
ORIGINAL RESEARCH

Synthese          (2025) 205:23 
https://doi.org/10.1007/s11229-024-04844-0

Abstract
Manifold learning and effective model building are generally viewed as fundamen-
tally different types of procedure. After all, in one we build a simplified model 
of the data, in the other, we construct a simplified model of the another model. 
Nonetheless, I argue that certain kinds of high-dimensional effective model build-
ing, and effective field theory construction in quantum field theory, can be viewed 
as special cases of manifold learning. I argue that this helps to shed light on all 
of these techniques. First, it suggests that the effective model building procedure 
depends upon a certain kind of algorithmic compressibility requirement. All three 
approaches assume that real-world systems exhibit certain redundancies, due to 
regularities. The use of these regularities to build simplified models is essential for 
scientific progress in many different domains.

Keywords Scientific Models · Effective Theories · Renormalization Group · 
Machine Learning · Manifold Learning · Computational Modeling

Schlüsselwörter Wissenschaftliche Modelle · Effektive Theorien · 
Renormierungsgruppe · Maschinelles Lernen · Manifold Learning · 
Computergestützte Modellierung

Mots clés Modèles scientifiques · Théories effectives · Groupe de 
renormalisation · Apprentissage automatique · Apprentissage de variétés · 
Modélisation computationnelle

Received: 31 December 2023 / Accepted: 25 November 2024
© The Author(s) 2024

Effective theory building and manifold learning

David Peter Wallis Freeborn1

  David Peter Wallis Freeborn
david.freeborn@nulondon.ac.uk

1 Northeastern University, London Devon House, 58 St Katharine’s Way, London  
E1W 1LP, UK

1 3

http://orcid.org/0000-0002-2117-8145
http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-024-04844-0&domain=pdf&date_stamp=2024-12-28


Synthese          (2025) 205:23 

Palabras clave Modelos científicos · Teorías efectivas · Grupo de 
renormalización · Aprendizaje automático · Aprendizaje de variedades · 
Modelado computacional

1 Introduction

Manifold learning is a very widespread family of dimensional reduction techniques 
in machine learning, in which high-dimensional data is projected onto a lower-
dimensional manifold, while preserving some salient properties of the original data 
(Hinton & Roweis, 2002; van der Maaten & Hinton, 2008; Tenenbaum et al., 2000; 
Hinton & Salakhutdinov, 2006; McInnes, 2018; Roweis & Saul, 2000; Belkin & 
Niyogi, 2001). This technique is based on the assumption that many high-dimen-
sional datasets contain regularities that allow them to be conveniently compressed 
or summarized with a simpler model. Likewise, effective theory or model construc-
tion is a family of techniques in physics and the computational sciences, in which a 
high-dimensional theory or model is reduced to a lower-dimensional one. Effective 
theory building is commonly used in quantum field theory, where the mathematical 
problems have led to the construction of lower-dimensional effective field theories, 
and in many computational sciences, where there are many high-dimensional mod-
els, highly insensitive to the vast majority of parameter combinations (Burgess, 2020; 
Duncan, 2012; Transtrum et al., 2015; Machta et al., 2013; Raju et al., 2018).

Manifold learning and effective model building are generally viewed as funda-
mentally different types of procedure. After all, in one we build a simplified model of 
the data, in the other, we construct a simplified model of the another model (Quinn et 
al., 2022; Monsalve-Bravo et al., 2022; Teoh et al., 2020). Indeed, they use the term 
model to mean two importantly different things.

 ● Machine Learning Models are functions that map from high-dimensional input 
data to lower-dimensional outputs, such as classifications or predictions.

 ● Scientific/Computational Models are mathematical representations of physical 
systems, typically mapping from theoretical parameters to observable predic-
tions.

Nonetheless, I argue that certain kinds of high-dimensional effective model build-
ing, and effective field theory construction in quantum field theory, can be viewed as 
special cases of dimensional reduction techniques akin to manifold learning. I argue 
that this helps to shed light on some underlying principles shared by all of these 
techniques. First, it suggests that the effective model building procedure depends 
upon a certain kind of algorithmic compressibility requirement. All three approaches 
assume that real-world systems exhibit certain redundancies, due to regularities. The 
use of these regularities to build simplified models is essential for scientific progress 
in many different domains.

These topics have generated significant philosophical interest in recent years. 
There has been an ongoing debate over how effective theories and related methods 
can inform and refine scientific realism, particularly in the context of quantum field 
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theory. Proponents of effective realism (Wallace, 2006; Williams, 2019; Fraser, 2018, 
2020a, b; Miller, 2017) argue that these methods can inform and refine a localized, 
theory-specific approach to realism by identifying the elements of quantum field the-
ory (QFT) models that are empirically robust and likely to persist through scientific 
progress. However, this defense has been challenged by critics like Ruetsche (2018), 
who argue that while effective realism engages directly with successful aspects of 
current physics, it fails to fully mitigate skeptical challenges. Ruetsche suggests that 
these issues merely retreat to a different level rather than being resolved. Similarly, 
Rivat (2021) contends that effective theories rely on intrinsic empirical limitations 
and infinite idealizations that constrain their scope to offer reliable ontological com-
mitments. He argues that these idealizations, while useful for making accurate pre-
dictions within certain domains, pose significant challenges for ensuring the stability 
and approximate truth of theoretical representations through future theory changes.

Likewise, philosophers have debated the the related topic, reduction and emer-
gence in the context of renormalization group methods (see Sect. "Renormalization 
and compressibility"). Batterman (2002, 2011) argues that phenomena such as critical 
behavior and phase transitions require explanations that transcend simple deductive 
reductions, emphasizing the importance of renormalization group theory in under-
standing how macroscopic properties emerge from microscopic interactions. He con-
tends that the renormalization group theory reveals how different scales interact and 
influence each other, demonstrating that certain macroscopic behaviors cannot be 
fully reduced to microscopic laws. Similarly, Morrison (2012) highlights how renor-
malization group theory exemplifies the interplay between reduction and emergence 
in practice. Conversely, Butterfield (2014) proposes that reduction and emergence 
are not mutually exclusive, arguing that these techniques provide a means to connect 
micro and macro levels, thereby reconciling reductionism with emergent properties.

In Sect. 2, I explain the dimensional reduction. I introduce manifold learning as 
a particular case of this in Sect. 3. In Sect. 4, I present the manifold hypothesis, and 
suggest one way to explicate it in a partly formal way. In Sect. 5, I introduce the 
sloppy models program. In Sect. 6, I argue that an effective model building technique, 
the manifold boundary approximation method can be viewed as akin to a special kind 
of manifold learning. In Sect. 8, I introduce effective field theories, and in Sect. 9, I 
argue that it can be related to both the sloppy models program and manifold learning. 
I conclude by drawing some overall analogies between these approaches.

2 Machine learning and dimensional reduction

Imagine that a machine learning specialist wants to build an artificial intelligence tool 
for recognizing handwritten numerical digits. As input data, they train their tool on 
the MNIST (Modified National Institute of Standards and Technology) database, a 
large collection of handwritten digits commonly used for training various image pro-
cessing systems. The training data contains 60,000 28 × 28 pixel images of handwrit-
ten digits ranging from 0 to 9 (LeCun et al., 1998, 2010). The aim is build a tool that 
can, in some sense, latch onto and generalize from key features of these handwritten 
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digits, and which can then be applied to correctly interpret new handwritten images 
of digits, from outside of the training data.

In effect, the artificial intelligence tool serves as a model of the data. We can think 
of such a model as a function, f, from a real-valued vector of the 784 pixels in each 
image, to a vector of ten real-valued output classifications, giving some measure of 
how likely the model thinks it is that the image represents each possible digit 0–9,1

 f : R784 → R10. (1)

This general task, finding a function, mapping a real, N-dimensional data-vector to 
an M < N -dimensional output vector, is very common across machine learning. 
Indeed, almost any machine learning task can be represented as the task of finding a 
function of this form.2 This is closely related to standard ways to think about model-
building across the computational empirical sciences more generally.3

Our machine learning specialist might not merely seek the most predictively accu-
rate model; often they will also want the model to be simple. Simpler models usually 
make lower demands on computational resources for training, inference and appli-
cation; the results may be more robust to small modifications; they may be easier 
to interpret or explain; and they may be less inclined to overfit the training data, 
allowing for better generalizability to new data. Furthermore, a variety of technical 
problems are known to arise when the dimensionality of the data is very high com-
pared to the number of datapoints, resulting in the so-called curse of dimensionality 
(Bellman, 1957, 1961).4

Fortunately, the key features higher-dimensional real-world data can often be con-
veniently summarized by models with lower numbers of parameters. For instance, 
the salient variations in the MNIST handwritten digits might be summarizable by 
a much smaller number of factors or dimensions—rather than specifying each indi-
vidual pixel, perhaps we can summarize them with a smaller number of identifiable 
curves, loops and lines. This task is at the heart of machine learning, algorithmic 
compression, and computational model-building more generally.

Thus, an obvious approach to simplify the model would be to first build a lower-
dimensional model of the data. That is, instead of applying our model, f : RN → RM , 
to the data directly, we could first reduce the dimensionality of the data with a model, 
m : RN → RK , and then apply a simpler model, g : RK → RM , with N < K < M . 

