
Effective Theory Building and Manifold Learning

David Peter Wallis Freeborn

November 24, 2024

Abstract

Manifold learning and effective model building are generally viewed as funda-
mentally different types of procedure. After all, in one we build a simplified model
of the data, in the other, we construct a simplified model of the another model.
Nonetheless, I argue that certain kinds of high-dimensional effective model build-
ing, and effective field theory construction in quantum field theory, can be viewed
as special cases of manifold learning. I argue that this helps to shed light on all
of these techniques. First, it suggests that the effective model building procedure
depends upon a certain kind of algorithmic compressibility requirement. All three
approaches assume that real-world systems exhibit certain redundancies, due to
regularities. The use of these regularities to build simplified models is essential for
scientific progress in many different domains.

1 Introduction
Manifold learning is a very widespread family of dimensional reduction techniques in
machine learning, in which high-dimensional data is projected onto a lower-dimensional
manifold, while preserving some salient properties of the original data (Belkin and Niyogi,
2001; Hinton and Roweis, 2002; Hinton and Salakhutdinov, 2006; McInnes et al., 2018;
Roweis and Saul, 2000; Tenenbaum et al., 2000; van der Maaten and Hinton, 2008).
This technique is based on the assumption that many high-dimensional datasets contain
regularities that allow them to be conveniently compressed or summarized with a sim-
pler model. Likewise, effective theory or model construction is a family of techniques
in physics and the computational sciences, in which a high-dimensional theory or model
is reduced to a lower-dimensional one. Effective theory building is commonly used in
quantum field theory, where the mathematical problems have led to the construction
of lower-dimensional effective field theories, and in many computational sciences, where
there are many high-dimensional models, highly insensitive to the vast majority of pa-
rameter combinations (Burgess, 2020; Duncan, 2012; Machta et al., 2013; Raju et al.,
2018; Transtrum et al., 2015).

Manifold learning and effective model building are generally viewed as fundamentally
different types of procedure. After all, in one we build a simplified model of the data, in
the other, we construct a simplified model of the another model (Monsalve-Bravo et al.,
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2022; Quinn et al., 2022; Teoh et al., 2020). Indeed, they use the term model to mean
two importantly different things.

• Machine Learning Models are functions that map from high-dimensional input
data to lower-dimensional outputs, such as classifications or predictions.

• Scientific/Computational Models are mathematical representations of physi-
cal systems, typically mapping from theoretical parameters to observable predic-
tions.

Nonetheless, I argue that certain kinds of high-dimensional effective model building,
and effective field theory construction in quantum field theory, can be viewed as special
cases of dimensional reduction techniques akin to manifold learning. I argue that this
helps to shed light on some underlying principles shared by all of these techniques. First,
it suggests that the effective model building procedure depends upon a certain kind of
algorithmic compressibility requirement. All three approaches assume that real-world
systems exhibit certain redundancies, due to regularities. The use of these regularities
to build simplified models is essential for scientific progress in many different domains.

These topics have generated significant philosophical interest in recent years. There
has been an ongoing debate over how effective theories and related methods can inform
and refine scientific realism, particularly in the context of quantum field theory. Propo-
nents of effective realism (Fraser, 2018,2,2; Miller, 2017; Wallace, 2006; Williams, 2019)
argue that these methods can inform and refine a localized, theory-specific approach
to realism by identifying the elements of quantum field theory (QFT) models that are
empirically robust and likely to persist through scientific progress. However, this defense
has been challenged by critics like Ruetsche (2018), who argue that while effective real-
ism engages directly with successful aspects of current physics, it fails to fully mitigate
skeptical challenges. Ruetsche suggests that these issues merely retreat to a different
level rather than being resolved. Similarly, Rivat (2021) contends that effective theories
rely on intrinsic empirical limitations and infinite idealizations that constrain their scope
to offer reliable ontological commitments. He argues that these idealizations, while use-
ful for making accurate predictions within certain domains, pose significant challenges
for ensuring the stability and approximate truth of theoretical representations through
future theory changes.

Likewise, philosophers have debated the the related topic, reduction and emergence
in the context of renormalization group methods (see section 9). Batterman (2002,1) ar-
gues that phenomena such as critical behavior and phase transitions require explanations
that transcend simple deductive reductions, emphasizing the importance of renormaliza-
tion group theory in understanding how macroscopic properties emerge from microscopic
interactions. He contends that the renormalization group theory reveals how different
scales interact and influence each other, demonstrating that certain macroscopic behav-
iors cannot be fully reduced to microscopic laws. Similarly, Morrison (2012) highlights
how renormalization group theory exemplifies the interplay between reduction and emer-
gence in practice. Conversely, Butterfield (2014) proposes that reduction and emergence
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are not mutually exclusive, arguing that these techniques provide a means to connect
micro and macro levels, thereby reconciling reductionism with emergent properties.

In section 2, I explain the dimensional reduction. I introduce manifold learning as
a particular case of this in section 3. In section 4, I present the manifold hypothesis,
and suggest one way to explicate it in a partly formal way. In section 5, I introduce the
sloppy models program. In section 6, I argue that an effective model building technique,
the manifold boundary approximation method can be viewed as akin to a special kind
of manifold learning. In section 8, I introduce effective field theories, and in section 9, I
argue that it can be related to both the sloppy models program and manifold learning.
I conclude by drawing some overall analogies between these approaches.

2 Machine Learning and Dimensional Reduction
Imagine that a machine learning specialist wants to build an artificial intelligence tool
for recognizing handwritten numerical digits. As input data, they train their tool on the
MNIST (Modified National Institute of Standards and Technology) database, a large
collection of handwritten digits commonly used for training various image processing
systems. The training data contains 60,000 28 × 28 pixel images of handwritten digits
ranging from 0 to 9 (LeCun et al., 1998, 2010). The aim is build a tool that can, in
some sense, latch onto and generalize from key features of these handwritten digits, and
which can then be applied to correctly interpret new handwritten images of digits, from
outside of the training data.

In effect, the artificial intelligence tool serves as a model of the data. We can think of
such a model as a function, f , from a real-valued vector of the 784 pixels in each image,
to a vector of ten real-valued output classifications, giving some measure of how likely
the model thinks it is that the image represents each possible digit 0-9,1

f : R784 → R10. (1)

This general task, finding a function, mapping a real, N -dimensional data-vector to an
M < N -dimensional output vector, is very common across machine learning. Indeed,
almost any machine learning task can be represented as the task of finding a function
of this form.2 This is closely related to standard ways to think about model-building
across the computational empirical sciences more generally.3

1For instance, in a Bayesian model, these real-valued output classifications could represent probabil-
ities.

2For example, we can represent almost any predictive AI task (e.g. image classification, speech
recognition, natural language processing tasks such as sentiment analysis and machine translation, rec-
ommender systems, medical diagnosis, financial forecasting, etc.) or generative AI task (e.g. text
generation with a large language model or image generation with an adversarial network), as the task of
finding a function of this form (Bishop, 2006; Goodfellow et al., 2016; Hastie et al., 2009; LeCun et al.,
2015; Murphy, 2012; Vapnik, 1995).

3For instance, see Breiman (2001), or for related examples, see Gutenkunst et al. (2007), and see
Sozou et al. (2017); Sullivan (2022); Williamson (2009) for some philosophical considerations.
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Our machine learning specialist might not merely seek the most predictively accurate
model; often they will also want the model to be simple. Simpler models usually make
lower demands on computational resources for training, inference and application; the
results may be more robust to small modifications; they may be easier to interpret or
explain; and they may be less inclined to overfit the training data, allowing for better
generalizability to new data. Furthermore, a variety of technical problems are known
to arise when the dimensionality of the data is very high compared to the number of
datapoints, resulting in the so-called curse of dimensionality (Bellman, 1957,6).4

Fortunately, the key features higher-dimensional real-world data can often be con-
veniently summarized by models with lower numbers of parameters. For instance, the
salient variations in the MNIST handwritten digits might be summarizable by a much
smaller number of factors or dimensions - rather than specifying each individual pixel,
perhaps we can summarize them with a smaller number of identifiable curves, loops
and lines. This task is at the heart of machine learning, algorithmic compression, and
computational model-building more generally.

