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ABSTRACT
Research on scaling analysis in finance is vast and still flourishing.We introduce a novel
statistical procedure based on the generalized Hurst exponent, the Relative Normal-
ized and Standardized Generalized Hurst Exponent (RNSGHE), to robustly estimate and
test the multiscaling property. Furthermore, we introduce a new tool to estimate the
optimal aggregation time used in our methodology which we name Autocororrela-
tion Segmented Regression. We numerically validate this procedure on simulated time
series by using theMultifractal RandomWalk andwe then apply it to real financial data.
We present results for times series with and without anomalies and we compute the
bias that such anomalies introduce in the measurement of the scaling exponents. We
also showhow theuseof proper scaling andmultiscaling can ameliorate the estimation
of risk measures such as Value at Risk (VaR). Finally, we propose a methodology based
on Monte Carlo simulation, which we name Multiscaling Value at Risk (MSVaR), that
takes into account the statistical properties ofmultiscaling time series.Wemainly show
that by using this statistical procedure in combinationwith the robustly estimatedmul-
tiscaling exponents, the one year forecastedMSVaRmimics the VaR on the annual data
for the majority of the stocks.
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1. Introduction

Nowadays, scaling and multiscaling are widely accepted as empirical stylized facts in financial time series. Since
they provide important information to risk and asset managers, they need to be properly addressed and ana-
lyzed. The (multi)scaling property of time series is particularly important in risk management and has been
recently employed as a warning tool for financial events (Antoniades et al. 2021). In particular, models that
implicitly or explicitly assume independence of asset returns should be tested against long-term dependence
alternatives. In fact, if the assumption of independence of price increments is not met, risk measures might be
severely biased, especially if the long-range dependence is acting with a different degree across the time series
statistical moments. In particular, multiscaling has been adopted as a formalism in two different branches of
quantitative Finance, i.e. econophysics and mathematical Finance. The former devoted most of the attention
to price and returns series in order to understand the source of multifractality from an empirical and theo-
retical point of view (Mandelbrot 1963, 1967; Mantegna and Stanley 1995; Lux and Marchesi 1999; Mantegna
and Stanley 1999; Gençay et al. 2001; Calvet and Fisher 2002; Lux 2004; Di Matteo, Aste, and Dacorogna 2005;
DiMatteo 2007; Buonocore et al. 2019) and has recently identified a new stylized fact which relates (non-linearly)
the strength of multiscaling and the dependence between stocks (Buonocore et al. 2019). The latter instead,
builds on the work of (Gatheral, Jaisson, and Rosenbaum 2018) on rough volatility and has been used to con-
struct stochasticmodels with anti-persistent volatility dynamics (Gatheral, Jaisson, andRosenbaum2018; Livieri
et al. 2018; Fukasawa, Takabatake, andWestphal 2019; Takaishi 2020). Even if the research question comes from
different perspectives, it is important to recognize the relevance that its study has in Finance.
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Multiscaling has been understood to originate from one or more phenomenon related to trading dynamics.1
In particular, it can be attributed to the fat tails, the autocorrelation of the absolute value of log-returns, liquidity
dynamics, or (non-linear) correlation between high and low returns generated by the different time horizons
at which traders operate and the consequent volumes traded. It can also be caused by the endogeneity of mar-
kets for which a given order generates many other orders. This occurs especially in markets where algorithmic
trading is frequently adopted. There are different methodologies used to compute scaling exponents from time
series (Jiang et al. 2019). Among all, let us recall the Multifractal Detrended Fluctuation Analysis (MFDFA)
proposed in Kantelhardt et al. (2002), theWavelet TransformModulus Maxima (WTMM) introduced byMuzy,
Bacry, and Arneodo (1991, 1993), the Deep learning approach proposed in Corbetta et al. (2021) and the Struc-
ture function approach also known as the Generalized Hurst exponent (GHE) method (Kolmogorov 1962; Van
Atta and Chen 1970; Di Matteo, Aste, and Dacorogna 2003; Di Matteo 2007). In a recent paper, Barunik and
Kristoufek (2010) tested different methodologies against some data specification and empirically showed that
the GHE approach outperforms the other models. For this reason, throughout this work, we will use the GHE
approach. Notwithstanding the importance of the correct estimation of the Hurst exponent, the analysis has
been rarely addressed from a statistical point of view.

In this paper, we propose a step-by-step procedure that provides a robust estimation and that tests the multi-
scaling property in a statistically significant way. Application to simulated data and empirical data allows us also
to demonstrate the impact of bias on these estimations. We show how the use of proper scaling and multiscal-
ing can ameliorate the estimation of risk measures such as Value at Risk(VaR). We also propose a methodology
based on Monte Carlo simulation, which we name Multiscaling VaR, which takes into account the statistical
properties of multiscaling time series by using a multiscaling consistent data generating process.

The paper is structured as follows. Sections 2 and 3 provide a brief description of multiscaling in Finance
and of the statistical procedure proposed to consistently estimate and test the scaling spectrum. Section 4 shows
the results of this methodology applied to synthetic data while Section 5 reports the results of an empirical
application to real financial time series. Section 6 is devoted to a practical application of scaling andmultiscaling
property to VaR while Section 7 concludes.

2. Multiscaling in finance

In this section, we explain the importance of the multifractal (multiscaling) formalism in financial markets. Let
us first fix the notation by defining the prices time series as Pt and the log-prices pt = ln(Pt). From this, the
log-returns over a time aggregation τ are rτ (t) = p(t+τ) − pt , where τ is expressed in days. Financial models are
usually based on the assumption that log-prices follow a Brownian Motion and the for this model, the rescaled
second moment of the log-returns over time aggregation τ follows

στ = E[|rτ (t)|2] 12 ∼ στ
1
2 , (1)

where στ is the standard deviation at aggregation horizon τ while σ is the standard deviation at daily aggrega-
tion. This equation is usually referred to as the square root of time rule and it is widely applied in quantitative
Finance (Danielsson and Zigrand 2006; Wang, Yeh, and Ying-Pin Cheng 2011). Examples are the Black and
Scholes model in which the volatility evolves as στ

1
2 , or the VaR which under Basel regulatory framework can

be computed for higher time aggregation, e.g. the τ days VaR can be computed as the daily VaR multiplied by
τ

1
2 . In the analysis of the Nile river, Hurst found that the scaling behavior described by a Brownian Motion was

not in line with the empirical data (Hurst 1956). Scaling and multiscaling analyses have been later introduced
in Finance (Mandelbrot 1963, 1967, 2013; Jiang et al. 2019). To detect multiscaling, it is necessary to study the
non-linearity of the scaling exponents of the q-order moments of the absolute value of log-returns (Mandelbrot,
Fisher, and Calvet 1997; Calvet, Fisher, and Mandelbrot 1997; Di Matteo 2007). In particular, for a process (pt)
with stationary increments, the GHE methodology considers a function of increments (Di Matteo 2007) of the
form