1 For instance, in a Bayesian model, these real-valued output classifications could represent probabilities.
2 For example, we can represent almost any predictive AI task (e.g. image classification, speech recogni-
tion, natural language processing tasks such as sentiment analysis and machine translation, recommender 
systems, medical diagnosis, financial forecasting, etc.) or generative AI task (e.g. text generation with 
a large language model or image generation with an adversarial network), as the task of finding a func-
tion of this form (Bishop, 2006; Hastie et al., 2009; LeCun et al., 2015; Vapnik, 1995; Murphy, 2012; 
Goodfellow et al., 2016).

3 For instance, see Breiman (2001), or for related examples, see Gutenkunst et al. (2007), and see William-
son (2009), Sozou et al. (2017), Sullivan (2022) for some philosophical considerations.

4 Loosely speaking, the curse of dimensionality problems refer to the general observation that, as the 
dimensionality of the data grows, the volume grows so rapidly that finite data becomes sparsely dis-
tributed and increasingly orthogonal, making distance measures less able to extract useful information.
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If the two processes give the same outputs, then we can think of f as the composition 
of g and m, as in Fig. 1. However, in reality this is an unrealistic assumption: the two 
processes should give almost the same outputs, but some information will be lost 
when compressing the model. We call the high-dimensional space the feature space 
of the data, and the low-dimensional space the latent space. This process is now 
widespread in machine learning (see Pearson (1901), Fisher (1936), Izenman (1975) 
for some historical background to these techniques, and for contemporary examples, 
see Jolliffe and Cadima (2016), Hinton and Roweis (2002), van der Maaten and Hin-
ton (2008), Tenenbaum et al. (2000), Hinton and Salakhutdinov (2006), McInnes 
(2018), Roweis and Saul (2000), Belkin and Niyogi (2001)).

The key is that our dimensional reduction model, m, must preserve certain salient 
local or global features of the data, even as it throws out some of the information 
contained in the original data. The salient features encoded in the data might vary, 
depending on the task at hand. They might include geometric properties (such as 
distances between data points, angles or local curvatures) or topological proper-
ties (including shape and connectivity features like clusters, holes, and loops). For 
instance, with our MNIST data, perhaps different ways of writing the same digit (like 
a closed 4’ versus an open )  might form distinct subclusters within a larger cluster. 
Topological information could help in understanding the transition between different 
writing styles (for example, a curly 9’ might continuously morph into a straight )). 
We define cost functions to measure how well certain salient properties of the data 
are preserved by the function m.

3 Manifold learning

Roughly speaking, a manifold is a topological space that locally resembles flat Euclid-
ean space.5 Computer scientists have found that real-world data in RN  often lie close 
to a lower-dimensional manifold, M, which can be embedded into RK , K < N . A 

5 More fully, an n-dimensional topological manifold is a topological space M which satisfies three con-
ditions: First, it must be locally Euclidean, meaning that for every point p in M, there exists an open 

Fig. 1 A category theoretic representation of the direct and simplified modeling approaches, assum-
ing that they give the same outputs. Here, RN  is the feature space, RK  gives a latent space offering a 
simplified representation of the data, and RM  is the output space. The functions f, m, and g represent 
the original predictive model, the dimensionality-reducing model, and the simplified predictive model, 
respectively
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suitable embedding function from RN  to RK  could provide a very convenient model 
of the data, one that preserves salient topological properties also being sensitive to 
nonlinear relationships between datapoints. In practice, manifolds seem to carry just 
the right amount of structure for this task (Hinton & Roweis, 2002; van der Maaten 
& Hinton, 2008; Tenenbaum et al., 2000; Hinton & Salakhutdinov, 2006; McInnes, 
2018; Roweis & Saul, 2000; Belkin & Niyogi, 2001).

Roughly speaking, manifold learning is a family of dimensional reduction algo-
rithms that progress according to the following scheme.

 ● We begin with the dataset with datapoints xi ∈ RN . We posit that there exists a 
manifold M of dimension K < N , embedded in RN , such that the data points lie 
on or close to the manifold.

 ● The goal is to find an embedding function m : RN → RK  that projects each high-
dimensional datapoint in the feature space onto the K-dimensional latent space, 
RK .6 It maps RN  onto RK  such that the images m(xi) preserve the intrinsic geo-
metric and topological structure of the original data xi on the manifold M, within 
the constraints of the reduced dimensionality.

 ● We define a cost function, 

 C : RN × RK → R, (2)

 which assigns a real number to each pair of points, one from the feature space and 
one from the latent space, designed to measure how well a map preserves salient geo-
metric and topological features of the data (i.e. structural features of M).

 ● We find an embedding, m, that minimizes the cost function.
 ● Finally, the reduced-dimension data points, yi, are represented in the lower-di-

mensional latent space by their images under the embedding, m(xi) = yi ∈ RK .

When applying this procedure, it is essential to avoid overfitting, in which the model 
captures noise in the data, thereby failing to provide generalizable insights about 
the data. In the extreme case, without any procedures to avoid overfitting, we might 
represent all the data with a one-dimensional manifold, a curve passing through each 
datapoint. While this curve would perfectly ‘fit’ the data, it would fail to capture the 
simpler, underlying structures that we seek to learn

Therefore any manifold learning technique will generally require us to implement 
some techniques to prevent overfitting, often in the form of a smoothness constraint. 
There are three widely-used (non-exclusive) approaches to this.

neighborhood U around p that is homeomorphic to an open subset of Euclidean space Rn, where n is a 
fixed integer representing the manifold’s dimension. This ensures that sufficiently small neighborhoods 
in M locally resemble flat Euclidean space. Second, M must obey the Hausdorff condition, that for any 
two distinct points in M, there exist disjoint open neighborhoods. This ensures that points can always be 
separated by open sets. Finally, M must be second-countable, meaning it possesses a countable basis for 
its topology. See Guillemin and Pollack (1974), Hirsch (1994) for further details.

6 The function m is an embedding if it is a smooth, injective, immersion, whose underlying continuous 
function is a homeomorphism onto its image (see Hirsch (1994 pp. 21–29) for further details).
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 ● Constraints on the manifold: We explicitly restrict the class of allowable mani-
folds to those meeting certain smoothness criteria. I will discuss one example, the 
reach constraint in Sect. 4.7

 ● Cost Function: We favour smoother and simpler manifolds implicitly in the cost 
function. For example, in the Locally Linear Embedding algorithm (Roweis & 
Saul, 2000), we mitigate the effect of noise by approximating each point as a 
linear combination of its nearest neighbors. These nearest neighbours are likely 
to be part of the same smooth patch of the manifold. Overly contorted manifolds 
are often disfavored by this process.

 ● Regularization: We further modify the cost function to penalize in-
sufficiently smooth solutions. Such a cost function might look like, 
Ctotal(xi, yi) = Cbase(xi, yi) + R(yi), Where Cbase measures how well the 
low-dimensional representation yi preserves the structure of the original data xi, 
and R is a regularization term that increases with the ’roughness’ of the embed-
ding (Hastie et al., 2009).

Let us consider a very simple example of manifold learning (see Tenenbaum et 
al. (2000)) and loosely show how to apply one possible local manifold-learning 
algorithm,8 Locally Linear Embedding (Roweis & Saul, 2000). Suppose that our data 
is composed of points in a three-dimensional feature space, R3. Further suppose that 
the datapoints tend to lie close to a surface, described by the swiss roll parametric 
equations,

 x1 = t cos(t)  (3)

 x2 = s  (4)

 x3 = t sin(t),  (5)

where x1,2,3 are some choice of the three coordinates, and t and s are parameters (see 
Fig. 2a).9

Let us suppose that we want to reduce the dimensionality of this data to a latent 
space of just two dimensions, whilst trying to preserve the geometric features of the 
original global non-linear structure. If the datapoints lie near a two-dimensional man-
ifold as we hope, then there should be a linear mapping from the coordinates of each 
neighbourhood to coordinates on the manifold which preserves this structure. So one 
approach could be to proceed as follows. First, we identify the k nearest neighbors for 
each point in the dataset, and some choice of integer, k, using on Euclidean distance 

7 These constraints are important in the theoretical studies of manifold learning. But they are not so widely 
used in practically useful algorithms, as directly enforcing such constraints can be computationally 
expensive (Belkin et al., 2006; Fefferman et al., 2016; Berenfeld et al., 2022).

8 We can loosely distinguish two kinds of manifold learning algorithm, local and global methods (Cayton, 
2005) For local methods, the cost function considers the placement of each point with respect to its neigh-
bors, whereas for global methods tend to consider the relative placement of all points.

9 The data was generated using the scikit-learn dataset, make-swiss-roll (Pedregosa et al., 2011).
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Fig. 2 a 2500 randomly generated datapoints in R3, lying close to the swiss-roll surface. The colours 
are for visualization only b The datapoints transformed under the LLE (k = 20) algorithm, represented 
in R2. Corresponding datapoints keep their colour from Fig. 2a.
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in the R3 space. We assume that each data point and its neighbors lie to close to a 
locally linear patch of the manifold. Then, each point xi can be reconstructed from 
a linear sum of the coordinates of its neighbor, xjs. As such, we minimize the cost 
function, ε,

 
ε = |xi −

∑
j

Wi,jxj |2, (6)

where the weights Wi,j  give the contribution of the jth data point to the ith recon-
structed point.