Thus, an obvious approach to simplify the model would be to first build a lower-
dimensional model of the data. That is, instead of applying our model, f : RN → RM ,
to the data directly, we could first reduce the dimensionality of the data with a model,
m : RN → RK , and then apply a simpler model, g : RK → RM , with N < K < M .
If the two processes give the same outputs, then we can think of f as the composition
of g and m, as in figure 1. However, in reality this is an unrealistic assumption: the
two processes should give almost the same outputs, but some information will be lost
when compressing the model. We call the high-dimensional space the feature space
of the data, and the low-dimensional space the latent space. This process is now
widespread in machine learning (see Fisher 1936; Izenman 1975; Pearson 1901 for some
historical background to these techniques, and for contemporary examples, see Belkin
and Niyogi 2001; Hinton and Roweis 2002; Hinton and Salakhutdinov 2006; Jolliffe and
Cadima 2016; McInnes et al. 2018; Roweis and Saul 2000; Tenenbaum et al. 2000; van der
Maaten and Hinton 2008).

The key is that our dimensional reduction model, m, must preserve certain salient lo-
cal or global features of the data, even as it throws out some of the information contained
in the original data. The salient features encoded in the data might vary, depending on
the task at hand. They might include geometric properties (such as distances between
data points, angles or local curvatures) or topological properties (including shape and
connectivity features like clusters, holes, and loops). For instance, with our MNIST
data, perhaps different ways of writing the same digit (like a closed ‘4’ versus an open
‘౺’.) might form distinct subclusters within a larger cluster. Topological information
could help in understanding the transition between different writing styles (for example,
a curly ‘9’ might continuously morph into a straight ‘۹’). We define cost functions to
measure how well certain salient properties of the data are preserved by the function m.

4Loosely speaking, the curse of dimensionality problems refer to the general observation that, as
the dimensionality of the data grows, the volume grows so rapidly that finite data becomes sparsely
distributed and increasingly orthogonal, making distance measures less able to extract useful information.
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RN RK RM

Feature space
(data)

Latent space
(simplified data)

Output space
(model outputs)

m

Dimensional reduction
g

Simplified model

Original model
f = g ◦m

Figure 1: A category theoretic representation of the direct and simplified modeling
approaches, assuming that they give the same outputs. Here, RN is the feature space,
RK gives a latent space offering a simplified representation of the data, and RM is the
output space. The functions f , m, and g represent the original predictive model, the
dimensionality-reducing model, and the simplified predictive model, respectively.

3 Manifold Learning
Roughly speaking, a manifold is a topological space that locally resembles flat Euclidean
space.5 Computer scientists have found that real-world data in RN often lie close to a
lower-dimensional manifold, M, which can be embedded into RK , K < N . A suitable
embedding function from RN to RK could provide a very convenient model of the data,
one that preserves salient topological properties also being sensitive to nonlinear relation-
ships between datapoints. In practice, manifolds seem to carry just the right amount of
structure for this task (Belkin and Niyogi, 2001; Hinton and Roweis, 2002; Hinton and
Salakhutdinov, 2006; McInnes et al., 2018; Roweis and Saul, 2000; Tenenbaum et al.,
2000; van der Maaten and Hinton, 2008).

Roughly speaking, manifold learning is a family of dimensional reduction algo-
rithms that progress according to the following scheme.

• We begin with the dataset with datapoints xi ∈ RN . We posit that there exists a
manifold M of dimension K < N , embedded in RN , such that the data points lie
on or close to the manifold.

• The goal is to find an embedding function m : RN → RK that projects each high-
dimensional datapoint in the feature space onto the K-dimensional latent space,

5More fully, an n-dimensional topological manifold is a topological space M which satisfies three
conditions: First, it must be locally Euclidean, meaning that for every point p in M, there exists an
open neighborhood U around p that is homeomorphic to an open subset of Euclidean space Rn, where n is
a fixed integer representing the manifold’s dimension. This ensures that sufficiently small neighborhoods
in M locally resemble flat Euclidean space. Second, M must obey the Hausdorff condition, that for any
two distinct points in M, there exist disjoint open neighborhoods. This ensures that points can always
be separated by open sets. Finally, M must be second-countable, meaning it possesses a countable basis
for its topology. See Guillemin and Pollack (1974); Hirsch (1994) for further details.
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RK .6 It maps RN onto RK such that the images m(xi) preserve the intrinsic
geometric and topological structure of the original data xi on the manifold M,
within the constraints of the reduced dimensionality.

• We define a cost function,
C : RN × RK → R, (2)

which assigns a real number to each pair of points, one from the feature space and
one from the latent space, designed to measure how well a map preserves salient
geometric and topological features of the data (i.e. structural features of M).

• We find an embedding, m, that minimizes the cost function.

• Finally, the reduced-dimension data points, yi, are represented in the lower-dimensional
latent space by their images under the embedding, m(xi) = yi ∈ RK .

When applying this procedure, it is essential to avoid overfitting, in which the
model captures noise in the data, thereby failing to provide generalizable insights about
the data. In the extreme case, without any procedures to avoid overfitting, we might
represent all the data with a one-dimensional manifold, a curve passing through each
datapoint. While this curve would perfectly ‘fit’ the data, it would fail to capture the
simpler, underlying structures that we seek to learn

Therefore any manifold learning technique will generally require us to implement
some techniques to prevent overfitting, often in the form of a smoothness constraint.
There are three widely-used (non-exclusive) approaches to this.

• Constraints on the manifold: We explicitly restrict the class of allowable man-
ifolds to those meeting certain smoothness criteria. I will discuss one example, the
reach constraint in section 4.7

• Cost Function: We favour smoother and simpler manifolds implicitly in the cost
function. For example, in the Locally Linear Embedding algorithm (Roweis and
Saul, 2000), we mitigate the effect of noise by approximating each point as a linear
combination of its nearest neighbors. These nearest neighbours are likely to be
part of the same smooth patch of the manifold. Overly contorted manifolds are
often disfavored by this process.

• Regularization: We further modify the cost function to penalize insufficiently
smooth solutions. Such a cost function might look like, Ctotal(xi, yi) = Cbase(xi, yi)+
R(yi), Where Cbase measures how well the low-dimensional representation yi pre-
serves the structure of the original data xi, and R is a regularization term that
increases with the ’roughness’ of the embedding (Hastie et al., 2009).

6The function m is an embedding if it is a smooth, injective, immersion, whose underlying continuous
function is a homeomorphism onto its image (see Hirsch 1994, pages 21-29 for further details).

7These constraints are important in the theoretical studies of manifold learning. But they are not so
widely used in practically useful algorithms, as directly enforcing such constraints can be computationally
expensive (Belkin et al., 2006; Berenfeld et al., 2022; Fefferman et al., 2016).
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Let us consider a very simple example of manifold learning (see Tenenbaum et al.
2000) and loosely show how to apply one possible local manifold-learning algorithm,8
Locally Linear Embedding (Roweis and Saul, 2000). Suppose that our data is composed
of points in a three-dimensional feature space, R3. Further suppose that the datapoints
tend to lie close to a surface, described by the swiss roll parametric equations,

x1 = t cos(t) (3)
x2 = s (4)
x3 = t sin(t), (5)

where x1,2,3 are some choice of the three coordinates, and t and s are parameters (see
figure 2a).9

Let us suppose that we want to reduce the dimensionality of this data to a latent space
of just two dimensions, whilst trying to preserve the geometric features of the original
global non-linear structure. If the datapoints lie near a two-dimensional manifold as we
hope, then there should be a linear mapping from the coordinates of each neighbourhood
to coordinates on the manifold which preserves this structure. So one approach could
be to proceed as follows. First, we identify the k nearest neighbors for each point in the
dataset, and some choice of integer, k, using on Euclidean distance in the R3 space. We
assume that each data point and its neighbors lie to close to a locally linear patch of the
manifold. Then, each point xi can be reconstructed from a linear sum of the coordinates
of its neighbor, xjs. As such, we minimize the cost function, ε,

ε = |xi −
∑
j

Wi,jxj |2, (6)

where the weights Wi,j give the contribution of the jth data point to the ith reconstructed
point.

Finally, we find the corresponding points, yi, in the latent space, R2, that best
preserve these local weights. This is done by minimizing another cost function, φ,

φ = |yi −
∑
j

Wi,jyj |2, (7)

where yi, yj are the corresponding lower-dimensional embeddings of xi and xj respec-
tively. The result is a lower-dimensional expression of the original data, preserving some
of its original geometric features, albeit with some (hopefully small) loss of information.
Figure 2b shows the application of this algorithm to the data from figure 2a: our swiss
roll has been unfurled and flattened into a pancake.

8We can loosely distinguish two kinds of manifold learning algorithm, local and global methods
(Cayton, 2005). For local methods, the cost function considers the placement of each point with respect
to its neighbors, whereas for global methods tend to consider the relative placement of all points.

9The data was generated using the scikit-learn dataset, make-swiss-roll (Pedregosa et al., 2011).
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(a) 2500 randomly generated datapoints in R3, lying close to the
swiss-roll surface. The colours are for visualization only.