�(τ , q) = E
[|rτ (t)|q] ∼ Kqτ

qHq , (2)
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where q = {q1, q2, . . . , qM} is the set of evaluatedmoments, τ = {τ1, τ2, . . . , τN} is the set of lags used to compute
the log-returns, N and M are the maximum numbers of moments and lag specification, i.e. q1 = qmin, qM =
qmax, τ1 = τmin and τN = τmax,Kq is the q-moment for τ = 1, andHq is the so called generalizedHurst exponent
which is a function of q. Finally, the function qHq is concave (Mandelbrot, Fisher, and Calvet 1997; Calvet,
Fisher, andMandelbrot 1997) and codifies the scaling exponents of the process. A process is uniscaling when the
functionHq does not depend on q, i.e.Hq = H (Di Matteo 2007), while it is multiscaling otherwise. IfH �= 0.5,
the process does not behave as a standard BrownianMotion (Wiener process) and neglecting this feature, would
significantly bias the estimation of the true risk. In particular, ifH< 0.5 (H > 0.5) the process is said to be anti-
persistent (persistent) while ifH = 0.5 the process can be of two types, i.e. it can have independent increments
or it can be a short-term dependent process (Lillo and Farmer 2004; Kristoufek 2010). Given Equation (2), a
possible way to define a multiscaling proxy is by quantifying the degree of non-linearity of the function qHq.
The standard procedure used in order to extract qHq consists in running a linear regression in log-log scale of
Equation (2), which reads as

ln(�(τ , q)) = qHq ln(τ ) + ln
(
Kq

)
, (3)

where τ is defined in the range τ = [τmin, τmax] and q = [qmin, qmax] (Di Matteo 2007). A multiscaling proxy
can be obtained by fitting the measured scaling exponent with a second degree polynomial (Buonocore, Aste,
and Matteo 2016; Buonocore et al. 2019) of the form2

qHq = Aq + Bq2, (4)

where A and B are two constants. In this mathematical setting, as for different multifractal models in Finance
(Bacry,Delour, andMuzy 2001b;Calvet andFisher 2002, 2004; Jiang et al. 2019), we implicitly assume a quadratic
function of qHq. The measured B, B̂, represents the curvature of qHq. If B̂ = 0, the process is uniscaling, while if
B̂ �= 0, the process is multiscaling (Buonocore, Aste, andMatteo 2016; Buonocore et al. 2019). In order to widely
apply the multiscaling formalism in Finance, it is of vital importance the ability to correctly estimate the value
of qHq and consequently, of A and B.

3. Methodology

As highlighted in the previous section, estimating the Hurst exponent from empirical data is a challenging task
and these challenges can be categorized into two different classes:

• Those due to the statistical procedure adopted;
• Those linked to the financial data themselves.

Within the first class, we identify two main issues related to the following two points:

• The statistical model used to compute the scaling exponents;
• The input variables used in the statistical procedure.

Within the second class, issues arise mainly from the following question:

• If the data contain an anomaly, how is this impacting the estimation of the scaling and multiscaling
exponents?

In this work, we address the above challenges. First, we focus on the statistical procedure and the implication
on financial time series with and without anomalies. Then, we discuss practical implications related to Finance,
with special attention to Value at Risk.
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3.1. Statistical procedure

Multiscaling properties of financial time series have been understood to come from one or more phenomena
related to trading dynamics. From the point of view of the financial microstructure, scaling can be attributed
to liquidity dynamics, endogeneity of markets, or any other dynamic existing in the market. In particular, the
superimposition of distinct strategies and investment horizons generates long-range dependence with different
degrees of strengthwhen evaluated at different ordermoments and this is precisely the definition ofmultiscaling.
In this section we propose a methodology to estimate the Hurst exponent qHq and the multiscaling depth (cur-
vature) coefficient B in a robust manner. As specified in Equation (3), the estimation of scaling laws is generally
performed through a linear regression in log-log scales. The statistical problemwhichmight arise in this context
is that the regression is performed minimizing the squared log-errors instead of the true errors. This procedure
might, in case of strong deviation from the assumed statistical model for the errors, severely impact the results.
The solution to this problem consists of applying a nonlinear regression to the original (i.e. not transformed)
data, comparing the fit of the two specifications to the original data and using the one which performs better.
Another issue related to the statistical model is the uncertainty associated to the intercept for the q regressions.
In particular, we can exactly compute the value of Kq rather than estimating it, thus eliminating possible errors
and bias. We can define the standardized �(τ , q) as

�̃(τ , q) = �(τ , q)
Kq

, (5)

based on which, Equation (2) can be rewritten as

�̃(τ , q) ∼ τ qHq . (6)

Equation (6) eliminates the possible bias introduced by the estimation of Kq via regression. To easily exploit and
model the multiscaling behavior, we define the q-order normalized moment as

...
�(τ , q) = �̃(τ , q)

1
q (7)

which transforms Equation (6) in
...
�(τ , q) ∼ τHq . (8)

Within this new formulation, the analysis is much easier since now, all the q regressions have a 0 intercept
and the multiscaling is present only if the regression coefficients Hq differ for distinct values of q. In fact, for
uniscaling time series all regression lines are overlapping while, for multiscaling time series they diverge. Given
the formalism introduced by Equation (8), it is easy to checkwhether a process ismultiscaling or not. In addition,
we can now rewrite Equation (4) for the normalized and standardized structure function of Equation (8) as

Hq = A + Bq. (9)

Even if mathematically equivalent to Equation (4), this equation has a statistical advantage. Eliminating the
multiplication by q from both sides of the Equation, we reduce the possibility of spurious results in case q is a
dominant factor in the multiplication. Indeed, the interpretation is equivalent, i.e. A is the linear scaling index
while B is the multiscaling proxy. Finally, let us define the relative structure function between two consecutive
moments, namely qi and qj (qj > qi), as follows

...
�(τ , qi, qj) =

...
�(τ , qj)
...
�(τ , qi)

∼ τ
Hqj

τHqi
= τ

Hqj−Hqi = τH(qi,qj), (10)

where H(qi, qj) = Hqj − Hqi . This formalization has a similar structure as the Extended Self Similarity (ESS)
methodology (Jiang et al. 2019) since the scaling exponents are computed taking as reference another moment
function while it diverges from it as the ESS has a reciprocal effect while Equation (10) has an incremental
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effect relative to the reference moment. This approach helps in the statistical analysis since we can now test if
a process is statistically multiscaling using a significance test on the estimated H(qi, qj). In fact, for uniscaling
time series we have that Hq = H, which implies that the difference between different order moments is always
0.3 On the contrary, for multiscaling time series it should be different from 0 for all q. This reduces to a t-test on
the regression coefficients estimated using Equation (10). Besides the multi-regression approach, it is possible
to perform a multivariate regression by rewriting Equation (10) as

⎡⎢⎢⎢⎣
...
�(τ , 0, q1)...
�(τ , q1, q2)

......
�(τ , qM−1, qM)

⎤⎥⎥⎥⎦ = τ

[
H(0,q1), H(q1,q2), . . . ,H(qM−1,qM)

]
, (11)

whereM is themaximumnumber ofmoments used. This is amultivariate nonlinear regression that can be easily
solved via a nonlinear optimization algorithm. Such a methodological approach implies a possible relationship
between the q-moments used in the regression.Depending on themodel assumptions, one can use Equation (11)
or performM separate regressions for each exponent. In the first case, it is then possible to use an F-test to test
if all the coefficients except for the first one (H(0, q1)) are jointly equal to 0 against the alternative that some
coefficients are different from 0. This is a less restrictive multiscaling test compared to the multiple t-tests. We
call strongly multiscaling processes those processes which reject both the null hypothesis for all the t-tests and the
null of the F-test. Conversely, we call weakly multiscaling processes those processes for which the null hypothesis
of all the t-tests is rejected but not the null of the F-test.4 This is quite intuitive since if a process ismultiscaling, all
the relative increments are statistically significant. However, if the process reconstructed with a single exponent
is statistically equivalent to the one reconstructed with the full multiscaling spectrum, this means that such
multiscaling behavior is weak. As already mentioned, it is recommended to estimate the model both in the
log-log scale and in the original coordinate system, and to base the choice of the model on a goodness of fit
measure.