Finally, we find the corresponding points, yi, in the latent space, R2, that best 
preserve these local weights. This is done by minimizing another cost function, ϕ,

 
ϕ = |yi −

∑
j

Wi,jyj |2, (7)

where yi, yj  are the corresponding lower-dimensional embeddings of xi and xj  
respectively. The result is a lower-dimensional expression of the original data, pre-
serving some of its original geometric features, albeit with some (hopefully small) 
loss of information. Figure 2b shows the application of this algorithm to the data from 
Fig. 2a: our swiss roll has been unfurled and flattened into a pancake.

4 The Manifold hypothesis

It is widely posited that all such manifold learning techniques share a common funda-
mental assumption (Cayton, 2005), often referred to as the manifold hypothesis. This 
assumption has rarely been stated rigorously. However, roughly speaking, it posits 
that high-dimensional real-world data can be sufficiently well-represented by data 
lying on a lower-dimensional latent manifold, embedded within the feature space 
(see You and Ma (2011), Athanasopoulou et al. (2014), Narayanan and Mitter (2010), 
Bordt et al. (2023), Gorban and Tyukin (2018), Brown et al. (2022), Ivanov et al. 
(2021), Meilă and Zhang (2023), Bengio et al. (2013), Izenman (2012), Brahma et 
al. (2016)).10

It will be helpful to distinguish a local manifold hypothesis from a global manifold 
hypothesis. Given some dataset, the local manifold hypothesis states this dataset can 
be well-represented by data lying on a lower-dimensional latent manifold, embedded 
within the feature space. On the other hand, the global manifold hypothesis is the 
proposition that many real-world datasets can be effectively compressed by this kind 
of manifold learning; indeed that this is a prevalent feature of real-world datasets. 

10 Each individual manifold learning technique also makes a number of further assumptions. However 
this fundamental assumption, the manifold hypothesis is, by definition, shared by all manifold learning 
techniques.
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One plausible and suitably general way to explicate the local manifold hypothesis 
could be as follows.11

Let X ⊂ RN  be a high-dimensional feature space, with datapoints, xi ∈ X . Let 
GX (K, V, τ) be the class of sub-manifolds in X  with dimension, K, K-dimensional 
volume ≤ V  and reach ≥ τ .12 Then the manifold hypothesis is the assumption that, 
for some choice of K < N, V, τ , there exists a manifold, M ∈ G, such that,

 L(M, {xi}) < ϵ, (8)

where L(M, {xi}) is some measure of the average shortest distance (perhaps the 
mean-squared shortest distance) between the datapoints {xi} and the manifold M, 
according to some choice of distance (possibly, but not necessarily, the Euclidean 
distance in RN ), and ϵ ∈ R is some closeness threshold.

We can view the manifold hypothesis as an data compressibility assumption. 
The high-dimensional dataset contains redundancy. As such, the data can be well-
represented with the use of a lower-dimensional model, without significant loss of 
information.

Expressed in this way, the local manifold hypothesis asserts that there exists a 
manifold M in X  such that the average distance L(M, P ) is less than or equal to 
some specified threshold, chosen based on the desired level of proximity between the 
data distribution and the manifold. For different applications of the hypothesis, such 
as with different types of dataset or different manifold learning algorithms, we might 
choose to consider different manifold parameters, and different ways to measure the 
average distance and the threshold.

The global manifold hypothesis asserts that this applies to many real-world datas-
ets. A general argument for the hypothesis has not been put forward; however, it has 
often been presented as a reason why machine learning is possible at all (see Cayton 
(2005), Olah (2014), Fefferman et al. (2016)). After all, the higher the dimension of 
the data is, the harder machine learning tasks generally become. The global mani-
fold hypothesis suggests that machine learning algorithms can potentially reduce the 
complexity of these tasks, by latching onto a smaller number of salient regularities 

11 The main principles of this definition come from Fefferman et al. (2016). They define an algorithm to test 
the manifold hypothesis within a certain domain, for independent and identically distributed probabilistic 
data supported on a separable Hilbert Space. For our general purposes, it serves to loosen some of these 
requirements, whilst restricting ourselves to finite data on an N-dimensional space of real-numbers.
12 We only want to consider manifolds above a certain reach and below a certain volume to avoid over-
fitting; after all, manifolds of sufficiently large volume or low reach could more easily capture every 
datapoint. Following Fefferman et al. (2016), the reach, τ , of a manifold is defined as the largest distance 
such that any point within the distance τ  from the manifold has a unique closest point on the manifold. 
Sometimes loosely described as a measure of smoothness, one can more accurately think of it as a measure 
of local feature size, related to both local curvature and global bottlenecks (see Berenfeld et al. (2022) for 
a more complete explanation). The K-dimensional volume is given by the standard Lebesgue measure in 
RK . Recall (Sect. 3) that once we define a cost function for some manifold-learning algorithm, we might 
expect that such an overfitted manifold might nonetheless have a high cost, indicating that it does not prop-
erly capture the salient features of the data. In that sense, there is a risk of double-counting this requirement 
in this definition. One alternative would be to define a cost function from the outset, and require a manifold 
below a certain cost in the hypothesis. However, here I conservatively choose to stick to the approach used 
by Fefferman et al. (2016), defining the manifold hypothesis prior to specifying any cost function.
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in the data.13 For instance, the task of interpreting handwritten digits in our MNIST 
dataset is far easier than one might naively fear from the high dimensionality of the 
data; handwritten versions of the same digits can be summarized by certain common, 
higher-level features (see Yao et al. (2017) for one example).

5 Sloppy models in the computational empirical sciences

Manifold learning has usually been applied to machine learning tasks, where we wish 
to build a simple model of the data for tasks like image recognition. Now let us turn to 
a framework in the computational empirical sciences,14 known as sloppy modeling. 
Here, the task is to create a simple model of some target system, for the purpose of 
generating accurate predictions, and hopefully to better understand the system. How-
ever, we will see a strong analogy between this framework and machine learning.

In the computational empirical sciences, a model is a function from a real-valued 
vector of M ′ parameters to a real-valued vector of N ′ predictions f ′ : RM ′ → RN ′

. 
Generally, we call RM ′

 the parameter space, and RN ′
 the prediction space. Often, 

the dimensions of the parameter space might represent properties of the system theo-
retically posited by our model, whereas the dimensions of the prediction space repre-
sent observable quantities that we measure. As such, observed datapoints also lie in 
the prediction space.

We can use measurements to estimate the model parameters. Measurements are 
represented by a set of real numbered vectors in the prediction space. We write a cost 
function to measure the distance between the model predictions and the empirical 
measurements, and tune the model parameters to minimize this cost. If our model is 
predictively accurate for a given choice of parameters, then the model’s predictions 
should lie close to the measurements. Then we might then use such a model to gener-
ate further accurate predictions.

Consider this simple example.15 Suppose we want to create a computational-sci-
entific model of a pair of apparently identical pendulums, joined together with some 
string, and starting at rest but with one pendulum displaced (this is our target system). 
We can measure two things: the displacement of the first pendulum (x1) or the dis-
placement of the second pendulum (x2), each indexed by different times, t (we can 
think of as t an independent regressor variable). So if we take measurements at ten 
different times, our measurement space will be 2 × 10 = 20 dimensional. Physicists 
often model such a system as a pair of weakly coupled, identical harmonic oscillators,

13 To take a more specific example, this principle is key to explaining the possibility of certain regulariza-
tion techniques in deep learning, like dropout or weight decay, are effective (see Srivastava et al. (2014), 
Zou and Hastie (2005) for further details).
14 I will use the term computational empirical sciences to refer to the wide array of scientific disciplines 
focused on using computational methods to build empirically-supported models of highly complex, high-
dimensional target systems. This includes a wide array of fields, including, but not limited to, much of sys-
tems biology, chemistry, condensed matter physics, and many areas of engineering and the social sciences.
15 See Pain (2005 pp. 79–87) for a fuller treatment.
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x1(t) = d cos
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2
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)
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ω1 + ω2
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)
,  (9)

 
x2(t) = d sin

(
ω2 − ω1

2
t

)
sin

(
ω1 + ω2

2
t

)
.  (10)

where we have three parameters: ω1 and ω2 are normal frequencies of the system, 
representing the frequency of the pendulums oscillating with the same amplitude in 
phase and out of phase, and d is the initial displacement of one pendulum. Note that 
these natural frequency parameters are theoretical posits of our model, which we do 
not directly measure. Rather, we infer their values using our model and observations 
of the displacements.