(b) The datapoints transformed under the LLE (k = 20) algorithm,
represented in R2. Corresponding datapoints keep their colour from
figure 2a.
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4 The Manifold Hypothesis
It is widely posited that all such manifold learning techniques share a common funda-
mental assumption (Cayton, 2005), often referred to as the manifold hypothesis. This
assumption has rarely been stated rigorously. However, roughly speaking, it posits that
high-dimensional real-world data can be sufficiently well-represented by data lying on
a lower-dimensional latent manifold, embedded within the feature space (see Athana-
sopoulou et al. 2014; Bengio et al. 2013; Bordt et al. 2023; Brahma et al. 2016; Brown
et al. 2022; Gorban and Tyukin 2018; Ivanov et al. 2021; Izenman 2012; Meilă and Zhang
2023; Narayanan and Mitter 2010; You and Ma 2011).10

It will be helpful to distinguish a local manifold hypothesis from a global manifold
hypothesis. Given some dataset, the local manifold hypothesis states this dataset can be
well-represented by data lying on a lower-dimensional latent manifold, embedded within
the feature space. On the other hand, the global manifold hypothesis is the proposition
that many real-world datasets can be effectively compressed by this kind of manifold
learning; indeed that this is a prevalent feature of real-world datasets. One plausible
and suitably general way to explicate the local manifold hypothesis could be as follows.11

Let X ⊂ RN be a high-dimensional feature space, with datapoints, xi ∈ X . Let
GX (K,V, τ) be the class of sub-manifolds in X with dimension, K, K-dimensional volume
≤ V and reach ≥ τ .12 Then the manifold hypothesis is the assumption that, for some
choice of K < N,V, τ , there exists a manifold, M ∈ G , such that,

L(M, {xi}) < ε, (8)

where L(M, {xi}) is some measure of the average shortest distance (perhaps the mean-
squared shortest distance) between the datapoints {xi} and the manifold M, according

10Each individual manifold learning technique also makes a number of further assumptions. However
this fundamental assumption, the manifold hypothesis is, by definition, shared by all manifold learning
techniques.

11The main principles of this definition come from Fefferman et al. (2016). They define an algorithm
to test the manifold hypothesis within a certain domain, for independent and identically distributed
probabilistic data supported on a separable Hilbert Space. For our general purposes, it serves to loosen
some of these requirements, whilst restricting ourselves to finite data on an N -dimensional space of
real-numbers.

12We only want to consider manifolds above a certain reach and below a certain volume to avoid
overfitting; after all, manifolds of sufficiently large volume or low reach could more easily capture every
datapoint. Following Fefferman et al. (2016), the reach, τ , of a manifold is defined as the largest distance
such that any point within the distance τ from the manifold has a unique closest point on the manifold.
Sometimes loosely described as a measure of smoothness, one can more accurately think of it as a measure
of local feature size, related to both local curvature and global bottlenecks (see Berenfeld et al. 2022 for
a more complete explanation). The K-dimensional volume is given by the standard Lebesgue measure
in RK . Recall (section 3) that once we define a cost function for some manifold-learning algorithm, we
might expect that such an overfitted manifold might nonetheless have a high cost, indicating that it does
not properly capture the salient features of the data. In that sense, there is a risk of double-counting this
requirement in this definition. One alternative would be to define a cost function from the outset, and
require a manifold below a certain cost in the hypothesis. However, here I conservatively choose to stick
to the approach used by Fefferman et al. (2016), defining the manifold hypothesis prior to specifying
any cost function.
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to some choice of distance (possibly, but not necessarily, the Euclidean distance in RN ),
and ε ∈ R is some closeness threshold.

We can view the manifold hypothesis as an data compressibility assumption. The
high-dimensional dataset contains redundancy. As such, the data can be well-represented
with the use of a lower-dimensional model, without significant loss of information.

Expressed in this way, the local manifold hypothesis asserts that there exists a man-
ifold M in X such that the average distance L(M, P ) is less than or equal to some
specified threshold, chosen based on the desired level of proximity between the data
distribution and the manifold. For different applications of the hypothesis, such as with
different types of dataset or different manifold learning algorithms, we might choose
to consider different manifold parameters, and different ways to measure the average
distance and the threshold.

The global manifold hypothesis asserts that this applies to many real-world datasets.
A general argument for the hypothesis has not been put forward; however, it has often
been presented as a reason why machine learning is possible at all (see Cayton 2005;
Fefferman et al. 2016; Olah 2014). After all, the higher the dimension of the data is, the
harder machine learning tasks generally become. The global manifold hypothesis sug-
gests that machine learning algorithms can potentially reduce the complexity of these
tasks, by latching onto a smaller number of salient regularities in the data.13 For in-
stance, the task of interpreting handwritten digits in our MNIST dataset is far easier
than one might naively fear from the high dimensionality of the data; handwritten ver-
sions of the same digits can be summarized by certain common, higher-level features
(see Yao et al. 2017 for one example).

5 Sloppy Models in the Computational Empirical Sciences
Manifold learning has usually been applied to machine learning tasks, where we wish to
build a simple model of the data for tasks like image recognition. Now let us turn to a
framework in the computational empirical sciences,14 known as sloppy modeling. Here,
the task is to create a simple model of some target system, for the purpose of generating
accurate predictions, and hopefully to better understand the system. However, we will
see a strong analogy between this framework and machine learning.

In the computational empirical sciences, a model is a function from a real-valued
vector of M ′ parameters to a real-valued vector of N ′ predictions f ′ : RM ′ → RN ′ . Gen-
erally, we call RM ′ the parameter space, and RN ′ the prediction space. Often, the
dimensions of the parameter space might represent properties of the system theoretically

13To take a more specific example, this principle is key to explaining the possibility of certain regu-
larization techniques in deep learning, like dropout or weight decay, are effective (see Srivastava et al.
2014; Zou and Hastie 2005 for further details).

14I will use the term computational empirical sciences to refer to the wide array of scientific disciplines
focused on using computational methods to build empirically-supported models of highly complex, high-
dimensional target systems. This includes a wide array of fields, including, but not limited to, much
of systems biology, chemistry, condensed matter physics, and many areas of engineering and the social
sciences.

10



posited by our model, whereas the dimensions of the prediction space represent observ-
able quantities that we measure. As such, observed datapoints also lie in the prediction
space.

We can use measurements to estimate the model parameters. Measurements are
represented by a set of real numbered vectors in the prediction space. We write a
cost function to measure the distance between the model predictions and the empirical
measurements, and tune the model parameters to minimize this cost. If our model
is predictively accurate for a given choice of parameters, then the model’s predictions
should lie close to the measurements. Then we might then use such a model to generate
further accurate predictions.

Consider this simple example.15 Suppose we want to create a computational-scientific
model of a pair of apparently identical pendulums, joined together with some string, and
starting at rest but with one pendulum displaced (this is our target system). We can
measure two things: the displacement of the first pendulum (x1) or the displacement
of the second pendulum (x2), each indexed by different times, t (we can think of as t
an independent regressor variable). So if we take measurements at ten different times,
our measurement space will be 2× 10 = 20 dimensional. Physicists often model such a
system as a pair of weakly coupled, identical harmonic oscillators,

x1(t) = d cos
(
ω2 − ω1

2
t

)
cos

(
ω1 + ω2

2
t

)
, (9)

x2(t) = d sin
(
ω2 − ω1

2
t

)
sin

(
ω1 + ω2

2
t

)
. (10)

where we have three parameters: ω1 and ω2 are normal frequencies of the system, rep-
resenting the frequency of the pendulums oscillating with the same amplitude in phase
and out of phase, and d is the initial displacement of one pendulum. Note that these
natural frequency parameters are theoretical posits of our model, which we do not di-
rectly measure. Rather, we infer their values using our model and observations of the
displacements.

A model is described as sloppy if its predictions are highly insensitive to most
parameter combinations (which we call the sloppy parameter combinations), but are
highly sensitive to a small number of parameter combinations (which we call the stiff
parameter combinations) (see Quinn et al. 2022; Transtrum et al. 2015 for scientific
overviews and see Freeborn 2024 for a philosophical analysis). This allows for significant
alterations in the values of sloppy parameter combinations, potentially by factors in
the thousands or tens of thousands, with minimal impact on the model’s predictive
output. Thus a model with M ′ parameters might operate with a considerably lower
effective dimensionality in practice. Following Freeborn (2024), we call a physical target
system sloppy if it can be well-represented by a sloppy model, i.e. if we can produce an
effective model that is a good description of the system. We could operationalize as the
requirement that the datapoints lie close to an effective model manifold.

