors, that is, the set of possible events expands together
with the exploration process. It is hence the process itself that
shapes the content of the urn by reinforcing elements already
discovered and adding new possibilities.

Supposing that the urn initially contains N0 balls of different
colors, the UMT works as follows. At each discrete time-step
t, a ball is randomly drawn from the urn with uniform probabil-
ity, and its color is marked in a temporally-ordered sequence
of events S at position t. The extracted ball is then put back
in the urn together with other ρ copies of the same color, in a
rich-get-richer manner74. This mechanism ensures that fre-
quently adopted items, visited places, or exploited concepts
will be more and more likely to be adopted, visited, or ex-
ploited in the future. Furthermore, if the color of the extracted
ball has never appeared before in S , this event is considered
to be a novelty. As a consequence it triggers new possibilities,
represented by the addition of ν + 1 balls—each of a new
different color—into the urn. This triggering mechanism thus
ensures the expansion of the space of possibilities.

In a different version of the model, the Urn Model with
Semantic Triggering (USMT), the sequences produced con-
tain semantic correlations between consecutive extractions, as
seen in the data1. The UMST works similarly to the UMT, but
with the introduction of semantic groups for colors. In par-
ticular, at each triggering event, supposing that the triggering
color belongs to the group A, the new ν + 1 colors are as-
signed to a common new group B, semantically related to the
triggering color. Therefore, a color i of label A is semantically
related to all other colors of label A (siblings), the color that
triggered the addition of A in the urn (parent), as well as all
colors of label B that have been triggered by i (children). Tak-
ing this into consideration, at each extraction, the probability
to extract each color changes depending on a fixed parameter
η ∈ [0, 1]. A ball has weight 1 if its color is semantically re-
lated to the one extracted on the previous time-step, otherwise
it has weight η . Notice that we can recover the original UMT
by simply considering η = 1.

Finally, as shown in Ref.1, the effect of N0 is negligible at
large times. For simplicity, we thus consider N0 = 1 in our
simulations of both UMT and UMST.

Edge-Reinforced Random Walk
Given a weighted connected graph G = (V , E ) with N =
|V | vertices (nodes) and M = |E | edges (links), the Edge-
Reinforced Random Walk (ERRW) is a dynamical process
that reinforces the weights of the visited edges in E , leading
to Heaps’ laws3. The weights of the links in the network
quantify the strength of the relationship among nodes, and
are encoded in a time-varying adjacency matrix W t ≡ {wt

i j}.
This matrix features non-zero entries wt

i j when at time t the
link connecting node i and node j is different from zero. Let
us assume that at time t = 0 each link (i, j) ∈ E has weight
w0

i j = 1, while all other weights are set to zero. At each
time step, a walker at node i walks to a neighboring node j
with a probability that is proportional to the weight of the
outgoing links, i.e., P(i → j) = wt

i j/∑l wt
il . After moving to

the randomly chosen node j, a reinforcement ρ is added to
the weight of the traversed edge (i, j), i.e., wt+1

i j = wt
i j +ρ .

Starting from an underlying structure given by the graph G,
the ERRW can generate sequences of visited nodes with a
tunable pace of discovery obtained by properly calibrating
the reinforcement parameter ρ3. Because of the interplay
between structure and dynamics, different structures might
require different values of the reinforcement parameter to
reach the same pace of discovery. For example, higher values
of ρ must be chosen for a denser graph. This is similar to
what happens in the UMT, in which we need higher values
of the reinforcement parameter ρ to obtain the same pace of
discovery as we increase the triggering parameter ν .

Edge-Reinforced Random Walk with Triggering
In this manuscript we propose a generative model of a dis-
covery process based on the exploration of a growing net-
work, i.e., the Edge-Reinforced Random Walk with Trigger-
ing (ERRWT), which can be considered as a UMT-inspired
extension of the ERRW model. For this model, any initial
connected network G0 = (V 0, E 0) with N0 = |V 0| ≥ 1 nodes
and M0 = |E 0| links can be used. Let us suppose that the
nodes of the graph are indexed, that is, V 0 = {1, 2, . . . , N0}.
Similarly to the ERRW model, we assume that all initial links
(i, j) ∈ E 0 have weight w0

i j = 1. The initial node to start the
exploration process is randomly selected from V 0. We let
the graph evolve during the process, adding new nodes and
links. Let Gt = (V t , E t) be the graph at time t. The struc-
ture of the growing network is encrypted in the time-varying
weighted adjacency matrix W t ≡ {wt

i j}, where wt
i j represents

the weight of the link (i, j) at time t. We assume here that Gt

is an undirected graph, so the matrix W t is symmetric, and
any variation of wt

i j affects wt
ji too. Supposing that at time t

the ERRWT is positioned on node i of Gt , the model obeys to
the following rules.

• Choice of next node. The ERRWT randomly moves
to a neighbouring node j of the current node i. The
probability to move to node j depends on the weight of
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the outgoing links of i, i.e.,

P(i → j) =
wt

i j

∑l wt
il
. (3)

• Edge reinforcement. The weight of the chosen edge (i, j)
is reinforced by ρ , that is,

wt+1
i j = wt

i j +ρ. (4)

• Edge triggering. If the walker never traversed the chosen
edge (i, j) before, i.e., it is a new link, then ν2 +1 new
possible links are added to the network. These links are
connections of unitary weight between j and previously
visited nodes l = l1, . . . , lν2 in V t , for which the link
( j, l) has never been traversed by the walker. If one of
these edges already exists in the space of possibilities,
its weight is reinforced by one more unit, otherwise, it is
added to E t+1. In other words, we have

wt+1
jl = wt

jl +1, l = l1, . . . , lν2 | l old,( j, l) new. (5)

• Node triggering. If the walker never visited the chosen
node j before, i.e., it is a new node, then ν1 +1 new pos-
sible nodes are added to the network; these are connected
to node j with unitary weights. Mathematically, we have

V t+1 = V t +{l}l=|V t |+1, ..., |V t |+ν1+2

wt+1
jl = 1, l = |V t |+1, . . . , |V t |+ν1 +2.

(6)

Notice that if the chosen node j is new, then also the tra-
versed edge (i, j) is necessarily new as well. Therefore,
in this case there is also a triggering of ν2+1 edges from
j to other previously visited nodes, as described before.

Finally, in this manuscript, we let the initial graph G0 be
a small graph that emulates the triggering mechanism intro-
duced, shown in Fig. S11 in SI. This is a regular tree with
branching parameter ν1 + 1 and two levels, where only the
leaves are considered new, since all other nodes have already
triggered. In other words, a root node has triggered ν1 + 1
nodes connected to it, and again these nodes have also trig-
gered each ν1+1 other nodes. Therefore, we initially suppose
that the triggered nodes, which are ν1 +2 in number, are all
known to the walker at the start of the simulation, and do
not trigger again when later explored. Moreover, we assume
that all links are new to the walker and have unitary weight.
This initialization makes sure that in the initial stages of the
simulation there are enough possible links between already
known nodes. As we show in Sec. S4 in SI where we test dif-
ferent initial graphs, the initialization procedure only affects
thermalization times, and becomes irrelevant asymptotically.

Data availability
The data used in this manuscript is publicly available at
Refs.80, 83, 88, and has been obtained and used according to
their terms and conditions.

Code availability
All the code used to download, process and analyse the data
and the models can be found at Ref.96.
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