A model is described as sloppy if its predictions are highly insensitive to most 
parameter combinations (which we call the sloppy parameter combinations), but are 
highly sensitive to a small number of parameter combinations (which we call the stiff 
parameter combinations) (see Transtrum et al. (2015), Quinn et al. (2022) for scien-
tific overviews and see Freeborn (2024) for a philosophical analysis). This allows for 
significant alterations in the values of sloppy parameter combinations, potentially by 
factors in the thousands or tens of thousands, with minimal impact on the model’s 
predictive output. Thus a model with M ′ parameters might operate with a consider-
ably lower effective dimensionality in practice. Following Freeborn (2024), we call a 
physical target system sloppy if it can be well-represented by a sloppy model, i.e. if 
we can produce an effective model that is a good description of the system. We could 
operationalize as the requirement that the datapoints lie close to an effective model 
manifold.

We can measure the sensitivity of the specific parameter combinations to the 
observed data using the Fisher Information Matrix (FIM). This gives the expected 
curvature of the log-likelihood function of the observed data in relation to the 
model parameters. The eigenvectors of the FIM are termed local or “renormalized” 
eigenparameters.16

Many real-world systems seem to depend on huge numbers of parameters. How-
ever, it becomes increasingly hard to build good models with large numbers of 
parameters. Just as in machine learning, high-dimensionality can be a major problem 
in computational scientific modeling. The utility of a sloppy model lies in its ability 

16 The Fisher Information Matrix gives the expectation of the second-order partial derivatives of the log-
likelihood function of the observed data with respect to the model parameters. Viewing this Fisher Infor-
mation “matrix” as a metric (a type (0,2) tensor), it is given by,

 
gµν(y′) = E

[
∂ log p(x′|y′)

∂y′µ
∂ log p(x′|y′)

∂y′ν

]
 (11)

where µ, ν = 1, 2, . . . , M ′, y′ is the M ′-dimensional parameter vector, x is the N-dimen-
sional predictions vector, p(x′|y′) gives the likelihood of observing the predictions x′ 
given the parameters y′ in the model, and E[·] gives the expectation with respect to the 
distribution of the observed measurements.
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to effectively capture the salient features of a dataset while demonstrating a robust 
tolerance to variations in many of its parameters. As such, sloppy systems are suitable 
targets for effective models, in which some or all sloppy parameter combinations 
can be ignored. Fortunately, scientists have found that systems across a very wide 
variety of domains are sloppy, ranging from systems biology to quantum mechanics 
to particle accelerators (Gutenkunst et al., 2007). Proponents of the sloppy models 
framework argue that the ubiquity of sloppy systems can help to explain the success 
of science (Transtrum et al., 2015; Quinn et al., 2022; Freeborn, 2024).

Hopefully, by expressing things in this way, the analogy with machine learning 
is already clear. Note that the scientific model’s prediction space, RN ′

, corresponds 
to the machine learning model’s feature space, RN . In each case, the dimensions of 
the space correspond to the real-world observable quantities in the target system; a 
measurement of each of these quantities corresponds to a datapoints in that space. 
The scientific model’s parameter space, RM ′

, corresponds to the machine learning 
model’s latent space, RM . The dimensions of this space correspond to higher-level 
theoretical quantities (parameters or latent variables) posited by our model of the 
target system. However, observe that the function f ′ in the computational empirical 
sciences takes an opposite direction to the function f in machine learning. The former 
takes us from our model parameters to the observable predictions, whereas the latter 
takes us from observable data in the feature space to tune the predicted model param-
eters. It will often be helpful to assume that such functions are invertible in both the 
machine learning and computational sciences contexts.

The effective model m′ is a function from a simplified, lower-dimensional space 
of K ′ < M ′ effective (or “renormalized”) parameters, RK′

 to the prediction space, 
RN ′

. As we will see in there next section, we can also propose a manifold boundary 
approximation function, g′, to take us from the high-dimensional, to the low-dimen-
sional prediction space. If the effective model and original sloppy model make the 
same predictions, then the relation between these functions is shown in Fig. 3. Once 
again, in reality this is an unrealistic assumption: the two models should give almost 
the same outputs, but some information will be lost in the effective model.

Fig. 3 A category theoretic representation of the original and effective modeling approaches, assum-
ing that they give the same outputs. Here, RN′

 is the prediction space, RK′
 is the effective parameter 

space, and RM′
 is the original sloppy parameter space. The functions f ′, g′, and m′ represent the 

original sloppy model, the manifold boundary approximation method (MBAM) function, and the ef-
fective model function, respectively
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6 Manifold boundary approximation in the computational sciences

We can derive these effective models by using an information-geometric approach 
(see Transtrum et al. (2011), Transtrum et al. (2011)), in which we endow the model 
with a little more structure. Each vector of predictions defines a point in the predic-
tion space, RN ′

, and each vector of model parameters y′ generates one such point 
under the function f ′. As such (assuming M ′ > N ′), we can reinterpret the model as 
an M ′-dimensional sub-manifold R′, embedded in the prediction space, RN ′

. This 
embedded sub-manifold is defined by the points,

 R′ = {f(y′) ∈ RN ′
: for all the parameter combinations y′ ∈ RM ′

}. (12)

Here y′ gives the manifold coordinates: as such, varying the parameters y′ of the 
model moves along the manifold surface, leading to a different point (vector of pre-
dictions) in the feature space in which it is embedded. The collection of all these 
points (for all possible parameter values) forms the model manifold surface.17

The FIM can serve as a Riemannian metric on the model manifold, measuring 
parameter space distances (in units of standard deviations of the parameter, given 
their probability distributions under the model). Such distances operationalize the 
distinguishability between model predictions from different parameter choices.

We can explore how the model predictions change as we vary corresponding 
parameter combinations by tracing geodesics along the model manifold. If we move 
far enough along a geodesic, we may eventually reach a point where further move-
ment would take us to boundaries. Beyond these boundaries, the model’s predictions 
become non-physical, undefined, or irrelevant.18 For instance, such boundaries can 
arise when certain parameter combinations are not physically meaningful, or lead to 
singularities or mathematically undefined behavior.

The existence of these boundaries on the model manifold represents a general 
principle of model reduction. This concept suggests that simpler models often arise 
at the extremes of parameter values, an idea implicit in many areas of physics and 
elsewhere in the computational sciences. The modern framing of this as ’manifold 
boundaries’ provides a rigorous mathematical foundation for this intuition.

Therefore, geodesic lengths give an indicator of sloppiness: long geodesics cor-
respond to stiff parameter combinations, whilst short geodesics correspond to sloppy 
parameter combinations, in which the values can be varied over many orders of mag-
nitude without significantly altering the model predictions in RN ′

. The shape of a 
sloppy manifold is described as a hyperribbon, with many short dimensions and only 
a few longer dimensions.

17 To interpret the model as an embedding, we must make some further assumptions about f ′. It must be 
smooth, injective, an immersion, and its underlying continuous function must be a homeomorphism onto 
its image (see Hirsch (1994 pp. 21–29) for further details).
18 A K-dimensional manifold with boundary M is a topological space where every point p in M has a neighbor-
hood homeomorphic to an open set in the Euclidean half-space RK

+ = {(x1, . . . , xK) ∈ RK : xK ≥ 0}
. Points in M that have neighborhoods homeomorphic to an open set in Rn (the entire Euclidean space) 
are called interior points. Points in M that have neighborhoods homeomorphic to an open set in RK

+  but 
not in RK  are called boundary points.
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There are various ways to identify and utilize these boundaries for model reduc-
tion. One method designed for this purpose is the manifold boundary approxi-
mation method (MBAM). This uses an information-geometric approach to 
systematically find lower-dimensional effective models for sloppy systems (Trans-
trum & Qiu, 2014). This allows us to propose a manifold boundary approximation 
function, g′ : RM ′ → RK′

, taking vectors of the original parameters to corresponding 
vectors of the effective parameters. The MBAM algorithm proceeds as follows to find 
a particular boundary of the model manifold.

 ● We begin with the dataset with datapoints x′
i ∈ RN ′

, and the embedded model 
manifold, R′. We posit that the system is sloppy.

 ● The goal is to find an embedding function g′ : RM ′ → RK′
 that projects each 

high-dimensional parameter vector in the parameter space onto the K ′-dimen-
sional manifold, M. We seek an effective model, m′ : RK′ → RN ′

, such that for 
each parameter vector within some chosen domain, y′

i, f ′(y′
i) ≈ m′(g′(y′

i)), i.e., 
the sloppy model and the effective model should make approximately the same 
predictions within this domain.

 ● We find an embedding, g′, as follows:

 ● Model Fitting: Initially, fit the model to data to find a best-fit point in the 
parameter space using an appropriate cost function, 

 C : RN ′
× RM ′

→ R, (13)

 which assigns a real number to each pair of points, one from the prediction space and 
one from the parameter space.19

 ● Eigenvalue Analysis: Compute the FIM at this point and perform an eigen-
value analysis. Identify the direction associated with the smallest eigenvalue, 
which corresponds to the sloppiest parameter combination.

 ● Geodesic Tracing: Trace a geodesic in the parameter space along this sloppi-
est direction. This path leads to a boundary of the model manifold where the 
insensitive parameter becomes redundant.

 ● Model Reduction: At the manifold boundary, effectively remove or fix the 
redundant parameter, thereby reducing the model’s dimensionality.