15See Pain 2005, pages 79-87 for a fuller treatment.
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We can measure the sensitivity of the specific parameter combinations to the observed
data using the Fisher Information Matrix (FIM). This gives the expected curvature of
the log-likelihood function of the observed data in relation to the model parameters.
The eigenvectors of the FIM are termed local or ”renormalized” eigenparameters.16

Many real-world systems seem to depend on huge numbers of parameters. However,
it becomes increasingly hard to build good models with large numbers of parameters.
Just as in machine learning, high-dimensionality can be a major problem in computa-
tional scientific modeling. The utility of a sloppy model lies in its ability to effectively
capture the salient features of a dataset while demonstrating a robust tolerance to vari-
ations in many of its parameters. As such, sloppy systems are suitable targets for
effective models, in which some or all sloppy parameter combinations can be ignored.
Fortunately, scientists have found that systems across a very wide variety of domains
are sloppy, ranging from systems biology to quantum mechanics to particle accelerators
(Gutenkunst et al., 2007). Proponents of the sloppy models framework argue that the
ubiquity of sloppy systems can help to explain the success of science (Freeborn, 2024;
Quinn et al., 2022; Transtrum et al., 2015).

Hopefully, by expressing things in this way, the analogy with machine learning is
already clear. Note that the scientific model’s prediction space, RN ′ , corresponds to
the machine learning model’s feature space, RN . In each case, the dimensions of the
space correspond to the real-world observable quantities in the target system; a mea-
surement of each of these quantities corresponds to a datapoints in that space. The
scientific model’s parameter space, RM ′ , corresponds to the machine learning model’s
latent space, RM . The dimensions of this space correspond to higher-level theoretical
quantities (parameters or latent variables) posited by our model of the target system.
However, observe that the function f ′ in the computational empirical sciences takes an
opposite direction to the function f in machine learning. The former takes us from our
model parameters to the observable predictions, whereas the latter takes us from ob-
servable data in the feature space to tune the predicted model parameters. It will often
be helpful to assume that such functions are invertible in both the machine learning and
computational sciences contexts.

The effective model m′ is a function from a simplified, lower-dimensional space of
K ′ < M ′ effective (or “renormalized”) parameters, RK′ to the prediction space, RN ′ . As
we will see in there next section, we can also propose a manifold boundary approximation
function, g′, to take us from the high-dimensional, to the low-dimensional prediction
space. If the effective model and original sloppy model make the same predictions, then

16The Fisher Information Matrix gives the expectation of the second-order partial derivatives of the
log-likelihood function of the observed data with respect to the model parameters. Viewing this Fisher
Information “matrix” as a metric (a type (0,2) tensor), it is given by,

gµν(y
′) = E

[
∂ log p(x′|y′)

∂y′µ
∂ log p(x′|y′)

∂y′ν

]
(11)

where µ, ν = 1, 2, . . . ,M ′, y′ is the M ′-dimensional parameter vector, x is the N -dimensional predictions
vector, p(x′|y′) gives the likelihood of observing the predictions x′ given the parameters y′ in the model,
and E[·] gives the expectation with respect to the distribution of the observed measurements.
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the relation between these functions is shown in figure 3. Once again, in reality this is
an unrealistic assumption: the two models should give almost the same outputs, but
some information will be lost in the effective model.

RN ′ RK′ RM ′

Prediction space
(predictions)

Effective parameter space
(effective parameters)

Original parameter space
(model parameters)

m′

Effective model
g′

MBAM

Original model
f ′ = m′ ◦ g′

Figure 3: A category theoretic representation of the original and effective modeling
approaches, assuming that they give the same outputs. Here, RN ′ is the prediction
space, RK′ is the effective parameter space, and RM ′ is the original sloppy parameter
space. The functions f ′, g′, and m′ represent the original sloppy model, the manifold
boundary approximation method (MBAM) function, and the effective model function,
respectively.

6 Manifold Boundary Approximation in the Computational Sciences
We can derive these effective models by using an information-geometric approach (see
Transtrum et al. 2011,1), in which we endow the model with a little more structure.
Each vector of predictions defines a point in the prediction space, RN ′ , and each vector
of model parameters y′ generates one such point under the function f ′. As such (as-
suming M ′ > N ′), we can reinterpret the model as an M ′-dimensional sub-manifold R′,
embedded in the prediction space, RN ′ . This embedded sub-manifold is defined by the
points,

R′ = {f(y′) ∈ RN ′
: for all the parameter combinations y′ ∈ RM ′}. (12)

Here y′ gives the manifold coordinates: as such, varying the parameters y′ of the model
moves along the manifold surface, leading to a different point (vector of predictions) in
the feature space in which it is embedded. The collection of all these points (for all
possible parameter values) forms the model manifold surface.17

The FIM can serve as a Riemannian metric on the model manifold, measuring pa-
rameter space distances (in units of standard deviations of the parameter, given their

17To interpret the model as an embedding, we must make some further assumptions about f ′. It must
be smooth, injective, an immersion, and its underlying continuous function must be a homeomorphism
onto its image (see Hirsch 1994, pages 21-29 for further details).
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probability distributions under the model). Such distances operationalize the distin-
guishability between model predictions from different parameter choices.

We can explore how the model predictions change as we vary corresponding parame-
ter combinations by tracing geodesics along the model manifold. If we move far enough
along a geodesic, we may eventually reach a point where further movement would take us
to boundaries. Beyond these boundaries, the model’s predictions become non-physical,
undefined, or irrelevant.18 For instance, such boundaries can arise when certain parame-
ter combinations are not physically meaningful, or lead to singularities or mathematically
undefined behavior.

Tthe existence of these boundaries on the model manifold represents a general prin-
ciple of model reduction. This concept suggests that simpler models often arise at the
extremes of parameter values, an idea implicit in many areas of physics and elsewhere
in the computational sciences. The modern framing of this as ’manifold boundaries’
provides a rigorous mathematical foundation for this intuition.

Therefore, geodesic lengths give an indicator of sloppiness: long geodesics correspond
to stiff parameter combinations, whilst short geodesics correspond to sloppy parameter
combinations, in which the values can be varied over many orders of magnitude without
significantly altering the model predictions in RN ′ . The shape of a sloppy manifold is
described as a hyperribbon, with many short dimensions and only a few longer dimen-
sions.

There are various ways to identify and utilize these boundaries for model reduction.
One method designed for this purpose is the manifold boundary approximation
method (MBAM). This uses an information-geometric approach to systematically find
lower-dimensional effective models for sloppy systems (Transtrum and Qiu, 2014). This
allows us to propose a manifold boundary approximation function, g′ : RM ′ → RK′ ,
taking vectors of the original parameters to corresponding vectors of the effective pa-
rameters. The MBAM algorithm proceeds as follows to find a particular boundary of
the model manifold.

• We begin with the dataset with datapoints x′i ∈ RN ′ , and the embedded model
manifold, R′. We posit that the system is sloppy.

• The goal is to find an embedding function g′ : RM ′ → RK′ that projects each high-
dimensional parameter vector in the parameter space onto the K ′-dimensional
manifold, M. We seek an effective model, m′ : RK′ → RN ′ , such that for each pa-
rameter vector within some chosen domain, y′i, f ′(y′i) ≈ m′(g′(y′i)), i.e., the sloppy
model and the effective model should make approximately the same predictions
within this domain.

• We find an embedding, g′, as follows:
18A K-dimensional manifold with boundary M is a topological space where every point p in M has

a neighborhood homeomorphic to an open set in the Euclidean half-space RK
+ = {(x1, . . . , xK) ∈ RK :

xK ≥ 0}. Points in M that have neighborhoods homeomorphic to an open set in Rn (the entire Euclidean
space) are called interior points. Points in M that have neighborhoods homeomorphic to an open set in
RK

+ but not in RK are called boundary points.

14



– Model Fitting: Initially, fit the model to data to find a best-fit point in the
parameter space using an appropriate cost function,

C : RN ′ × RM ′ → R, (13)

which assigns a real number to each pair of points, one from the prediction
space and one from the parameter space.19

– Eigenvalue Analysis: Compute the FIM at this point and perform an eigen-
value analysis. Identify the direction associated with the smallest eigenvalue,
which corresponds to the sloppiest parameter combination.

– Geodesic Tracing: Trace a geodesic in the parameter space along this slop-
piest direction. This path leads to a boundary of the model manifold where
the insensitive parameter becomes redundant.

– Model Reduction: At the manifold boundary, effectively remove or fix the
redundant parameter, thereby reducing the model’s dimensionality.

– Effective Model Fitting: The effective model parameters are fit to the
data using an analogous cost function,

C : RN ′ × RK′ → R, (14)

which assigns a real number to each pair of points, one from the prediction
space and one from the effective parameter space, designed to measure how
well a map preserves salient geometric and topological features of the data.