3.1.1. The choice of q and τ

The choice of q and τ is an important step in the statistical evaluation of the multiscaling exponents. They must
be selected using specific statistical criteria. In fact, using the wrong values of q and τ can severely bias the
evaluation. Regarding q, many research papers about multiscaling systems propose the use of a vast spectrum
of qs. This approach has two fallacies. The first one lies in the fact that multiscaling processes are such even for
small values of q. Secondly andmost importantly, given a distribution of returns with tail exponent α, for q ≥ α,
E[rq] diverges (Jiang et al. 2019). For empirical data, this effect is characterized by a distortion of the moment
functionwhich can bemisinterpreted asmultiscaling evenwithout the presence of temporal dependence.Hence,
to have a robust measure of multiscaling, it is necessary to have q < α. Any multiscaling behavior found by
neglecting or ignoring this fact, is severely biased and possibly false. The method used to set q can derive from
two different approaches, i.e. established research results or direct tail exponent computation. Since it has been
empirically shown that financial time series have fat tails with tail exponents ranging from ∼ 1.5 (Weron 2001;
Scalas and Kim 2006; Eom, Kaizoji, and Scalas 2019) to ∼ 3 (Jiang et al. 2019), a conservative approach would
be to use q ≤ 1. Alternatively, it is possible to estimate α on the empirical distribution through a tail estimator
(e.g. Clauset, Rohilla Shalizi, and Newman 2009; Virkar and Clauset 2014) and use it as threshold for q. In this
paper, we follow the conservative approach and use q ≤ 1. In fact, if the multiscaling phenomenon is present, it
can be extrapolated from this range of moments.

Regarding the time aggregation τ , a general rule would be to use the minimum possible value of τ , denoted
as τ ∗, such that the autocorrelation information of the series is preserved. The autocorrelation ρ of the return
series at lag τ is defined as:

ρτ (r(t)) = E[(r(t + τ) − μ)(r(t) − μ))]
σ 2

τ

(12)
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Figure 1. ACSRmethodology computed on the autocorrelation function of the absolute values of the log-returns time series. The red circle shows
the breakpoint where the regression line has a break.

where μ and σ 2
τ are respectively the mean and variance of r(t). It is a well known stylized fact that returns

are expected to be uncorrelated at daily frequency while the absolute and squared returns exhibit long-range
persistence (Cont 2001; Chakraborti et al. 2011). Among the different procedures used to estimate τ ∗, it is worth
mentioning:

• Segmented regression on the structure function (Yue et al. 2017);
• Autocorrelation significance test (Buonocore, Aste, and Matteo 2017).

The first procedure computes the structure function for each q-moment and successfully fits a segmented
regression in log-log coordinates between τ and �(τ , q), and finds two slopes: one for the scaling component
and one for the non-scaling component (Yue et al. 2017). The second approach instead, chooses the value of
τ prior to computing the structure function, setting the value of τ ∗ as the minimum value of τ for which the
autocorrelation is not statistically significant (Buonocore, Aste, and Matteo 2017). In this paper, we propose a
new approach which takes the advantages of both methods. We name this Autocorrelation Segmented Regres-
sion. The rationale behind this approach is to perform a segmented regression on the autocorrelation (or the
autocovariance) function computed on the absolute returns and take τ ∗ as the value which minimizes the sum
of squared residuals for the high autocorrelation state and the random noise state, i.e. plateau.5 This approach
has the advantage of setting the value of τ in advance, avoiding ad-hock solutions and reducing computations.
Nevertheless, the method is less sensitive to a unique non-significant lag. In fact, in noisy data it can happen
that for a lag the autocorrelation is not significant while it is significant for a considerable number of subsequent
lags. The equation for the proposed Autocorrelation Segmented Regression (ACSR) takes the form

ρτ (r(t)) =
{

α + βτ , if τ < τ ∗

α + βτ ∗, if τ ≥ τ ∗ (13)

where α is the intercept of the regression and can be fixed to be equal to ρτ with τ = 1, β is a slope parameter
for the autocorrelation function, τ is the lag at which the autocorrelation is computed, and τ ∗ is the value of
aggregation which maximizes the autocorrelation information.6 We use ln(τ ) instead of τ for a better detection
of τ ∗. Figure 1 shows how this method works. We generated a process with known τmax = 250 and run the
ACSR to empirically estimate ln(τ ∗). As shown in Figure 1, we get a value of ln(τ ∗) = 5.51 which corresponds
to τ ∗ = 247.
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3.1.2. Multiscaling estimation and testing procedure
Before turning the attention to the simulation experiment, let us recall the full procedure required to robustly
extract the scaling exponents:

(1) Compute τ ∗ with the Autocorrelation Segmented Regression method;
(2) Compute q = α or rely on the empirical evidence available in the literature;
(3) Perform the linear and nonlinear regressions with the above parameters (Equation (11));
(4) Assess the goodness of fit of the two models and select the one that overperforms;
(5) Compute the multiscaling curvature using Equation (9) and test for statistical significance.

Concerning point (5), in this paper we propose a full procedure in order to run what we call the multi-
scaling test. The testing procedure is divided into four steps. In the first step, we test if each scaling increment
H(qi, qj) is statistically significant through a t-test. The second step is devoted to the F-test. In particular, we
perform the F-test using the predicted relative moments from both the regression with the full estimated scal-
ing spectrum, and the regression where only the first scaling is different from 0, i.e.

.̂..
�(τ , q) and

.̂..
�(τ , q̄), where

q̄ = {q1, 0, . . . , 0}. If the null hypothesis is rejected, that the full spectrum is necessary to recover all the relative
moments.7 The third step of the procedure consists of a random walk (RW) hypothesis. Assuming the multi-
scaling parameter B = 0, we perform the regression of Equation (9) with only the constantA and test if Â = 0.5
with a t-test. In fact, for financial returns H2 = 0.5 which implies H2 = 0.5 = A + 2B. Hence, when B = 0 for
monoscaling time series, we expect A = 0.5. In case the null hypothesis is rejected, this means that the RW
scaling is incorrect and the use of the square-root of time rule severity creates a bias in the risk measures. The
last step involves a confirmatory test of the results deriving from the first and second steps of the test procedure.
In particular, we perform the full regression of Equation (9) and test for Â = 0.5 and B̂ = 0 using a t-test. If this
test gives a conflicting result with respect to the first and second steps, we cannot assert anything on the process
with precision and a deeper analysis is required by controlling for different input specifications.

4. Simulation experiment

In the simulation experiment, we focus on one of the most used models to generate multifractal time series:
the Multifractal Random Walk (MRW) proposed by Bacry, Delour, and Muzy (2001a, 2001b). This model is
capable to generate multifractal time series with a known multiscaling spectrum. In addition, this model is able
to generate time series which are consistent with the financial stylized facts. In the discrete version of the MRW,
the process rτ (t) = p(t + τ) − p(t) is defined as (Bacry, Delour, and Muzy 2001b):

Table 1. Results of the ACSR for the estimation of τmax.
τ̄ ∗ is the mean over all the paths and the 95% C.I. are
computed over 200,000 bootstrapped samples.