 ● Effective Model Fitting: The effective model parameters are fit to the data 
using an analogous cost function, 

 C : RN ′
× RK′

→ R, (14)

19 The task of fitting the model parameters can be interpreted as projecting the data onto the model mani-
fold (Quinn et al., 2022).
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 which assigns a real number to each pair of points, one from the prediction space 
and one from the effective parameter space, designed to measure how well a map 
preserves salient geometric and topological features of the data.

 ● Iteration: Repeat the process as needed to simplify the model further, focus-
ing each time on the next sloppiest direction.

 ● Finally, the effective parameter vectors, y′
i, are represented in the lower-di-

mensional effective parameter space by their images under the embedding, 
g′(y′

i) = y′
i ∈ RK′

.

Recall the problem with overfitting in manifold learning discussed in Sect. 3. The 
MBAM procedure is generally resistant to such overfitting. Unlike manifold learning 
techniques, which might find arbitrary lower-dimensional representations to fit data, 
MBAM is constrained to move along existing model structures. The boundaries it 
finds correspond to limiting cases of the original model, preserving its core struc-
ture rather than introducing new, potentially overfitting parameters. This process is 
guided by the model’s intrinsic geometry, not by fitting to specific data points. Thus 
MBAM does not introduce new complexity to match particular observations.

To illustrate a simplified, toy version of this procedure, consider our coupled 
pendulums model once more. This model is not sloppy in general; however, it can 
illustrate some principles effective model building because some of its parameter 
combinations can become sloppy in certain domains, such as when the times t are 
very small. Here, we shall focus on just the displacement of the first pendulum, 
x1. First, let us rewrite the model in terms of some new parameter combinations, 
ωh = ω2 + ω1 and ωl = ω2 − ω1. Now the displacements x1 and x2 are character-
ised by a higher frequency (ωh) modulated sinusoidal oscillation, varying within a 
lower frequency (ωl) sinusoidal envelope (Fig. 4a). At small enough times, t, we 
might find that the model predictions are highly insensitive to the value of ωl; only 
the high frequency variations seem to matter: in this domain, ωl has become sloppy. 
We might find that the geodesics reveal a model boundary at ωl → 0. At this bound-
ary, corresponding to small times and small couplings, we can eliminate the depen-
dence on ωl, and rewrite our model,

 x1(t) = d cos (ωht) , (15)

which we can think of this as a effective model of the system adequate at a particular 
domain, with just two parameters, d and ωh (Fig. 4b).

7 Manifold boundary approximation and manifold learning

Prima facie, MBAM appears to be a fundamentally different procedure to Manifold 
Learning, as described in Sect. 3. There is some truth to this. After all, manifold 
learning provides a way to build a simplified model of the data, taking us from data-
points, xi, in the data space, RN , to prediction vectors, yi = m(xi), in a reduced 
latent space, RK . On the other hand, the Manifold Boundary Approximation Method 
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takes us from parameter vectors y′
i in the parameter space, RM ′

 to effective parameter 
vectors, y′

i = g′(y′
i), in the effective parameter space, RK′

. Recalling our analogy 
between machine learning and the computational empirical sciences, the data space 
corresponds to the prediction space, the latent space corresponds to the parameter 
space, and the reduced latent space corresponds to the effective parameter space. As 
the diagrams in Figs. 1 and 3 demonstrate, these are not the same procedure.20

However, recall that before starting the MBAM procedure, we reinterpreted the 
model f ′(y′

i) = x′
i as an M ′-dimensional manifold, R′, with y′ giving the manifold 

20 Indeed, they have generally been viewed as two essentially distinct kinds of procedure (Quinn et al., 
2022; Monsalve-Bravo et al., 2022; Teoh et al., 2020)

Fig. 4 a Predicted displacement of the first pendulum according to the original model, for somechoice 
of parameter values. b Predicted displacement of the first pendulum with the same parameter values, 
at small times, according to the original model (blue) and effective model (orange). Notice that thetwo 
models almost agree at sufficiently small times
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coordinates, embedded in the prediction space, RM ′
. We begin the MBAM procedure 

by finding the parameter vector on this manifold, best tuned to the datapoints, x′
i, and 

then follow a geodesic to reach the manifold boundary. Finally, the sloppy parameter 
combination is eliminated, and the effective model is re-tuned to the data. In effect, 
this procedure identifies a K ′-dimensional sub-manifold of the dataspace, RN ′

, that 
is tuned to the data, just as with the case of manifold learning.

To be clear, the procedures are not identical here. Under manifold learning, we 
find the specific sub-manifold (for a given K) that is best tuned to the data according 
to the cost function. By contrast, the manifold boundary found by following a sloppy 
geodesic is in no sense guaranteed to be the K ′-dimensional sub-manifold best tuned 
to the data according to any given cost function. Rather than simply opting to find the 
best sub-manifold, in the MBAM procedure, we first seek to eliminate the sloppiest 
parameter combinations. These are precisely the parameter combinations that are 
least sensitive to the data, and in general likely to be hardest, and least relevant, to 
tune. The purpose of eliminating such parameter combinations is precisely to make 
the task of tuning the effective model easier. Whilst MBAM does not entail finding 
the sub-manifold most tuned to the data, it does find the sub-manifold whose most 
stiff parameter combinations are best tuned to the data.

Here it is worth considering the two procedures epistemically. When performing 
manifold learning, we begin with knowledge of the data, xi ∈ RN . We do not assume 
knowledge of the prior model f or of the latent variables we wish to measure that 
make up RM . The manifold learning procedure uses the data to give us the function 
m that can best represent the datapoints (and in effect the function g), and the reduced 
latent space, RN . Now consider MBAM. We begin with analogous knowledge, of the 
data, x′

i ∈ RN ′
, but also require prior knowledge of the model function, f ′ and the 

model parameters that make up RM ′
,. The manifold learning procedure uses these to 

give us the function g′ (and in effect the function m′ that allows us to best represent 
the datapoints using the stiff parameters) and the effective parameter space, RK′

.
Thus, both procedures construct the same kind of object, a sub-manifold of the 

feature space or prediction space, RN  or RN ′
, tuned appropriately to the datapoints 

xi ∈ RN  or x′
i ∈ RN ′

. However, there are two key epistemic differences. First, when 
performing MBAM, we start with greater knowledge: we must already have some 
prior model of the data, f ′, unlike in manifold learning. The epistemic role of f ′ is 
precisely to help us identify the stiff parameter combinations in constructing RK′

. 
Further note that identifying these is the only epistemic role of the model f ′: the 
effective parameter tuning takes place with respect to the data, in precise analogy to 
manifold learning. Second, when we perform MBAM, we restrict ourselves to best 
representing the data only using these stiff parameter combinations.

To stress this point, let us consider the MNIST dataset example once more. Sup-
pose that our machine learning specialist has finally found a model, f, taking the 
real-valued vector of 784 pixles in each time to a vector of ten-real-valued output 
classifications. However, they find the model overly complex and difficult to tune, 
due the many apparently insensitive parameters. Perhaps the task would be easier if 
they could find a reduced dimensionality model, which doesn’t depend on all these 
parameters. They use the data to identify the insensitive parameter combinations, and 
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then build a effective model of the data, g : RK → RN . Observe how this process 
relates closely to the process of building a dimensional reduction model, described in 
Sect. 3, albeit utilising already-existing model.

Confusion is natural given the different ways functions have been defined in 
machine learning and the computational empirical sciences. However, whilst the 
methods differ, it perhaps makes sense to think of the MBAM procedure as akin to 
a special kind of manifold learning procedure, in which a prior model, f ′ is used to 
identify the stiff parameter values, and then the reduced latent manifold (or effective 
parameter space) is fit to the data only using the stiff parameter combinations.

This motivates a reconsideration of sloppiness itself. Following Transtrum et 
al. (2010), Transtrum and Qiu (2014), we can describe a model f ′ : RM ′ → RN ′

 
as sloppy if R′ (the corresponding M ′-dimensional sub-manifold of R′) has few 
stiff geodesics, and many sloppy geodesics. Each such sloppy geodesic must have 
at least one manifold boundary. The MBAM algorithm provides one way to identify 
and utilize these boundaries, allowing us to eliminate sloppy parameter combinations 
and build an effective model of reduced-dimensionality. If we can build an effective 
model with M ′ − K ′ fewer parameters, then this model will correspond to a K ′

-dimensional sub-manifold of RN ′
.

So, one plausible explication of sloppiness would be with the following criterion. 
Let X ′ ⊂ RN ′

 be a high-dimensional prediction space, with datapoints, {x′
i} ∈ X ′. 

Require that Y ′ ⊂ RM ′
 is a high-dimensional parameter space, with an embedding 

f ′ : RM ′ → RN ′
 defining a sub-manifold in the prediction space, R′ ⊂ RN ′

. Let 
G′

X ′(K ′, V, τ) be the class of effective model sub-manifolds in R′ with dimension, 
K ′, volume ≤ V  and reach ≥ τ . Then the sloppiness criterion demands that, for some 
choice of K ′ < N ′, V, τ , there exists an effective manifold, M′ ∈ G′, such that,

 L(M′, {x′
i}) < ϵ, (16)

where L((M, {xi}) is some measure of the average shortest distance between the 
datapoints {x′

i} and the manifold M, according to some choice of distance, and 
ϵ ∈ R is some closeness threshold.