– Iteration: Repeat the process as needed to simplify the model further, fo-
cusing each time on the next sloppiest direction.

• Finally, the effective parameter vectors, y′i, are represented in the lower-dimensional
effective parameter space by their images under the embedding, g′(y′i) = y′i ∈ RK′ .

Recall the problem with overfitting in manifold learning discussed in section 3. The
MBAM procedure is generally resistant to such overfitting. Unlike manifold learning
techniques, which might find arbitrary lower-dimensional representations to fit data,
MBAM is constrained to move along existing model structures. The boundaries it finds
correspond to limiting cases of the original model, preserving its core structure rather
than introducing new, potentially overfitting parameters. This process is guided by the
model’s intrinsic geometry, not by fitting to specific data points. Thus MBAM does not
introduce new complexity to match particular observations.

To illustrate a simplified, toy version of this procedure, consider our coupled pendu-
lums model once more. This model is not sloppy in general; however, it can illustrate
some principles effective model building because some of its parameter combinations can
become sloppy in certain domains, such as when the times t are very small. Here, we

19The task of fitting the model parameters can be interpreted as projecting the data onto the model
manifold (Quinn et al., 2022).
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shall focus on just the displacement of the first pendulum, x1. First, let us rewrite the
model in terms of some new parameter combinations, ωh = ω2 + ω1 and ωl = ω2 − ω1.
Now the displacements x1 and x2 are characterised by a higher frequency (ωh) mod-
ulated sinusoidal oscillation, varying within a lower frequency (ωl) sinusoidal envelope
(figure 4a). At small enough times, t, we might find that the model predictions are
highly insensitive to the value of ωl; only the high frequency variations seem to mat-
ter: in this domain, ωl has become sloppy. We might find that the geodesics reveal a
model boundary at ωl → 0. At this boundary, corresponding to small times and small
couplings, we can eliminate the dependence on ωl, and rewrite our model,

x1(t) = d cos (ωht) , (15)

which we can think of this as a effective model of the system adequate at a particular
domain, with just two parameters, d and ωh (figure 4b).

7 Manifold Boundary Approximation and Manifold Learning
Prima facie, MBAM appears to be a fundamentally different procedure to Manifold
Learning, as described in section 3. There is some truth to this. After all, manifold
learning provides a way to build a simplified model of the data, taking us from datapoints,
xi, in the data space, RN , to prediction vectors, yi = m(xi), in a reduced latent space,
RK . On the other hand, the Manifold Boundary Approximation Method takes us from
parameter vectors y′i in the parameter space, RM ′ to effective parameter vectors, y′i =
g′(y′i), in the effective parameter space, RK′ . Recalling our analogy between machine
learning and the computational empirical sciences, the data space corresponds to the
prediction space, the latent space corresponds to the parameter space, and the reduced
latent space corresponds to the effective parameter space. As the diagrams in figures 1
and 3 demonstrate, these are not the same procedure.20

However, recall that before starting the MBAM procedure, we reinterpreted the
model f ′(y′i) = x′i as an M ′-dimensional manifold, R′, with y′ giving the manifold
coordinates, embedded in the prediction space, RM ′ . We begin the MBAM procedure
by finding the parameter vector on this manifold, best tuned to the datapoints, x′i, and
then follow a geodesic to reach the manifold boundary. Finally, the sloppy parameter
combination is eliminated, and the effective model is re-tuned to the data. In effect, this
procedure identifies a K ′-dimensional sub-manifold of the dataspace, RN ′ , that is tuned
to the data, just as with the case of manifold learning.

To be clear, the procedures are not identical here. Under manifold learning, we find
the specific sub-manifold (for a given K) that is best tuned to the data according to the
cost function. By contrast, the manifold boundary found by following a sloppy geodesic
is in no sense guaranteed to be the K ′-dimensional sub-manifold best tuned to the data

20Indeed, they have generally been viewed as two essentially distinct kinds of procedure (Monsalve-
Bravo et al., 2022; Quinn et al., 2022; Teoh et al., 2020).
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(a) Predicted displacement of the first pendulum according to the original model, for some
choice of parameter values.

(b) Predicted displacement of the first pendulum with the same parameter values, at small
times, according to the original model (blue) and effective model (orange). Notice that the
two models almost agree at sufficiently small times.
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according to any given cost function. Rather than simply opting to find the best sub-
manifold, in the MBAM procedure, we first seek to eliminate the sloppiest parameter
combinations. These are precisely the parameter combinations that are least sensitive
to the data, and in general likely to be hardest, and least relevant, to tune. The purpose
of eliminating such parameter combinations is precisely to make the task of tuning
the effective model easier. Whilst MBAM does not entail finding the sub-manifold most
tuned to the data, it does find the sub-manifold whose most stiff parameter combinations
are best tuned to the data.

Here it is worth considering the two procedures epistemically. When performing
manifold learning, we begin with knowledge of the data, xi ∈ RN . We do not assume
knowledge of the prior model f or of the latent variables we wish to measure that make
up RM . The manifold learning procedure uses the data to give us the function m that
can best represent the datapoints (and in effect the function g), and the reduced latent
space, RN . Now consider MBAM. We begin with analogous knowledge, of the data,
x′i ∈ RN ′ , but also require prior knowledge of the model function, f ′ and the model
parameters that make up RM ′ , . The manifold learning procedure uses these to give
us the function g′ (and in effect the function m′ that allows us to best represent the
datapoints using the stiff parameters) and the effective parameter space, RK′ .

Thus, both procedures construct the same kind of object, a sub-manifold of the
feature space or prediction space, RN or RN ′ , tuned appropriately to the datapoints
xi ∈ RN or x′i ∈ RN ′ . However, there are two key epistemic differences. First, when
performing MBAM, we start with greater knowledge: we must already have some prior
model of the data, f ′, unlike in manifold learning. The epistemic role of f ′ is precisely
to help us identify the stiff parameter combinations in constructing RK′ . Further note
that identifying these is the only epistemic role of the model f ′: the effective parameter
tuning takes place with respect to the data, in precise analogy to manifold learning.
Second, when we perform MBAM, we restrict ourselves to best representing the data
only using these stiff parameter combinations.

To stress this point, let us consider the MNIST dataset example once more. Suppose
that our machine learning specialist has finally found a model, f , taking the real-valued
vector of 784 pixles in each time to a vector of ten-real-valued output classifications.
However, they find the model overly complex and difficult to tune, due the many ap-
parently insensitive parameters. Perhaps the task would be easier if they could find a
reduced dimensionality model, which doesn’t depend on all these parameters. They use
the data to identify the insensitive parameter combinations, and then build a effective
model of the data, g : RK → RN . Observe how this process relates closely to the pro-
cess of building a dimensional reduction model, described in section 3, albeit utilising
already-existing model.

Confusion is natural given the different ways functions have been defined in machine
learning and the computational empirical sciences. However, whilst the methods differ,
it perhaps makes sense to think of the MBAM procedure as akin to a special kind of
manifold learning procedure, in which a prior model, f ′ is used to identify the stiff
parameter values, and then the reduced latent manifold (or effective parameter space)
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is fit to the data only using the stiff parameter combinations.
This motivates a reconsideration of sloppiness itself. Following Transtrum et al.

(2010); Transtrum and Qiu (2014), we can describe a model f ′ : RM ′ → RN ′ as sloppy
if R′ (the corresponding M ′-dimensional sub-manifold of R′) has few stiff geodesics,
and many sloppy geodesics. Each such sloppy geodesic must have at least one manifold
boundary. The MBAM algorithm provides one way to identify and utilize these bound-
aries, allowing us to eliminate sloppy parameter combinations and build an effective
model of reduced-dimensionality. If we can build an effective model with M ′ −K ′ fewer
parameters, then this model will correspond to a K ′-dimensional sub-manifold of RN ′ .

So, one plausible explication of sloppiness would be with the following criterion.
Let X ′ ⊂ RN ′ be a high-dimensional prediction space, with datapoints, {x′i} ∈ X ′.
Require that Y ′ ⊂ RM ′ is a high-dimensional parameter space, with an embedding
f ′ : RM ′ → RN ′ defining a sub-manifold in the prediction space, R′ ⊂ RN ′ . Let
G′

X ′(K ′, V, τ) be the class of effective model sub-manifolds in R′ with dimension, K ′,
volume ≤ V and reach ≥ τ . Then the sloppiness criterion demands that, for some choice
of K ′ < N ′, V, τ , there exists an effective manifold, M′ ∈ G′ , such that,

L(M′, {x′i}) < ε, (16)
where L((M, {xi}) is some measure of the average shortest distance between the dat-
apoints {x′i} and the manifold M, according to some choice of distance, and ε ∈ R is
some closeness threshold.