τ̄ ∗ 95% C.I.

λ = 0.05 297.2 (239.8,354.7)
λ = 0.10 267.8 (243.2,292.4)
λ = 0.30 259.9 (231.6,288.3)

Table 2. RMSE for the parameter A for the different methodologies.

GHE RNSGHEL NSGHENL RNSGHENL

λ = 0.05 0.0338 0.0148 0.0163 0.0163
λ = 0.10 0.0289 0.0147 0.0154 0.0153
λ = 0.30 0.0427 0.0352 0.0343 0.0339

Note: Subscript L refers to the linear regression while NL to the non-linear
regression.
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rτ (t) = p(t+τ) − pt =
t+τ
	t∑

k= t
	t +1

ε	t(k)eω	t(k), (14)

with

ε	t ∼ N(0, σ 2	t),ω ∼ N(−λ2 ln(L/	t), λ2 ln(L/	t))

where λ is called intermittency parameter and determines the strength of the multifractality, L is the autocor-
relation length, σ 2 is the variance of the process, and 	t is the discretization step. The distinctive feature of the
MRW is that, even if the ε	t(k) are independent, the ω	t(k) are not, having autocovariance

Cov (ω	t(k1),ω	t(k2)) = λ2 ln ρ	t(k1 − k2),

with

ρ	t(k1 − k2) =
⎧⎨⎩

L
(|k1 − k2| + 1)	t

|k1 − k2| < L/	t,

1 otherwise.

In the continuous limit, the scaling exponents of this model are

ζ(q) = qHq =
(

λ2 + 1
2

)
q − λ2

2
q2. (15)

The power of this model is that it encompasses all the major stylized facts using only three parameters (λ, L, σ ).
In fact, thismodel is able to reproduce fat tails, volatility clustering andmultiscaling spectrum. For the purpose of
simulation, we generated 100 paths each of dimensionT = 10, 000 andwe set themodel parameters to L = 250,
σ = 1 and λ = 0.05, 0.1, 0.3 in accordance to empirical findings (Bacry, Kozhemyak, and Muzy 2008, 2013;
Løvsletten and Rypdal 2012). As explained in previous section, qmax = 1. In particular, we use q ∈ [0.02, 1] with
steps 0.02 which converts to 50 evaluatedmoments. To select τmax, we use the τ ∗ estimated by the ACSR. Table 1
shows results for the different specifications of λ. As shown in the table, the procedure is quite accurate and the
95% confidence intervals (C.I.) always contain the value of L = 250 which is the truncation parameter.

Once the parameters are estimated, we compute the multiscaling exponents and evaluate their statistical sig-
nificance. Since Equation (15) gives the true multiscaling spectrum, we can easily test the performance of the
GHE approach and compare it with the new proposed methodology of this paper. We use the normalized and
standardized structure function (NSSF) proposed in Equation (8) and the relative normalized and standardized
structure function (RNSSF) proposed in Equation (11), which we name Normalized and Standardized Gener-
alized Hurst Exponent (NSGHE) and the Relative Normalized and Standardized Generalized Hurst Exponent
(RNSGHE), respectively. The latter methodology will be used to test the multiscaling spectrum. Tables 2 and 3
present the rootmean squared errors (RMSE) of the differentmethodologies computed over the 100 realizations
for both A and B parameters of Equation (4).8 As it is possible to notice, the RNSGHE generally outperforms
with respect to the other specifications. It is important to highlight that by removing the slope ambiguity, results
have considerably improved. In fact, the standard GHE approach has the highest RMSE among all the specifica-
tions. This result was expected since the new methodology helps to remove uncertainty and thus, to ameliorate
the estimation performance.

Tables 2 and 3 show a better performance of the RNSGHEL and RNSGHENL compared to the other models,
in terms of RMSE. For this reason, we use these models in the paper. Now, we show the nature of the process by
performing the multiscaling test. Figure 2 shows the p-values of all the 50 coefficients related to the qmoments
equations for a realization of the MRW model, assuming the same parameters specification as above and λ =
0.05.What we can observe is that by choosing a confidence level of 5%, the null hypothesis of scaling increments
equal to 0 for all the evaluated moments is rejected. However, if we set a more stringent confidence level, for
example 1%, the null hypothesis is not rejected for some coefficients, resulting in a uniscaling process.
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Table 3. RMSE for the parameter B for the different methodologies.

GHE RNSGHEL NSGHENL RNSGHENL

λ = 0.05 0.0112 0.0039 0.0047 0.0039
λ = 0.10 0.0098 0.0043 0.0046 0.0043
λ = 0.30 0.0167 0.0144 0.0137 0.0144

Note: Subscript L refers to the linear regression while NL to the non-linear regression.

Figure 2. p-Values of all the 50 coefficients related to qmoments equations for a multifractal randomwalk with T = 10, 000, λ = 0.05, L = 250
and σ = 1.

Table 4. p-Values of the F-test for the null that
only H(0, q1) is different from 0.

RNSGHEL RNSGHENL

λ = 0.05 0.99999 0.99999
λ = 0.10 0.00003 0.00003
λ = 0.30 0.00000 0.00000

Note: Subscript L refers to linear regression while
NL to non-linear regression.

For λ = 0.1, 0.3 all the p-values are almost 0. Since we generated processes with a non-negligible amount of
multiscaling, this was expected. Once the t-test has been carried out, we perform an F-test on the overall scaling
spectrum (Equation (11)). Results are reported in Table 4. It is possible to infer that the process generated with
λ = 0.05 does not reject the null for which all the scaling increments are equal to 0 while, for λ = 0.10, 0.30 the
null is rejected and the full scaling spectrum is necessary to reconstruct the relative moments. By combining
this result with the outcome of the t-test, we can conclude that the process generated with λ = 0.05 is weakly
multiscaling at 5% confidence level but it is not multiscaling at 1% confidence level. The other two specifications
are strongly multiscaling at any reasonable confidence level.

Since these processes have been generated such that they have a specific multiscaling spectrum, the last two
tests of the multiscaling test procedure have trivial results.
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Table 5. Summary statistics of the log-returns of the analyzed stocks.

Summary statistics

Stock Mean Median Min Max Std Skewness Kurtosis Obs

AAPL 0.00 0.00 −0.73 0.13 0.03 −4.08 115.62 5362
AXP 0.00 0.00 −0.19 0.19 0.02 −0.05 13.72 5362
BA 0.00 0.00 −0.19 0.14 0.02 −0.27 8.72 5362
CAT 0.00 0.00 −0.16 0.14 0.02 −0.16 7.59 5362
CSCO 0.00 0.00 −0.17 0.22 0.02 0.14 12.31 5362
CVX 0.00 0.00 −0.13 0.19 0.02 0.07 13.68 5362
DIS 0.00 0.00 −0.20 0.15 0.02 −0.10 14.05 5362
GS 0.00 0.00 −0.21 0.28 0.02 0.61 18.47 5362
HD 0.00 0.00 −0.34 0.13 0.02 −0.98 26.78 5362
IBM 0.00 0.00 −0.21 0.12 0.02 −0.43 15.84 5362
INTC 0.00 0.00 −0.25 0.18 0.02 −0.44 11.89 5362
JN’ 0.00 0.00 −0.17 0.12 0.01 −0.61 18.33 5362
JPM 0.00 0.00 −0.23 0.22 0.02 0.25 17.55 5362
KO 0.00 0.00 −0.11 0.13 0.01 0.05 12.27 5362
MCD 0.00 0.00 −0.14 0.09 0.01 −0.09 9.97 5362
MMM 0.00 0.00 −0.14 0.10 0.01 −0.20 9.69 5362
MRK 0.00 0.00 −0.31 0.12 0.02 −1.36 31.86 5362
MSFT 0.00 0.00 −0.17 0.18 0.02 −0.09 12.65 5362
NKE 0.00 0.00 −0.22 0.18 0.02 −0.18 15.88 5362
PFE 0.00 0.00 −0.12 0.10 0.02 −0.27 8.59 5362
PG 0.00 0.00 −0.38 0.10 0.01 −4.21 120.73 5362
TRV 0.00 0.00 −0.20 0.23 0.02 0.31 19.69 5362
UNH 0.00 0.00 −0.22 0.30 0.02 0.05 23.74 5362
UTX 0.00 0.00 −0.33 0.13 0.02 −1.44 36.30 5362
VZ 0.00 0.00 −0.13 0.14 0.01 0.13 9.89 5362
WMT 0.00 0.00 −0.11 0.11 0.01 0.21 10.11 5362
XOM 0.00 0.00 −0.15 0.16 0.01 0.05 13.43 5362