Observe that this sloppiness criterion is essentially the manifold hypothesis from 
Sect. 4, alongside an addition requirement: the sub-manifold that describes the data 
must be an effective model manifold, produced from a sloppy model. This additional 
requirement restricts the scope of the models under consideration, but in a reasonable 
way: finding an effective model precisely involves eliminating parameter combina-
tions which are least sensitive to the data.

Another way to think of this is that manifold learning might be a more theory-
independent way of building a dimensional reduction model of the data. However, 
as noted, any particular manifold learning algorithm will add additional assumptions. 
Finding an effective model is more theory-dependent: we begin with an assump-
tion that a prior model f ′ can offer a good description of the system, but has some 
superfluous (sloppy) parameter combinations which can be eliminated, reducing the 
dimensionality of the model. However, above this assumption, the additional assump-
tions of effective-model building are quite weak, namely that the improved model of 
the system involves precisely removing those irrelevant parameter combinations.
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We could imagine MBAM’s goal as reducing the number of parameters, while 
retaining as much relevant information from the original model as possible, ensur-
ing that the essential features and behaviors of the system are preserved. We could 
imagine a “cost function” in terms of trace of the FIM, to measure the fidelity of the 
reduced model to the original model’s manifold. Against such a cost, then MBAM 
would behave like a greedy algorithm,21 making locally optimal choices at each step 
without guaranteeing a globally optimal solution. As such, MBAM does not explore 
the whole space of solutions.

We could consider other algorithms for achieving this goal. At the most con-
strained end of the spectrum, MBAM represents a greedy approach, in which it finds 
a particular K ′-dimensional boundary through iterative geodesic tracing. While com-
putationally efficient, this does not guarantee finding the globally optimal reduced 
model. By contrast, manifold learning seeks to find the best K-dimensional represen-
tation of the data without constraints on the form of that representation, and requires 
explicit smoothness assumptions to avoid overfitting. Less constrained alternatives to 
MBAM might be algorithms that find the optimal K ′-dimensional edge or boundary 
of the model manifold, or even choosing a K ′-dimensional sub-manifold of the origi-
nal model manifold, without the requirement that it be an edge or boundary. Such 
algorithms could still inherit structural constraints on the model, and therefore might 
not require a further procedure to prevent overfitting. Such algorithms could plausi-
bly have useful properties relevant to both scientific model-reduction and machine 
learning.

Just like the manifold hypothesis, we can view sloppiness as a compressibility 
assumption. The high-dimensional dataset and the model contain redundancy. As 
such, the data can be well-represented with the use of a lower-dimensional effective 
model, without significant loss of information.

8 Effective field theories in physics

The sloppy models program is closely tied to the modern effective field theories 
(EFTs) program in quantum field theory and particle physics.22 It is therefore worth 
considering to what extent the effective field theories program in physics can also be 
understood through the use of manifold learning methods.

EFTs are built on the principle that quantum field theoretic phenomena decouple 
at different energy or distance scales. This means that to describe physics at a certain 
scale, it is only necessary to consider relevant degrees of freedom and interactions 
at that scale. Furthermore, given our ignorance about physics at certain scales, it is 
often necessary to do so. As with sloppy models, EFTs simplify the description of 

21 A greedy-algorithm iteratively makes the locally optimal choice at each step, typically without back-
tracking. Such an algorithm may not find a global optimum.
22 Indeed, at least some cases of effective field theory building can be understood as instances of effective 
model building in sense meant in Sects. 5 and 6 (See Machta et al. (2013), Raju et al. (2018), Transtrum et 
al. (2015) for further details and Freeborn (2024) for a philosophical discussion.
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complex systems by identifying the most relevant degrees of freedom and parameters 
at a given scale.23

Many highly successful theories are effective field theories, including Fermi’s 
Theory of Weak Interaction, Chiral Perturbation Theory, Heavy Quark Effective 
Theory, and Ginzburg-Landau Theory. Indeed, on the modern approach pioneered 
by Wilson and Kogut (1974), we should expect every quantum field theory to be an 
effective field theory, including the Standard Model of particle physics.

We can think of a quantum field theory as a scientific model along essentially the 
same lines as the computational models in Sect. 5. We can define a space of predic-
tions, RN ′

, consisting of measurable quantities, perhaps including physical quantities 
such as scattering amplitudes, cross-sections or decay rates; and a space of param-
eters, RM ′

 perhaps including the field variables and their so-called bare coupling 
constants, such as masses and charges.24 We can interpret the theory as a function, 
f ′ : RM ′ → RN ′

, mapping from a selection of parameters to a set of predictions. 
The theory is usually written in terms of a Lagrangian, L(ϕi, λj), where ϕi are pos-
ited field variables, and λj  are the field parameters. We can derive the equations of 
motion, and eventually the predictions about observables, through a rather involved 
process, starting with the Lagrangian.

Unfortunately, calculations using non-trivial interacting quantum field theories 
are typically found to lead to problematic mathematical divergences. To tackle these 
divergences, physicists modify these theories through a family of correction tech-
niques known as regularization. For example, a simple way to do this is to impose 
a momentum cutoff scale, at a much higher energy than the interactions we wish to 
study. These corrections can render the theory finite, but usually lack a principled 
physical motivation.

The solution, renormalization, involves adjusting the bare parameters of the 
theory to remove dependence on any regularization scale. The resulting renormal-
ized theory has new renormalized parameters that shift with the energy or distance 
scale, at which we describe the theory. We call the shifting of these renormalized 
running coupling constants the renormalization group flow (RG flow) through the 
parameter space. We derive differential equations to describe how the renormalized 
couplings must vary with the scale, if we impose the requirement that the physical 
observables in the prediction space must remain the same.

Crucially, the parameter trajectories under RG flow will remain within the param-
eter space of the theory. These parameter trajectories often lead to fixed points or 
surfaces,25 at which the value of the renormalized coupling constants cease to change 
with the scale. Many different theories, those with the same fields and symmetries 

23 For further details see Binney et al. (1992), Weinberg (1996) and Duncan (2012). For a philosophical 
overview, see Butterfield (2014) and Butterfield and Bouatta (2014) for further details).
24 We might think of both the field variables and field parameters as parameters of the theory. The theory 
posits both the kinds of fields (for example, scalar, vector, spinor etc), expressed through the field vari-
ables, and their bare coupling constants.
25 There are generally two kinds of fixed points—Gaussian (or free-field) fixed points, where interactions 
vanish, and non-Gaussian fixed points, where the interactions reach a non-zero constant value. These fixed 
points are also crucial in understanding critical phenomena in phase transitions.
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may flow towards the same fixed surface.26 As such, the fixed surfaces are said to 
define universality classes of theories that share the same behavior at some scale.

Hence, near these fixed regions, the theory can be thought of as exhibiting a kind 
of self-similar behavior across scales, an approximate scale-invariance. In effect, the 
renormalizable part of the theory can be approximately decoupled from the physics 
energy scales. A linear approximation of the RG flow equations near stable fixed 
points reveals a small number of unstable directions, in contrast to the majority that 
are stable. Unstable directions correspond to parameters for which small changes can 
result in large changes to the theory’s predictions. These correspond to relevant and 
marginal parameters. Stable directions correspond to parameters for which small 
changes only lead to small changes to the theory’s predictions. These correspond to 
irrelevant parameters.27 Therefore, the predictions of the theory become dominated 
by a smaller number of relevant and marginal parameters.

In consequence, we can construct a lower-dimensional effective field theory by 
eliminating the irrelevant renormalized parameters. Such effective field theories pro-
vide a good model of the system at certain energy scales, usually at low energy, 
but break down at other scales, often high energy scales. As such, we can construct 
predictively successful, effective low-dimensional, low-energy theories even whilst 
remaining ignorant of the physics at higher energy scales.