Observe that this sloppiness criterion is essentially the manifold hypothesis from
section 4, alongside an addition requirement: the sub-manifold that describes the data
must be an effective model manifold, produced from a sloppy model. This additional
requirement restricts the scope of the models under consideration, but in a reasonable
way: finding an effective model precisely involves eliminating parameter combinations
which are least sensitive to the data.

Another way to think of this is that manifold learning might be a more theory-
independent way of building a dimensional reduction model of the data. However, as
noted, any particular manifold learning algorithm will add additional assumptions. Find-
ing an effective model is more theory-dependent: we begin with an assumption that a
prior model f ′ can offer a good description of the system, but has some superfluous
(sloppy) parameter combinations which can be eliminated, reducing the dimensionality
of the model. However, above this assumption, the additional assumptions of effective-
model building are quite weak, namely that the improved model of the system involves
precisely removing those irrelevant parameter combinations.

We could imagine MBAM’s goal as reducing the number of parameters, while retain-
ing as much relevant information from the original model as possible, ensuring that the
essential features and behaviors of the system are preserved. We could imagine a “cost
function” in terms of trace of the FIM, to measure the fidelity of the reduced model to
the original model’s manifold. Against such a cost, then MBAM would behave like a
greedy algorithm21, making locally optimal choices at each step without guaranteeing a

21A greedy-algorithm iteratively makes the locally optimal choice at each step, typically without
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globally optimal solution. As such, MBAM does not explore the whole space of solutions.
We could consider other algorithms for achieving this goal. At the most constrained

end of the spectrum, MBAM represents a greedy approach, in which it finds a particu-
lar K ′-dimensional boundary through iterative geodesic tracing. While computationally
efficient, this does not guarantee finding the globally optimal reduced model. By con-
trast, manifold learning seeks to find the best K-dimensional representation of the data
without constraints on the form of that representation, and requires explicit smoothness
assumptions to avoid overfitting. Less constrained alternatives to MBAM might be al-
gorithms that find the optimal K ′-dimensional edge or boundary of the model manifold,
or even choosing a K ′-dimensional sub-manifold of the original model manifold, without
the requirement that it be an edge or boundary. Such algorithms could still inherit
structural constraints on the model, and therefore might not require a further procedure
to prevent overfitting. Such algorithms could plausibly have useful properties relevant
to both scientific model-reduction and machine learning.

Just like the manifold hypothesis, we can view sloppiness as a compressibility as-
sumption. The high-dimensional dataset and the model contain redundancy. As such,
the data can be well-represented with the use of a lower-dimensional effective model,
without significant loss of information.

8 Effective Field Theories in Physics
The sloppy models program is closely tied to the modern effective field theories (EFTs)
program in quantum field theory and particle physics.22 It is therefore worth considering
to what extent the effective field theories program in physics can also be understood
through the use of manifold learning methods.

EFTs are built on the principle that quantum field theoretic phenomena decouple
at different energy or distance scales. This means that to describe physics at a certain
scale, it is only necessary to consider relevant degrees of freedom and interactions at
that scale. Furthermore, given our ignorance about physics at certain scales, it is often
necessary to do so. As with sloppy models, EFTs simplify the description of complex
systems by identifying the most relevant degrees of freedom and parameters at a given
scale.23

Many highly successful theories are effective field theories, including Fermi’s Theory
of Weak Interaction, Chiral Perturbation Theory, Heavy Quark Effective Theory, and
Ginzburg-Landau Theory. Indeed, on the modern approach pioneered by Wilson and
Kogut (1974), we should expect every quantum field theory to be an effective field theory,
including the Standard Model of particle physics.

backtracking. Such an algorithm may not find a global optimum.
22Indeed, at least some cases of effective field theory building can be understood as instances of effective

model building in sense meant in sections 5 and 6 (See Machta et al. 2013; Raju et al. 2018; Transtrum
et al. 2015 for further details and Freeborn 2024 for a philosophical discussion.

23For further details see Binney et al. 1992, Weinberg 1996 and Duncan 2012. For a philosophical
overview, see Butterfield 2014 and Butterfield and Bouatta 2014 for further details).
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We can think of a quantum field theory as a scientific model along essentially the
same lines as the computational models in section 5. We can define a space of predictions,
RN ′ , consisting of measurable quantities, perhaps including physical quantities such as
scattering amplitudes, cross-sections or decay rates; and a space of parameters, RM ′

perhaps including the field variables and their so-called bare coupling constants, such
as masses and charges.24 We can interpret the theory as a function, f ′ : RM ′ → RN ′ ,
mapping from a selection of parameters to a set of predictions. The theory is usually
written in terms of a Lagrangian, L(φi, λj), where φi are posited field variables, and
λj are the field parameters. We can derive the equations of motion, and eventually
the predictions about observables, through a rather involved process, starting with the
Lagrangian.

Unfortunately, calculations using non-trivial interacting quantum field theories are
typically found to lead to problematic mathematical divergences. To tackle these diver-
gences, physicists modify these theories through a family of correction techniques known
as regularization. For example, a simple way to do this is to impose a momentum cutoff
scale, at a much higher energy than the interactions we wish to study. These corrections
can render the theory finite, but usually lack a principled physical motivation.

The solution, renormalization, involves adjusting the bare parameters of the theory
to remove dependence on any regularization scale. The resulting renormalized theory has
new renormalized parameters that shift with the energy or distance scale, at which we
describe the theory. We call the shifting of these renormalized running coupling constants
the renormalization group flow (RG flow) through the parameter space. We derive
differential equations to describe how the renormalized couplings must vary with the
scale, if we impose the requirement that the physical observables in the prediction space
must remain the same.

Crucially, the parameter trajectories under RG flow will remain within the parameter
space of the theory. These parameter trajectories often lead to fixed points or surfaces,25

at which the value of the renormalized coupling constants cease to change with the scale.
Many different theories, those with the same fields and symmetries may flow towards the
same fixed surface.26 As such, the fixed surfaces are said to define universality classes
of theories that share the same behavior at some scale.

Hence, near these fixed regions, the theory can be thought of as exhibiting a kind of
self-similar behavior across scales, an approximate scale-invariance. In effect, the renor-
malizable part of the theory can be approximately decoupled from the physics energy
scales. A linear approximation of the RG flow equations near stable fixed points reveals
a small number of unstable directions, in contrast to the majority that are stable. Un-
stable directions correspond to parameters for which small changes can result in large

24We might think of both the field variables and field parameters as parameters of the theory. The
theory posits both the kinds of fields (for example, scalar, vector, spinor etc), expressed through the field
variables, and their bare coupling constants.

25There are generally two kinds of fixed points – Gaussian (or free-field) fixed points, where interactions
vanish, and non-Gaussian fixed points, where the interactions reach a non-zero constant value. These
fixed points are also crucial in understanding critical phenomena in phase transitions.

26For a proof in the case of one simple scalar theory, see Polchinski, 1984.
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changes to the theory’s predictions. These correspond to relevant and marginal pa-
rameters. Stable directions correspond to parameters for which small changes only lead
to small changes to the theory’s predictions. These correspond to irrelevant parame-
ters.27 Therefore, the predictions of the theory become dominated by a smaller number
of relevant and marginal parameters.

In consequence, we can construct a lower-dimensional effective field theory by
eliminating the irrelevant renormalized parameters. Such effective field theories provide
a good model of the system at certain energy scales, usually at low energy, but break
down at other scales, often high energy scales. As such, we can construct predictively
successful, effective low-dimensional, low-energy theories even whilst remaining ignorant
of the physics at higher energy scales.

Let us consider a simple example, an imaginary, simple scalar quantum field theory
with two interacting fields, φL and φH with different masses, mL and mH respectively,
with mL � mH . Suppose that we want to find a low-energy effective theory, relevant to
sclaes Λ � mH . We summarize the original theory with the Lagrangian,

L =
1

2
(∂µφL)

2 − 1

2
m2

Lφ
2
L +

1

2
(∂µφH)2 − 1

2
m2

Hφ2
L − λφ2

Lφ
2
H , (17)

where ∂µ represents the partial derivative with respect to spacetime coordinates and λ
is the coupling constant for the interaction between the two fields, φL and φH . At low
energies, we find that the parameters associated with high-mass particles become irrele-
vant, and the lower mass fields become effectively decoupled from them. The Lagrangian
relates to the field configurations of the theory by means of the partition function,

Z =

∫
DφLDφH ei

∫
d4xL(φL,φH). (18)

We can eliminate the higher mass degrees of freedom by integrating over them and
defining a new effective Lagrangian, Leff, as follows.28

Z =

∫
DφL ei

∫
d4xLeff(φL). (19)

Unfortunately, in general such an effective Lagrangian may be characterized by an infinite
series of terms,

Leff =
1

2
(∂µφL)

2 − 1

2
m2

Lφ
2
L +

∞∑
n=1

cn
mn

2

On(φ1), (20)

27Roughly speaking, relevant parameters are those that whose effect on the theory’s predictions in-
creases close to a stable fixed point. Irrelevant parameters are those that whose effect on the theory’s
predictions decreases close to a stable fixed point. Other parameters are described as marginal (see
Goldenfeld (1992, pages 245-246) for further details).