5. Empirical application

In this section, we perform the empirical application of the proposed statistical methodology on financial data
described in Section 5.1, and produce a statistical analysis of their multiscaling properties in Section 5.2. In
Section 5.3, we also study how anomalies impact these estimation.

5.1. Data

The dataset used for the analyses is composed of stocks listed in the Dow Jones (DJ). In particular, close prices
of stocks are recorded on a daily basis from 3 May 1999 to 20 November 2019, i.e. 5363 trading days. We use 27
over the 30 listed stocks since they are the ones for which the entire time series is available. For the purpose of
our analysis, we use log-prices and log-returns. Table 5 reports the summary statistics of the data.

As shown in this table, all the empirical stylized facts can be observed. Indeed, log-returns are centered at 0,
the Skewness is (in most of the cases) different from 0, while the high value of the Kurtosis clearly depicts fat
tails of the log-returns distributions.

5.2. Multiscaling test

In this section, we report results of the multiscaling test.9 We report the results of all the steps of the testing pro-
cedure described at the end of Section 3.1.2. Results are presented using the RNSGHEL because as explained in
the previous section, it has the best performance in the correct estimation of the scaling spectrum.10 Results are
summarized in Table 6. The second column of the table presents the τ ∗ calculated using the ACSRmethodology,
which is presented in Section 3.1.1. For its estimation, we fix a maximum value for the choice of τ equal to
T
5 = 1072 in order not to bias the scaling estimation with too few values. We notice that several stocks reach
the boundary value, suggesting a very high rate of persistency in the time series. The third column of this table
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reports the response to the weakmultiscaling (weakM-S) process hypothesis, i.e. hypothesis that a single scaling
exponent is enough to approximate the full scaling spectrum but individual scaling increments are statistically
significant. As we can observe, none of the analyzed stocks are weakly multiscaling. In fact, as reported in the
fourth column, all the stocks pass both the tests and result in strong multiscaling processes. The fifth column of
the table reports the result of the RWhypothesis. To perform this analysis we run the regressionHq = A + ε and
test if the estimated A, Â, is equal to 0.5.11 We note that only for two stocks the null hypothesis is not rejected,
namely Cisco and Pfizer. However, this is a first order approximation of the process and do not check if the
process is multiscaling. The sixth column summarizes results of the confirmation test, which is equivalent to
test Â = 0.5 and B̂ = 0 in the full regression model of Equation (9). Finally, the last three columns of the table
report the estimated Hurst exponent Ĥ computed for the RW test, the linear scaling index Â, and the multiscal-
ing proxy B̂. These results point out that multiscaling is a stylized fact and can be statistically tested by rewriting
the structure function in a convenient way.

5.3. Effect of anomalies in themultiscaling estimation

Multiscaling time series are generated from trading dynamics. One of the fundamental aspects of systems
exhibiting multiscaling properties is the strong endogeneity of the sample paths, an aspect which is considered
to be originated by financial trading dynamics. For this reason, transient exogenous shocks only distort the anal-
ysis and consequently, the estimation procedure. Hence, the statistical procedure used to analyze multiscaling
systems are highly sensitive to exogenous shocks. In this context, we refer to an exogenous shock as an unex-
pected and transient behavior of the stock price, not explainable by the market conditions or by the price path.
In addition, anomalies in the time series can occur due to errors or algorithmic trading crashes. Anomalies in
financial time series can be grouped into threemain categories: spikes, jumps and contamination errors. Figure 3
shows these possible anomalies. The top left panel is dedicated to the original log-price time series for Verizon.
This time series is quite volatile and in fact, the log-returns have a Kurtosis index equal to 9. However, although
the distribution of log-returns is fat-tailed, there are not clear anomalies. The top right panel of Figure 3 depicts
the same log-price time series to which a strong fat-tailed series (Kurtosis larger than 1000) is added. This is
the case of contamination error. This is generally due to machine errors in the data transmission process. The
bottom left panel reflects the Verizon log-price time series with a random spike added. The spike can arise from
multiple sources, among all algorithmic trading errors or contamination errors due to data manipulations. The
last panel in the bottom right corner represents the log-price series with an added jump. Jumps per se can arise
from endogenous or exogenous shocks. However, if they derive from an endogenous driving force, they persist
in the jump direction. Conversely, if they come from an exogenous source instead, they tend to be transient. In
a relatively recent paper (Sornette, Malevergne, andMuzy 2003), the authors explain that huge financial crashes
can be originated from endogenous shocks which have a huge persistence behavior. These kinds of shocks are
inherent in the price process so they are not transient anomalies.

In a mostly technical paper, Katsev and L’Heureux (2003) show both theoretically and experimentally that
such data anomalies can strongly bias results, especially for short datasets. In particular, the paper shows that
under certain circumstances, these irregularities can generate spurious scaling. For these reasons, it is suggested
to analyze the time series and eliminate such anomalies before proceeding with the scaling estimation. In order
to do so, we propose a methodology based on financial stylized facts. More precisely, we use volatility clustering
and long-range dependence of asset returns (Cont 2001; Chakraborti et al. 2011). In this empirical context, the
quantities that we name Cumulative Variance (CV) and Cumulative Auto-Covariance (CAV):12

CV(t) =
t∑

i=1
r2i (16)

and

CAV(t) =
t∑

i=1
|ri+1||ri| (17)
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Table 6. Results of the multiscaling estimation and testing procedure.