Let us consider a simple example, an imaginary, simple scalar quantum field theory 
with two interacting fields, ϕL and ϕH  with different masses, mL and mH  respec-
tively, with mL ≪ mH . Suppose that we want to find a low-energy effective theory, 
relevant to sclaes Λ ≪ mH . We summarize the original theory with the Lagrangian,

 
L = 1

2
(∂µϕL)2 − 1

2
m2

Lϕ2
L + 1

2
(∂µϕH)2 − 1

2
m2

Hϕ2
L − λϕ2

Lϕ2
H , (17)

where ∂µ represents the partial derivative with respect to spacetime coordinates and 
λ is the coupling constant for the interaction between the two fields, ϕL and ϕH . At 
low energies, we find that the parameters associated with high-mass particles become 
irrelevant, and the lower mass fields become effectively decoupled from them. The 
Lagrangian relates to the field configurations of the theory by means of the partition 
function,

 
Z =

∫
DϕLDϕH ei

∫
d4x L(ϕL,ϕH ). (18)

We can eliminate the higher mass degrees of freedom by integrating over them and 
defining a new effective Lagrangian, Leff, as follows.28

26 For a proof in the case of one simple scalar theory, see Polchinski (1984)
27 Roughly speaking, relevant parameters are those that whose effect on the theory’s predictions increases 
close to a stable fixed point. Irrelevant parameters are those that whose effect on the theory’s predic-
tions decreases close to a stable fixed point. Other parameters are described as marginal (see Goldenfeld 
(1992, pp. 245–246) for further details).
28 There are two essential steps to this process. First, the Applequist-Carrazone decoupling theorem shows 
that the degrees of freedom associated with high-mass particles are suppressed at low energies (see 
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Z =

∫
DϕL ei

∫
d4x Leff(ϕL). (19)

Unfortunately, in general such an effective Lagrangian may be characterized by an 
infinite series of terms,

 
Leff = 1

2
(∂µϕL)2 − 1

2
m2

Lϕ2
L +

∞∑
n=1

cn

mn
2

On(ϕ1), (20)

where cn are coefficients that depend on the details of the full theory, including the 
coupling constant, λ. Fortunately, in this case, power-counting considerations29 and 
renormalization group arguments can show that these terms become irrelevant in the 
low energy limit we are interested in, resulting in a well-defined low-energy effective 
field theory, with Lagrangian Leff-low-energy,

 
Leff = 1

2
(∂µϕL)2 − 1

2
m2

Lϕ2
L. (21)

In this case, the low-energy theory looks exactly as we might have expected, with 
only the free fields for the low mass field, and no coupling to the high mass field. At 
this energy scale (Λ ≪ mH ) and the high mass field is frozen out. The direct produc-
tion of heavy particles associated with the high mass field energetically unfeasible, 
and their indirect effects, such as contributions to quantum corrections, are also neg-
ligible. Our effective model of the system describes free, low-mass fields.
Clearly, we can understand this overall procedure of finding a lower-dimensional 
effective field theory as a form of dimension reduction of our original theory’s param-
eter space. Observe how similar this approach was to finding an effective model of 
the coupled oscillators in Sects. 5 and 6.

9 Renormalization and compressibility

For some simple models, renormalization group flow towards fixed regions can be 
recovered as a special case of MBAM. Indeed, just as the manifold hypothesis has 
been proposed as a reason why machine learning is possible, and sloppy modeling 
has been credited as an explanation for the success of science, many cite the renor-
malization group procedure as an explanation for successful theory building in high 
energy physics (Wallace, 2006; Williams, 2019; Fraser, 2018, 2020a, b; Miller, 2017; 
Weinberg, 1996). This raises the question: can we say something stronger about the 

Appelquist and Carrazone (1975) for further details) Second, the degrees of freedom can be separated and 
integrated out, to form an effective field theory (see Wilson and Kogut (1974), Wilson (1983) for further 
details).
29 The operators built from fields (in this case, ϕL) can be organized according to the size of their contribu-
tion in a systematic expansion. See Burgess (2020 pp. 51–81) for further details.
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relationship between effective theory building in renormalized theories and the other 
manifold learning procedures we have discussed so far?

Here, it will serve to step back and consider the renormalization group in a more 
general setting than just quantum field theory. Recall from Sect. 8, that the renormal-
ization group involved transforming parameters within the parameter space under a 
change of energy or some other scale, without changing the theory’s predictions in 
the prediction space. The renormalization group transformation can be understood 
as a coarse-graining procedure, in which the short-distance degrees of freedom of 
the model are integrated out, effectively viewing the system with less and less preci-
sion. In order to keep the model predictions in agreement, these scale transformations 
require us to transform between points in the parameter space and, correspondingly, 
to rescale the prediction space.

Like the MBAM procedure, RG flow does not generally face overfitting problems 
of the type we discussed in Sect. 3. Unlike data-driven dimensional reduction tech-
niques, which might find arbitrary lower-dimensional representations to fit data, RG 
flow is constrained by the structure of the underlying theory. The transformations 
involved in RG flow are guided by the symmetries of the system and the requirement 
of scale invariance at fixed points. These transformations require that the effective 
models bear a self-similarity in form to the original model (except for a possible 
reduction of parameters). Ideally, each step in the RG flow corresponds to a physi-
cally meaningful transformation of the theory, such as integrating out short-distance 
degrees of freedom to obtain an effective theory. Once again, the process is guided by 
the theory’s structure, not by fitting to specific data points.

Consider the following simple example (originating with Kadanoff (1966)). In 
the one-dimensional zero-field Ising model, we consider an infinite chain of coupled 
spins. A single parameter, J gives the coupling between neighbouring spins; the spins 
si at sites indexed by i, take values of ±1 and give the predictions of the model. The 
model is often summarized using the Hamiltonian,

 
H = −J

∑
i

sisi+1 (22)

We can coarse-grain or “renormalize” the model by averaging out short-range details 
and focusing on long-range behavior. One way to do this is through the Kadanoff 
block spin transformation, in which we group spins into blocks of spins and then 
sum over the spins within each block to define new, effective spin variables. If we use 
blocks of 2 spins, the averaged spin of the block could be,

 Snew = sign(s1 + s2). (23)

After this process, we effectively reduce the number of degrees of freedom in our 
prediction space: we are now sensitive to only half as many spins as before. Perhaps 
now, we keep only the predictions for the spins at even sites in our prediction space. 
This might inspire us to write a new effective model of the system, in which the effec-
tive Hamiltonian, H ′, will only involve these spins,
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H ′ = −J ′

∑
i

s2is2i+2, (24)

and in which the new effective coupling, J ′, serves as an effective coupling between 
what were previously blocks of spins. Requiring that the new model spin predictions 
correspond to the predictions of the original model, and assuming a probability distri-
bution over the spins, we can derive a functional form of J ′ in terms of J, and derive 
renormalization group flow equations to understand how the coupling changes with 
scale. Successive iterations of the transformation lead towards fixed points, in which 
the effective couplings do not change further. Observe then that the transformation of 
the parameter space, whilst keeping the effective predictions in correspondence with 
the previous predictions necessitates a loss of sensitivity to some of the degrees of 
freedom in the prediction space. In a sense, the effective model does not map to as 
many predictions.

More generally, assuming the computational modeling framework from Sects. 5 
and 6 it will help to define the renormalization group flow as any transformation on 
the embedded model manifold, R′, or within the parameter space RM ′

 under some 
change of scale, which coarse grains the model’s predictions. Renormalization group 
transformations therefore require that the effective models bear a self-similarity in 
form to the original model (except for a possible reduction of parameters). As such, 
any coordinate-invariant geometric and topological features of the model manifold 
will remain fixed. This raises a question: if the model manifold does not change, and 
renormalization simply constitutes a flow along its surface, how is it that the renor-
malized model will lose degrees of freedom in the prediction space, RN ′

?
The key is to realize that the manifold’s metric, given by the FIM, representing 

the distinguishability between model predictions from different parameter choices 
decreases. Raju et al. (2018) show that we can quantify the loss of information 
from discarding these degrees of freedom discarded through coarse-graining by 
finding how the metric tensor changes under a coarse-graining application. Let us 
specify a continuous coarse-graining procedure, where as the smallest length scale, 
l = l0 exp(b), changes, the parameters change according to dy′µ

db = βµ, where y′µ are 
the parameters, and β are the beta functions, which define the flow so as to preserve 
the predictions. Then the change in the metric under this flow is given by a modified 
Lie derivative, Lβ ,

 Lβgµν = βα∂αgµν + gαµ∂nuβα + gαν∂muβα − L∂Lgµν , (25)

where the first term represents the directional change of the metric, and the second 
and third terms represent the change in the parameter space distances, as the param-
eters shift. The fourth term arises from the coarse-graining of the model, assuming 
that the size of the observed system length L shinks, according to dL

db = −L.30 Raju 

30 As L is not a parameter, we must supplement the usual Lie derivative with this fourth term.

1 3

Page 25 of 33    23 



Synthese          (2025) 205:23 

et al. (2018) find that the metric decreases along the irrelevant directions, whilst it is 
preserved along the relevant and marginal directions.31

This motivates a careful consideration of the renormalization group flow proce-
dure. This procedure is reminiscent to MBAM, but with two key differences. First, 
during renormalization group flow, we do not necessarily travel along the geode-
sics corresponding to the sloppiest parameter combinations. More crucially, we have 
added the additional step of course graining the predictions of the theory. This yielded 
a decrease in the FIM metric in certain directions, effectively increasing the sloppi-
ness of the theory. Indeed, the parameters of such systems have been found to become 
increasingly sloppy as they approach fixed points under renormalization group flow 
(Machta et al., 2013; Raju et al., 2018). This increase in sloppiness corresponds to a 
loss of information as we perform renormalization group flow, precisely correspond-
ing to the loss in sensitivty to certain degrees of freedom in the prediction space.32

Therefore, one way to understand the renormalization group flow procedure as we 
have defined it, is as a particular kind of transformation within the parameter space 
that also coarse grains the prediction space, thereby modifying the model to increas-
ing sloppiness. It is precisely those irrelevant and sloppy parameters that we remove 
when building an effective theory. Insofar as effective theory building in physics 
involves increasing model sloppiness and then creating an effective model in the 
sense of Sect. 6, then this too could be interpreted as akin to a special kind of mani-
fold learning. If we understand the renormalization group procedure as increasing 
sloppiness, then the task of effective theory building is straightforwardly analogous 
to the construction of an effective model of an (at least somewhat) sloppy system. 
This kind of effective theory construction seems to depend upon a criterion of theo-
retical compressibility.