28There are two essential steps to this process. First, the Applequist-Carrazone decoupling theorem
shows that the degrees of freedom associated with high-mass particles are suppressed at low energies
(see Appelquist and Carrazone 1975 for further details) Second, the degrees of freedom can be separated
and integrated out, to form an effective field theory (see Wilson (1983); Wilson and Kogut (1974) for
further details).
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where cn are coefficients that depend on the details of the full theory, including the
coupling constant, λ. Fortunately, in this case, power-counting considerations29 and
renormalization group arguments can show that these terms become irrelevant in the
low energy limit we are interested in, resulting in a well-defined low-energy effective field
theory, with Lagrangian Leff-low-energy,

Leff =
1

2
(∂µφL)

2 − 1

2
m2

Lφ
2
L. (21)

In this case, the low-energy theory looks exactly as we might have expected, with only
the free fields for the low mass field, and no coupling to the high mass field. At this
energy scale (Λ � mH) and the high mass field is frozen out. The direct production
of heavy particles associated with the high mass field energetically unfeasible, and their
indirect effects, such as contributions to quantum corrections, are also negligible. Our
effective model of the system describes free, low-mass fields.

Clearly, we can understand this overall procedure of finding a lower-dimensional
effective field theory as a form of dimension reduction of our original theory’s parameter
space. Observe how similar this approach was to finding an effective model of the coupled
oscillators in sections 5 and 6.

9 Renormalization and Compressibility
For some simple models, renormalization group flow towards fixed regions can be re-
covered as a special case of MBAM. Indeed, just as the manifold hypothesis has been
proposed as a reason why machine learning is possible, and sloppy modeling has been
credited as an explanation for the success of science, many cite the renormalization group
procedure as an explanation for successful theory building in high energy physics (Fraser,
2018,2,2; Miller, 2017; Wallace, 2006; Weinberg, 1996; Williams, 2019). This raises the
question: can we say something stronger about the relationship between effective theory
building in renormalized theories and the other manifold learning procedures we have
discussed so far?

Here, it will serve to step back and consider the renormalization group in a more
general setting than just quantum field theory. Recall from section 8, that the renor-
malization group involved transforming parameters within the parameter space under
a change of energy or some other scale, without changing the theory’s predictions in
the prediction space. The renormalization group transformation can be understood as a
coarse-graining procedure, in which the short-distance degrees of freedom of the model
are integrated out, effectively viewing the system with less and less precision. In order
to keep the model predictions in agreement, these scale transformations require us to
transform between points in the parameter space and, correspondingly, to rescale the
prediction space.

29The operators built from fields (in this case, φL) can be organized according to the size of their
contribution in a systematic expansion. See Burgess (2020, pages 51-81) for further details.
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Like the MBAM procedure, RG flow does not generally face overfitting problems
of the type we discussed in section 3. Unlike data-driven dimensional reduction tech-
niques, which might find arbitrary lower-dimensional representations to fit data, RG
flow is constrained by the structure of the underlying theory. The transformations in-
volved in RG flow are guided by the symmetries of the system and the requirement of
scale invariance at fixed points. These transformations require that the effective models
bear a self-similarity in form to the original model (except for a possible reduction of
parameters). Ideally, each step in the RG flow corresponds to a physically meaningful
transformation of the theory, such as integrating out short-distance degrees of freedom
to obtain an effective theory. Once again, the process is guided by the theory’s structure,
not by fitting to specific data points.

Consider the following simple example (originating with Kadanoff, 1966). In the
one-dimensional zero-field Ising model, we consider an infinite chain of coupled spins. A
single parameter, J gives the coupling between neighbouring spins; the spins si at sites
indexed by i, take values of ±1 and give the predictions of the model. The model is
often summarized using the Hamiltonian,

H = −J
∑
i

sisi+1 (22)

We can coarse-grain or “renormalize” the model by averaging out short-range details
and focusing on long-range behavior. One way to do this is through the Kadanoff block
spin transformation, in which we group spins into blocks of spins and then sum over
the spins within each block to define new, effective spin variables. If we use blocks of 2
spins, the averaged spin of the block could be,

Snew = sign(s1 + s2). (23)

After this process, we effectively reduce the number of degrees of freedom in our pre-
diction space: we are now sensitive to only half as many spins as before. Perhaps now,
we keep only the predictions for the spins at even sites in our prediction space. This
might inspire us to write a new effective model of the system, in which the effective
Hamiltonian, H ′, will only involve these spins,

H ′ = −J ′
∑
i

s2is2i+2, (24)

and in which the new effective coupling, J ′, serves as an effective coupling between what
were previously blocks of spins. Requiring that the new model spin predictions corre-
spond to the predictions of the original model, and assuming a probability distribution
over the spins, we can derive a functional form of J ′ in terms of J, and derive renor-
malization group flow equations to understand how the coupling changes with scale.
Successive iterations of the transformation lead towards fixed points, in which the ef-
fective couplings do not change further. Observe then that the transformation of the
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parameter space, whilst keeping the effective predictions in correspondence with the pre-
vious predictions necessitates a loss of sensitivity to some of the degrees of freedom in the
prediction space. In a sense, the effective model does not map to as many predictions.

More generally, assuming the computational modeling framework from sections 5
and 6 it will help to define the renormalization group flow as any transformation on the
embedded model manifold, R′, or within the parameter space RM ′ under some change
of scale, which coarse grains the model’s predictions. Renormalization group transfor-
mations therefore require that the effective models bear a self-similarity in form to the
original model (except for a possible reduction of parameters). As such, any coordinate-
invariant geometric and topological features of the model manifold will remain fixed.
This raises a question: if the model manifold does not change, and renormalization sim-
ply constitutes a flow along its surface, how is it that the renormalized model will lose
degrees of freedom in the prediction space, RN ′?

The key is to realize that the manifold’s metric, given by the FIM, representing the
distinguishability between model predictions from different parameter choices decreases.
Raju et al. (2018) show that we can quantify the loss of information from discarding these
degrees of freedom discarded through coarse-graining by finding how the metric tensor
changes under a coarse-graining application. Let us specify a continuous coarse-graining
procedure, where as the smallest length scale, l = l0 exp(b), changes, the parameters
change according to dy′µ

db = βµ, where y′µ are the parameters, and β are the beta func-
tions, which define the flow so as to preserve the predictions. Then the change in the
metric under this flow is given by a modified Lie derivative, Lβ,

Lβgµν = βα∂αgµν + gαµ∂nuβ
α + gαν∂muβα − L∂Lgµν , (25)

where the first term represents the directional change of the metric, and the second and
third terms represent the change in the parameter space distances, as the parameters
shift. The fourth term arises from the coarse-graining of the model, assuming that the
size of the observed system length L shinks, according to dL

db = −L.30 Raju et al. (2018)
find that the metric decreases along the irrelevant directions, whilst it is preserved along
the relevant and marginal directions.31

This motivates a careful consideration of the renormalization group flow procedure.
This procedure is reminiscent to MBAM, but with two key differences. First, during
renormalization group flow, we do not necessarily travel along the geodesics correspond-
ing to the sloppiest parameter combinations. More crucially, we have added the addi-
tional step of course graining the predictions of the theory. This yielded a decrease in
the FIM metric in certain directions, effectively increasing the sloppiness of the theory.
Indeed, the parameters of such systems have been found to become increasingly sloppy
as they approach fixed points under renormalization group flow (Machta et al., 2013;
Raju et al., 2018). This increase in sloppiness corresponds to a loss of information as we

30As L is not a parameter, we must supplement the usual Lie derivative with this fourth term.
31This observation has been corroborated by computer simulations (Machta et al., 2013). Note that,

in a closely related model, (Strandkvist et al., 2020) demonstrate that the changes in the metric due to
the model deformation exactly corresponds to the changes in the metric induced by parameter flow.
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perform renormalization group flow, precisely corresponding to the loss in sensitivty to
certain degrees of freedom in the prediction space.32

Therefore, one way to understand the renormalization group flow procedure as we
have defined it, is as a particular kind of transformation within the parameter space
that also coarse grains the prediction space, thereby modifying the model to increasing
sloppiness. It is precisely those irrelevant and sloppy parameters that we remove when
building an effective theory. Insofar as effective theory building in physics involves
increasing model sloppiness and then creating an effective model in the sense of section
6, then this too could be interpreted as akin to a special kind of manifold learning. If
we understand the renormalization group procedure as increasing sloppiness, then the
task of effective theory building is straightforwardly analogous to the construction of an
effective model of an (at least somewhat) sloppy system. This kind of effective theory
construction seems to depend upon a criterion of theoretical compressibility.