Stock τ ∗ Weak M-S Strong M-S RW t-test M-S F-test Ĥ Â B̂

AAPL 963 NO YES NO YES 0.5567 0.5774 −0.0407
(0.5534, 0.5600) (0.5770, 0.5779) (−0.0414,−0.0399)

AXP 1072 NO YES NO YES 0.5203 0.5535 −0.0653
(0.5149, 0.5256) (0.5525, 0.5545) (−0.0670,−0.0636)

BA 1072 NO YES NO YES 0.5391 0.5630 −0.0468
(0.5353, 0.5429) (0.5623, 0.5637) (−0.0480,−0.0456)

CAT 527 NO YES NO YES 0.5422 0.5603 −0.0355
(0.5393, 0.5451) (0.5597, 0.5608) (−0.0364,−0.0345)

CSCO 1072 NO YES YES YES 0.5011 0.5292 −0.0551
(0.4966, 0.5056) (0.5280, 0.5304) (−0.0571,−0.0530)

CVX 313 NO YES NO YES 0.4722 0.4872 −0.0293
(0.4699, 0.4746) (0.4868, 0.4876) (−0.0300,−0.0286)

DIS 1072 NO YES NO YES 0.5211 0.5410 −0.0389
(0.5180, 0.5243) (0.5406, 0.5413) (−0.0395,−0.0382)

GS 1070 NO YES NO YES 0.4861 0.5110 −0.0489
(0.4821, 0.4901) (0.5102, 0.5118) (−0.0503,−0.0475)

HD 1072 NO YES NO YES 0.5370 0.5614 −0.0477
(0.5332, 0.5409) (0.5608, 0.5619 ) (−0.0486,−0.0467)

IBM 1072 NO YES NO YES 0.4842 0.5053 −0.0413
(0.4808, 0.4876) (0.5049, 0.5057) (−0.0420,−0.0407)

INTC 1072 NO YES NO YES 0.4568 0.4797 −0.0450
(0.4531, 0.4605) (0.4786, 0.4809) (−0.0470,−0.0430)

JN 488 NO YES NO YES 0.4664 0.4880 −0.0423
(0.4629, 0.4698) (0.4874, 0.4885 ) (−0.0432,−0.0415)

JPM 1072 NO YES NO YES 0.4851 0.5124 −0.0535
(0.4808, 0.4895) (0.5118, 0.5131) (−0.0546,−0.0523)

KO 1072 NO YES NO YES 0.4937 0.5134 −0.0387
(0.4905, 0.4968) (0.5129, 0.5139) (−0.0395,−0.0379)

MCD 480 NO YES NO YES 0.5116 0.5266 −0.0293
0.5092, 0.5140) (0.5261, 0.5270) (−0.0301,−0.0286)

MMM 1032 NO YES NO YES 0.4564 0.4747 −0.0360
(0.4534, 0.4593) (0.4743, 0.4751) (−0.0366,−0.0353)

MRK 867 NO YES NO YES 0.5231 0.5498 −0.0522
(0.5189, 0.5274) (0.5484, 0.5512) (−0.0546,−0.0499)

MSFT 1072 NO YES NO YES 0.4737 0.4981 −0.0479
(0.4698, 0.4776) (0.4975, 0.4988) (−0.0490,−0.0468)

NKE 1072 NO YES NO YES 0.4763 0.4913 −0.0295
(0.4739, 0.4787 ) (0.4912, 0.4915) (−0.0298,−0.0292)

PFE 1072 NO YES YES YES 0.4999 0.5285 −0.0562
(0.4952, 0.5046) (0.5263, 0.5308) (−0.0600,−0.0523)

PG 969 NO YES NO YES 0.4617 0.4834 −0.0426
(0.4582, 0.4652) (0.4829, 0.4839) (−0.0435,−0.0417)

TRV 604 NO YES NO YES 0.4673 0.4861 −0.0368
(0.4643, 0.4703) (0.4857, 0.4865) (−0.0375,−0.0362)

UNH 580 NO YES NO YES 0.5163 0.5346 −0.0360
(0.5134, 0.5192) (0.5342, 0.5351) (−0.0367,−0.0352)

UTX 1072 NO YES NO YES 0.4799 0.5053 −0.0497
(0.4759, 0.4840) (0.5048, 0.5059) (−0.0507,−0.0488)

VZ 1072 NO YES NO YES 0.4712 0.4897 −0.0362
(0.4683, 0.4742) (0.4889, 0.4905) (−0.0376,−0.0348)

WMT 1072 NO YES NO YES 0.4314 0.4540 −0.0444
(0.4277, 0.4350) (0.4534, 0.4546) (−0.0454,−0.0434)

XOM 344 NO YES NO YES 0.4642 0.4852 −0.0413
(0.4608, 0.4675) (0.4846, 0.4858) (−0.0422,−0.0403)

should be very similar, except when an exogenous (unexpected) anomaly exists. The volatility clustering drives
the similarity in the short period since |ri+1| and |ri| are expected to be very similar (same cluster), while the
long-range dependence drives the similarity of the two measures over the long-run. Figure 4 represents the two
quantities for the Verizon stock. These two quantities are approximately equal, confirming that even with high
volatility and many tail events, the time series does not contain exogenous shocks.
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Figure 3. Verizon log-prices time series and some anomalies of financial time series.

Figure 4. Cumulative Variance (CV) and Cumulative Auto-Covariance (CAV) for the Verizon time series.

The difference between the two cumulative series is given byD(t) = CV(t) − CAV(t). By running a change-
point detection in the intercept and slope of D(t), it is possible to detect the anomalies in the price series and
replace the corresponding values on the original series according to a specific rule, e.g. the mean of previous and
subsequent data points. Top panels of Figures 5 and 6 reflect the case in which a spike and a jump have been
added to the log-price time series of Verizon, respectively. As shown in the figures, the two measures start to
diverge significantly exactly in correspondence of the anomaly point. The bottom panels instead, represent the
change point detection performed on the quantityD(t). The panel shows that the procedure correctly identifies
the position of the anomaly.
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Figure 5. Cumulative Variance (CV(t)) and Cumulative Auto-Covariance (CAV(t)) for the Verizon time series (top panel) and the measure D(t)
(bottom panel) in case of the added spike.

Table 7. Results of the multiscaling estimation on the times series
reported in Figure 3 (bottom panels) with anomalies not removed.

Ĥ Â B̂

Spike 0.5290 0.6013 −0.1417
Jump 0.4942 0.5220 −0.0543

Given the fact that such events (spikes or jumps) are rare and have unconventional magnitude, their removal
can only benefit the analysis. Let us estimate themultiscaling exponent for the Verizon stock when the anomalies
reported in Figure 3 (bottompanels) are not removed by the time series. Table 7 reports the results. The estimated
values change considerably, especially in the scenario where a spike is added.

For completeness, we also perform a t-test with the null hypothesis of no difference between the estimates
with anomalies and the estimates reported in Table 6. The null hypothesis for all the coefficients is strongly
rejected at any confidence level.

To show how these anomalies can generate spurious multiscaling, we generate 100 fractional Brownian
motions (uniscaling process) of length 1000 with Hurst exponent H = 0.47 (the one estimated for Verizon).
To these simulated time series we add a spike and a jump and estimate Ĥ, Â and B̂ for both the series with and
without the anomalies. Results are reported in Table 8. As we can see, when the anomalies are not present in the
time series, the average values for Ĥ, Â and B̂ are in line with the true values and not statistically different from
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Figure 6. Cumulative Variance (CV(t)) and Cumulative Auto-Covariance (CAV(t)) for the Verizon time series (top panel) and the measure D(t)
(bottom panel) in case of the added jump.

Table 8. Average of the 100 estimated Ĥ, Â and B̂ for a fractional Brownian motion with H = 0.47. 95% C.I.
computed over 200,000 bootstrapped samples are reported in parenthesis.