10 Conclusions

Manifold learning, the sloppy models program, and effective field theories operate 
in three different scientific domains. Nonetheless, there are strong analogies between 
the three fields. Of course, all three share a basic principle in common: they seek to 
reduce the dimensionality of some data, model, or theory. However, more fundamen-
tally, MBAM shares a close analogy with manifold learning. The two techniques have 
generally been seen as fundamentally different: manifold learning begins with a high-
dimensional dataset and seeks to produce a low-dimensional model of it, whereas 
MBAM also seeks to build a lower-dimensional effective model of an already-exist-
ing high-dimensional model. However, both ultimately produce a low-dimensional 
model of the data: the difference is that MBAM uses greater prior knowledge to do 
so, in particular using a prior model to help identify the sloppy parameter combina-

31 This observation has been corroborated by computer simulations (Machta et al., 2013) Note that, in a 
closely related model, Strandkvist et al. (2020) demonstrate that the changes in the metric due to the model 
deformation exactly corresponds to the changes in the metric induced by parameter flow.
32 For an alternative, but potentially related sense in which the renormalization group flow corresponds to 
a loss of information, see Zomolodchikov (1986).
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tions to remove. As such, I have argued that MBAM can be viewed as akin to a spe-
cial kind of manifold learning.

Likewise, effective theory building in physics bears a close relationship to mani-
fold learning. The renormalization group procedure can be understood as being in 
some ways analogous to MBAM, transforming the parameters of the theory. How-
ever, by simultaneously applying a coarse-graining to the predictions of the theory, 
it more drastically transforms the model, increasing the model’s sloppiness. As such, 
effective theory building in physics could also be understood as akin to a special kind 
of manifold learning.

The manifold hypothesis underpins large areas of research in machine learning. If 
the global manifold hypothesis is right, then it may contribute to an explanation of 
why machines are capable of learning from complex data. Likewise, the sloppiness 
of real-world systems, or the existence of fixed points under renormalization group 
flow may contribute to explanations of why we can build scientific models of highly 
complex real-world systems. I have argued that all these assumptions share a basic 
common form: though the systems in question are superficially complex, they con-
tain redundancy in the form of regularities. As such, the systems can be compressed. 
We can construct lower-dimensional effective models of the system by latching onto 
these regularities.

These technical connections between manifold learning, sloppy models, and 
effective field theories may have implications for several key philosophical debates, 
especially regarding the renormalization group. Recall that Batterman argues that 
some renormalization group phenomena are not reducible to lower-level theories. He 
contends that renormalization group techniques reveal how macroscopic properties 
emerge from microscopic interactions in ways that resist traditional forms of reduc-
tion due to the need for idealizations, such as the thermodynamic limit or infinite 
size assumptions. Viewing these methods through the lens of dimensional reduction 
techniques described in Sects. 2, 3, and 6 may help to shed some light. Each tech-
nique involves idealizations such as the successive elimination of sloppy parameter 
combinations at manifold boundaries in the MBAM procedure, or the reduction in 
dimensionality from the feature space to the latent space in manifold learning. These 
idealizations are cases of the kinds of infinite idealization discussed in Batterman 
(2002, 2005, 2011): we let certain parameters or parameter combinations shrink 
indefinitely small, to capture essential behaviors of physical systems.

Nonetheless, such dimensional reduction techniques seem to take the explicit form 
of approximate reductions, akin to that suggested by Butterfield (2014) in the con-
text of the renormalization group.33 In a traditional reduction scheme (Nagel, 1961; 
Schaffner, 1967) two key conditions must be met: there must be bridge laws that sys-
tematically correlate the theoretical terms of both theories, and the laws of the reduced 
theory must be logically derivable from the reducing theory’s laws combined with 
the bridge laws and any necessary auxiliary assumptions. The dimensional reduction 

33 Recall that Butterfield argues that, in the context of the renormalization group, reduction and emergence 
are not mutually exclusive, suggesting that even phenomena that appear emergent can often be reconciled 
with a form of reduction when idealizations are understood as approximations rather than ontological 
separations.
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schemes discussed in this paper seem to take precisely this form. As we have seen, 
the dimensional reduction and simplified model can be understood as functions map-
ping from the feature space to the latent space, and from the latent space to the output 
space. Likewise, MBAM and the effective model can be understood as functions 
mapping from the original parameter space to the effective parameter space, and from 
the effective parameter space to the prediction space. The relations in Figs. 1 and 3 
seem to suggest a form of dependence where higher and lower level models retain an 
explicit functional relationship.

Of course, in practice there is a loss of information here: the process is not gener-
ally reversible, and so Figs. 1 and 3 are themselves idealizations. After all, as we have 
seen, the key feature of these techniques is precisely such a reduction in the com-
plexity of the models, and thus a loss of information. Renormalization group tech-
niques explicitly reduce the information from the underlying theory, as we have seen 
in Sect. 9. Likewise, MBAM techniques reduce complexity by eliminating sloppy 
parameter combinations as we approach the manifold boundaries, retaining core 
predictive power in a lower-dimensional model without needing exact, fully deriv-
able connections to microscopic details. These seem naturally understood as cases 
of approximate reduction, which can maintain essential dependencies across scales 
without requiring strict derivability. Dimensional reduction techniques also exhibit 
structural stability, capturing scale-invariant features in complex data. For example, 
in manifold learning lower-dimensional embeddings retain the essential topology and 
geometry of data. However, such idealizations are most naturally viewed as prag-
matic simplification rather than barriers to reduction, which are made explicit in the 
functional forms relating the parameter spaces of the various models. As such, mani-
fold learning seems highly amenable to interpretation as a family of approximate 
Nagelian reductions (see Dizadji-Bahmani et al. (2010) for a defense of this model of 
reduction). They seem to provide a family of test cases in which infinite idealizations 
do not present a natural barrier to reductive techniques. It would be an interesting line 
for future research to demonstrate this directly in particular examples, and to recon-
cile such a reductive approach with the idealizations involved.

Furthermore, the techniques discussed in this paper suggest that some of the philo-
sophical debates around the renormalization group may apply more widely across 
other sciences. Recall that Wallace (2006), Williams (2019), Fraser (2018), Fraser 
(2020a), Fraser (2020b), Miller (2017) have argued that the success of effective field 
theories supports a form of selective scientific realism. My contention that effective 
theory construction can be understood as a special case of nonlinear dimensional 
reduction techniques suggests that such arguments can be applied more widely. It 
suggests that the success of effective theories is not unique to physics, but reflects 
a more general feature of successful scientific modeling: the ability to identify and 
preserve essential features while eliminating irrelevant degrees of freedom.

However, the machine learning perspective presented in this paper does not, 
in itself provide a defense against these kind of skeptical challenges provided by 
Ruetsche (2018) and Rivat (2021). For example, suppose that we wish to adopt a sci-
entific realist perspective on some effective parameter combinations in our effective 
theory. We have a good reason for doing so: the theory leads to accurate predictions 
and we have reason to believe that this effective theory will remain a good effective 
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model, even if our knowledge of the original model parameters changes. However, if 
our underlying theory changed more drastically, for example requiring entirely differ-
ent parameters, there is no guarantee that this effective model will remain effective. 
In essence, effective theories remain vulnerable to unconceived alternative theories, 
that lie outside of the model space under consideration (see Freeborn (2024), Stan-
ford (2010)).

If something akin to the global manifold hypothesis can be broadly defended, this 
might plausibly make room for a wider family of effective realist defenses of scien-
tific theories, applying well beyond the scope of physics. After all, if the global mani-
fold hypothesis holds, then many real-world datasets can be effectively compressed 
by dimensional reduction methods. As such, we might expect effective theory build-
ing techniques to be broadly successful precisely because many real-world target 
systems are amenable to them. Unconceived alternative theories might still replace 
our current best theories, but there would perhaps be less reason to expect them. 
One might defend it with an inference to the best explanation: the manifold hypoth-
esis is the best explanation for the remarkable success of manifold learning across 
a wide variety of domains. However, unfortunately, the global manifold hypothesis 
lacks a compelling theoretical motivation, with the main arguments being empirical 
(Brahma et al. 2016; Fefferman et al. 2016; Gorban and Tyukin 2018).

Nonetheless, these techniques suggest one promising path for the selective real-
ist in particular fields: to show that the salient epistemic features relevant to effec-
tive realism can also apply to a wider family of algorithmic reduction approaches, 
coupled with a suitable defense of a relevant local manifold hypothesis. Putting such 
an argument on a solid and rigorous footing would require substantial further work, 
but this suggests a potentially fruitful avenue for further research. There is not room 
to rigorously develop and defend such an argument here; however, Freeborn (2024) 
suggests one such possibility for extending effective realistic arguments beyond their 
traditional domain of quantum field theory.
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