10 Conclusions
Manifold learning, the sloppy models program, and effective field theories operate in
three different scientific domains. Nonetheless, there are strong analogies between the
three fields. Of course, all three share a basic principle in common: they seek to re-
duce the dimensionality of some data, model, or theory. However, more fundamentally,
MBAM shares a close analogy with manifold learning. The two techniques have generally
been seen as fundamentally different: manifold learning begins with a high-dimensional
dataset and seeks to produce a low-dimensional model of it, whereas MBAM also seeks to
build a lower-dimensional effective model of an already-existing high-dimensional model.
However, both ultimately produce a low-dimensional model of the data: the difference
is that MBAM uses greater prior knowledge to do so, in particular using a prior model
to help identify the sloppy parameter combinations to remove. As such, I have argued
that MBAM can be viewed as akin to a special kind of manifold learning.

Likewise, effective theory building in physics bears a close relationship to manifold
learning. The renormalization group procedure can be understood as being in some ways
analogous to MBAM, transforming the parameters of the theory. However, by simulta-
neously applying a coarse-graining to the predictions of the theory, it more drastically
transforms the model, increasing the model’s sloppiness. As such, effective theory build-
ing in physics could also be understood as akin to a special kind of manifold learning.

The manifold hypothesis underpins large areas of research in machine learning. If
the global manifold hypothesis is right, then it may contribute to an explanation of why
machines are capable of learning from complex data. Likewise, the sloppiness of real-
world systems, or the existence of fixed points under renormalization group flow may
contribute to explanations of why we can build scientific models of highly complex real-
world systems. I have argued that all these assumptions share a basic common form:
though the systems in question are superficially complex, they contain redundancy in

32For an alternative, but potentially related sense in which the renormalization group flow corresponds
to a loss of information, see Zomolodchikov (1986).
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the form of regularities. As such, the systems can be compressed. We can construct
lower-dimensional effective models of the system by latching onto these regularities.

These technical connections between manifold learning, sloppy models, and effec-
tive field theories may have implications for several key philosophical debates, especially
regarding the renormalization group. Recall that Batterman argues that some renor-
malization group phenomena are not reducible to lower-level theories. He contends that
renormalization group techniques reveal how macroscopic properties emerge from mi-
croscopic interactions in ways that resist traditional forms of reduction due to the need
for idealizations, such as the thermodynamic limit or infinite size assumptions. Viewing
these methods through the lens of dimensional reduction techniques described in sections
2, 3, and 6 may help to shed some light. Each technique involves idealizations such as
the successive elimination of sloppy parameter combinations at manifold boundaries in
the MBAM procedure, or the reduction in dimensionality from the feature space to the
latent space in manifold learning. These idealizations are cases of the kinds of infinite
idealization discussed in Batterman (2002,0,1): we let certain parameters or parameter
combinations shrink indefinitely small, to capture essential behaviors of physical systems.

Nonetheless, such dimensional reduction techniques seem to take the explicit form of
approximate reductions, akin to that suggested by Butterfield (2014) in the context of
the renormalization group.33 In a traditional reduction scheme (Nagel, 1961; Schaffner,
1967) two key conditions must be met: there must be bridge laws that systematically
correlate the theoretical terms of both theories, and the laws of the reduced theory must
be logically derivable from the reducing theory’s laws combined with the bridge laws and
any necessary auxiliary assumptions. The dimensional reduction schemes discussed in
this paper seem to take precisely this form. As we have seen, the dimensional reduction
and simplified model can be understood as functions mapping from the feature space to
the latent space, and from the latent space to the output space. Likewise, MBAM and
the effective model can be understood as functions mapping from the original parameter
space to the effective parameter space, and from the effective parameter space to the
prediction space. The relations in figures 1 and 3 seem to suggest a form of dependence
where higher and lower level models retain an explicit functional relationship.

Of course, in practice there is a loss of information here: the process is not generally
reversible, and so figures 1 and 3 are themselves idealizations. After all, as we have seen,
the key feature of these techniques is precisely such a reduction in the complexity of the
models, and thus a loss of information. Renormalization group techniques explicitly re-
duce the information from the underlying theory, as we have seen in section 9. Likewise,
MBAM techniques reduce complexity by eliminating sloppy parameter combinations
as we approach the manifold boundaries, retaining core predictive power in a lower-
dimensional model without needing exact, fully derivable connections to microscopic
details. These seem naturally understood as cases of approximate reduction, which can

33Recall that Butterfield argues that, in the context of the renormalization group, reduction and
emergence are not mutually exclusive, suggesting that even phenomena that appear emergent can often
be reconciled with a form of reduction when idealizations are understood as approximations rather than
ontological separations.
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maintain essential dependencies across scales without requiring strict derivability. Di-
mensional reduction techniques also exhibit structural stability, capturing scale-invariant
features in complex data. For example, in manifold learning lower-dimensional embed-
dings retain the essential topology and geometry of data. However, such idealizations
are most naturally viewed as pragmatic simplification rather than barriers to reduction,
which are made explicit in the functional forms relating the parameter spaces of the
various models. As such, manifold learning seems highly amenable to interpretation as a
family of approximate Nagelian reductions (see Dizadji-Bahmani et al. 2010 for a defense
of this model of reduction). They seem to provide a family of test cases in which infinite
idealizations do not present a natural barrier to reductive techniques. It would be an
interesting line for future research to demonstrate this directly in particular examples,
and to reconcile such a reductive approach with the idealizations involved.

Furthermore, the techniques discussed in this paper suggest that some of the philo-
sophical debates around the renormalization group may apply more widely across other
sciences. Recall that Fraser (2018,2,2); Miller (2017); Wallace (2006); Williams (2019)
have argued that the success of effective field theories supports a form of selective scien-
tific realism. My contention that effective theory construction can be understood as a
special case of nonlinear dimensional reduction techniques suggests that such arguments
can be applied more widely. It suggests that the success of effective theories is not
unique to physics, but reflects a more general feature of successful scientific modeling:
the ability to identify and preserve essential features while eliminating irrelevant degrees
of freedom.

However, the machine learning perspective presented in this paper does not, in it-
self provide a defense against these kind of skeptical challenges provided by Ruetsche
(2018) and Rivat (2021). For example, suppose that we wish to adopt a scientific realist
perspective on some effective parameter combinations in our effective theory. We have
a good reason for doing so: the theory leads to accurate predictions and we have rea-
son to believe that this effective theory will remain a good effective model, even if our
knowledge of the original model parameters changes. However, if our underlying theory
changed more drastically, for example requiring entirely different parameters, there is
no guarantee that this effective model will remain effective. In essence, effective theories
remain vulnerable to unconceived alternative theories, that lie outside of the model space
under consideration (see Freeborn, 2024; Stanford, 2010).

If something akin to the global manifold hypothesis can be broadly defended, this
might plausibly make room for a wider family of effective realist defenses of scientific
theories, applying well beyond the scope of physics. After all, if the global manifold
hypothesis holds, then many real-world datasets can be effectively compressed by dimen-
sional reduction methods. As such, we might expect effective theory building techniques
to be broadly successful precisely because many real-world target systems are amenable
to them. Unconceived alternative theories might still replace our current best theories,
but there would perhaps be less reason to expect them. One might defend it with an
inference to the best explanation: the manifold hypothesis is the best explanation for
the remarkable success of manifold learning across a wide variety of domains. However,
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unfortunately, the global manifold hypothesis lacks a compelling theoretical motivation,
with the main arguments being empirical Brahma et al. (2016); Fefferman et al. (2016);
Gorban and Tyukin (2018).

Nonetheless, these techniques suggest one promising path for the selective realist in
particular fields: to show that the salient epistemic features relevant to effective realism
can also apply to a wider family of algorithmic reduction approaches, coupled with a
suitable defense of a relevant local manifold hypothesis. Putting such an argument on
a solid and rigorous footing would require substantial further work, but this suggests
a potentially fruitful avenue for further research. There is not room to rigorously de-
velop and defend such an argument here; however, Freeborn (2024) suggests one such
possibility for extending effective realistic arguments beyond their traditional domain of
quantum field theory.
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