Ĥ Â B̂

No anomalies 0.4663 (0.4597, 0.4710) 0.4654 (0.4596, 0.4728) −0.0018 (−0.0048, 0.0012)
Spike 0.4403 (0.4330, 0.4481) 0.4893 (0.4799, 0.4998) −0.0961 (−0.1027,−0.0899)
Jump 0.4845 (0.4785, 0.4905) 0.4806 (0.4737, 0.4874) 0.0076 (0.0045, 0.011)

them. In the scenario with the added spike, we can see that Ĥ, Â and B̂ are severely biased. In particular, due to
the spike, the times series look multiscaling, while it is not. Finally, for the case of the added exogenous jump,
we have that the scaling exponent curves and the parameter B is not equal to 0. Also the other two estimated
coefficients are upward biased and statistically different from the theoretical ones.

These results clearly show that the scaling exponents are sensitive to such anomalies and estimates can be
biased if such anomalies are not carefully analyzed.

5.4. Jump test on the empirical data

We performed the jump detection analysis on the 27 stocks used for the analysis and found that 6 of them
exhibited jumps. Table 9 summarizes the results. We report the date(s) in which the jump is identified by the
change point detection algorithm,13 as well as the estimated Ĥ, Â and B̂when the jump(s) have been removed.14
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Table 9. Results of the jump detection analysis and estimated exponent parameters.

Jump date Ĥ Â B̂

AAPL 29 September 2000 0.5315 0.5527 −0.0416
HD 12 October 2000 0.5203 0.5535 −0.0653
MRK 30 September 2004 0.5391 0.5630 −0.0468
PG 7 March 2000 0.5422 0.5603 −0.0355
UNH 13 October 2008 0.5011 0.5292 −0.0551
UTX 17 September 2001 0.4722 0.4872 −0.0293

From Table 9, we can notice the following: when removal of the jump increases the estimate of Ĥ and Â,
multiscaling is reduced, while the opposite is true apart for UTX stock. Furthermore, we can see that, apart for
Ĥ for the MRK stock, all the other estimates fall outside of the confidence intervals of the same parameters’
estimates reported in Table 6. This means that the estimated coefficients reported in Table 6 are statistically
different (at 5% significance level) from the ones estimated without the jumps. Results make clear that in case of
abrupt jumps or spikes, the estimates of the scaling exponent parameters can be severely impacted.

6. Practical application of scaling andmultiscaling to VaR

In this section, we show that by using a simple VaR configurationwithout a scaling ormultiscaling consideration
might bias the VaR estimation at higher aggregation scales. We use daily stocks data from the Dow Jones index
to estimate the multiscaling spectrum and to carry out the multiscaling test described in Section 5. After the
procedure is concluded, we estimate the two most common VaR models, i.e. the Historical and Gaussian VaR
at 1 day. Successively, we use these estimates to compute the yearly VaR using the square root of time rule.15 We
then compare them with the fractional VaR with proper scaling and highlight eventual biases. To conclude, we
propose a methodology to compute a multiscaling consistent VaR.

6.1. Value at risk

VaR is an easy and intuitive way to quantify risk for assets and portfolios. LetVaR(τ , 1 − α) be the Value at Risk
at frequency τ for a confidence level equal to 1 − α which satisfies

P(rτ (t) < VaR (τ , 1 − α)) = α (18)

where rτ (t) are the log-returns at frequency τ . Several methodologies are used to compute the VaR. Among all,
we recall the Historical VaR (HVaR) and the Gaussian VaR(GVaR).16 The former is a non-parametric approach
that uses historical data to compute the VaR, while the latter assumes a Gaussian distribution of stock returns
and applies the Gaussian formula for the percentiles computation to extract the VaR at a given confidence level.
The issue faced in applied Finance is that the square root of time rule works only under the assumption of iid
Gaussian returns. However, this technique is widely adopted regardless of its assumptions.

In our analysis, VaR is computed using the two aforementioned approaches at τ = 1 day, and 95% confi-
dence level (Var(1, 95%)). Annual VaR (Var(250, 95%)) is calculated with the scaling exponent equal to 0.5, i.e.
V̂ar(250, 95%) = Var(1, 95%) × 2500.5 and to the estimated H, i.e. V̂arH(250, 95%) = Var(1, 95%) × 250Ĥ17.
We further estimate the trueVar(250, 95%) using annual returns (τ = 250 days) and compare them. Results are
shown in Figures 7 and 8. These figures show that when we compare the VaR calculated using theH scaling time
rule and the VaR with the square root of time rule, the deviation from the true VaR is lower when the former
approach is used. In fact, for the VaR with H scaling time, the bias with respect to the true VaR is considerably
lower for most of the stocks in both the HVaR and GVaR settings. This is due to the fact that over the long-run,
even a small divergence from the assumption of scaling exponent equal to 0.5 can have a substantial impact.
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Figure 7. HVaR using annual data and using daily data rescaled by the factor 2500.5 and by 250Ĥ . Stocks are sorted by the magnitude of the
annual Historical VaR.

Figure 8. GVaR using annual data and using daily data rescaled by the factor 2500.5 and by 250Ĥ . Stocks are sorted by the magnitude of the
annual Gaussian VaR.

To conclude the analysis with a quantitative assessment of the performance of the different methodologies,
we also report the relative error (RE), i.e.

RE = |Var(250, 95%) − Var(1, 95%) × 250K |
|Var(250, 95%)| ,

where K is equal to 0.5 for the VaR computed with the square root of time rule or equal to the estimated H, Ĥ,
as reported in Table 6. This helps to identify the magnitude of the deviation from the true VaR and to compare
the two scaling approaches. Figure 9 shows the results.
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Figure 9. Relative error between the true VaR calculated using annual data, HVaR and GVaR computed using daily data scaled by the factor 0.5
and by the estimated factor H. The red line is the 45 degrees reference line.

As the figure shows, using the correct scaling results in a smaller relative error. This confirms that the choice
of a proper scaling exponent should not be neglected by the financial community, considering that its estimation
and testing are relatively simple.

6.1.1. Multiscaling consistent VaR
In the previous subsection, we showed that using the correct scaling contributes to reduce the computation error
for VaR at smaller frequencies. However, as explained in Section 5.2, all time series analyzed are strongly mul-
tiscaling. To deal with such situations, we discuss a possible solution. While VaR is related to the log-returns,
multiscaling is a property of the moments of the log-returns. For this reason, there is not a straightforward
formula to compute VaR which takes into account multiscaling. An exception to this is the Multifractal VaR
proposed in Lee, Wook Song, and Chang (2016), where the author introduces a VaR consistent with the multi-
fractality of financial time series using the Multifractal Model of Asset Returns (MMAR). In a previous paper
(Batten, Kinateder, and Wagner 2014), a similar analysis is performed but it relies on the MMAR Monte Carlo
simulations and it computes the VaR on the simulated time series. The Monte Carlo approach has the advan-
tage of letting the researcher use the model that best depicts the data. In fact, one can calibrate the MRW or
the MMAR and generate a large number of sample paths which can be used to compute VaR. In the case of
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Figure 10. Annual Historical VaR (HVaR) and Multiscaling VaR (MSVaR). Confidence level 95%. Stocks are sorted according to the magnitude of
the Historical VaR.

moderate multiscaling, the difference can be low but for multiscaling processes with a |B| > 0.05, neglecting
such a feature can strongly distort the VaR. In this work, we use the MRW to simulate 250 trading days (i.e. 1
year) of log-returns and compute the VaR of the simulated paths. For this purpose, three parameters need to
be estimated: the variance σ 2, the autocorrelation scale parameter L and the intermittency parameter λ. The
variance can be estimated from the log-returns time series as σ 2 = Var(rτ (t))with τ = 1, the parameter L is set
to be equal to τ ∗, while the intermittency parameter λ can be extracted by equating the estimated coefficients of
Equation (4) to the parameters in Equation (15) and getting two (possibly different) estimates of λ, i.e. λA and
λB.18 For each stock, we estimate the three parameters, σ 2, L and λ. Hence, we generate 100, 000 independent
paths of daily returns for a year (i.e. 250 days). Finally, we quantify the VaR, which we name Multiscaling VaR
(MSVaR), by computing the 95% percentile on these simulations. Results are depicted in Figure 10.

It is possible to appreciate that the MSVaR computed on the simulated paths has a comparable size to the
Historical VaR computed on annual data. It is also important to note that the values predicted using λA and
λB are very similar, suggesting that the stocks log-returns can be adequately approximated by the MRWmodel.
Nevertheless, we remark on the importance of the full multiscaling estimation and testing procedure which lead
to the MSVaR. In fact, if the previous analysis is bypassed the estimated risk metrics can be severely biased and
inconsistent.

7. Conclusions

In this paper, we propose a step-by-step procedure to robustly estimate and test multiscaling in financial time
series. By rewriting the structure function in a convenient waywe performmultiple tests on the scaling spectrum
and assess the statistical significance of multiscaling, discriminating between weak and strong multiscaling. We
have shown the effect of anomalies in financial time series and studied the impact on the estimated scaling expo-
nents.Moreover, we have shown how the use of proper scaling can help to reduce the error in theVaR forecasting
at a smaller frequency with respect to the commonly used square root of time rule. Finally, we have proposed a
Multiscaling consistent VaR using a Monte Carlo MRW simulation calibrated to the data and on which the VaR
is then computed. Results are encouraging and confirm the goodness of the proposedmethodological approach.
Multiscaling is a stylized fact which can make a difference in the assessment of risk measures and in building
quantitative models. It can be easily extrapolated from data and should not be overlooked by risk managers and
authorities.
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Notes

1. We refer as trading dynamics the results of the set of actions undertaken by investors in buying and selling financial instruments.
2. Technical details of the choice of this functional form can be found in Buonocore, Aste, and Matteo (2016); Buonocore

et al. (2019).
3. Excluding the special case H(0, q1).
4. If the null hypothesis for one or more t-tests is not rejected but the F-test rejects the null hypothesis, the process is a non-stable

multiscaling process.
5. Valsamis, Husband, and Ka-Wai Chan (2019) review different segmented regression specifications.
6. It is important to notice that the segmented regression in the structure function and the ACSR method yields similar results.
7. For the non-linear regression, in order to use the F-test we have to use ln(

.̂..
�(τ , q)) and ln(

.̂..
�(τ , q̄)).

8. For the linear regression case, the NSGHE and RNSGHE are equivalent models, so we report only the result for the RNSGHE.
9. All the tests are performed using a confidence level of 5% unless differently stated.
10. It is important to highlight that if the othermethods proposed in this paper are adopted, results remain qualitatively unchanged.
11. This is the standard procedure to estimate the Hurst exponent for uniscaling processes, i.e. Â = Ĥ.
12. In the financial High-frequency literature, these quantities are strongly related to the Realized Variance and Bipower Variation.
13. For the change point detection we used 1

2 ‖ D(t) − E[D(t)] ‖2 as penalty.
14. We imputed the value corresponding to the jump with the average between previous and subsequent data points.
15. Theoretically, this is only valid with the Gaussian formulation. Nevertheless, it is commonly used also for Historical VaR time

aggregation.
16. Besides the common knowledge of non-Gaussianity of stocks’ log-returns, theGaussianVaR is widely adopted both in academia

and industry.
17. We will discuss the multiscaling case later in the paper.
18. If the data generating process is not a fully MRW, the estimation of λ by using A or B can differ substantially. In our case, for

most of the stocks analyzed the intermittency parameter computed with the two estimated coefficients, i.e. λA and λB, are very
similar.

Acknowledgments
Wewould like to thank the anonymous refereeswhoprovided useful and detailed comments on a previous version of themanuscript.
Their comments significantly improved the quality of this work. We want to thank the ESRC Network Plus project ‘Rebuilding
macroeconomics’. We are grateful to NVIDIA corporation for supporting our research in this area with the donation of a GPU. We
thank Bloomberg for providing the data.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References
Antoniades, I. P., Giuseppe Brandi, L. Magafas, and T. Di Matteo. 2021. “The Use of Scaling Properties to Detect Relevant Changes

in Financial Time Series: A New Visual Warning Tool.” Physica A: Statistical Mechanics and Its Applications 565: 125561.
Bacry, Emmanuel, Jean Delour, and Jean-François Muzy. 2001a. “Modelling Financial Time Series Using Multifractal Random

Walks.” Physica A: Statistical Mechanics and Its Applications 299 (1): 84–92.
Bacry, Emmanuel, Jean Delour, and Jean-François Muzy. 2001b. “Multifractal RandomWalk.” Physical Review E 64 (2): 026103.
Bacry, Emmanuel, Alexey Kozhemyak, and Jean-François Muzy. 2008. “Continuous Cascade Models for Asset Returns.” Journal of

Economic Dynamics and Control 32 (1): 156–199.
Bacry, Emmanuel, Alexey Kozhemyak, and Jean-François Muzy. 2013. “Log-Normal Continuous Cascade Model of Asset Returns:

Aggregation Properties and Estimation.” Quantitative Finance 13 (5): 795–818.
Barunik, Jozef, and Ladislav Kristoufek. 2010. “On Hurst Exponent Estimation Under Heavy-Tailed Distributions.” Physica A:

Statistical Mechanics and Its Applications 389 (18): 3844–3855.
Batten, Jonathan A., Harald Kinateder, andNiklasWagner. 2014. “Multifractality and Value-at-Risk Forecasting of Exchange Rates.”

Physica A: Statistical Mechanics and Its Applications 401: 71–81.
Buonocore, Riccardo J., Tomaso Aste, and T. Di Matteo. 2017. “Asymptotic Scaling Properties and Estimation of the Generalized

Hurst Exponents in Financial Data.” Physical Review E 95: 042311.
Buonocore, Riccardo J., Tomaso Aste, and T. Di Matteo. 2016. “Measuring Multiscaling in Financial Time-Series.” Chaos, Solitons

& Fractals 88: 38–47.
Buonocore, R. J., G. Brandi, R. N. Mantegna, and T. Di Matteo. 2019. “On the Interplay Between Multiscaling and Stock

Dependence.” Quantitative Finance 20 (1): 133–145.



THE EUROPEAN JOURNAL OF FINANCE 1381

Calvet, Laurent E., and Adlai J. Fisher. 2002. “Multifractality in Asset Returns: Theory and Evidence.” Review of Economics and
Statistics 84 (3): 381–406.

Calvet, Laurent E., and Adlai J. Fisher. 2004. “How to Forecast Long-Run Volatility: Regime Switching and the Estimation of
Multifractal Processes.” Journal of Financial Econometrics 2 (1): 49–83.

Calvet, Laurent E., Adlai J. Fisher, andBenoit B.Mandelbrot. 1997. “LargeDeviations and theDistribution of Price Changes.” Cowles
Foundation Discussion Papers 1165. Cowles Foundation for Research in Economics, Yale University.

Chakraborti, Anirban, Ioane Muni Toke, Marco Patriarca, and Frédéric Abergel. 2011. “Econophysics Review: I. Empirical Facts.”
Quantitative Finance 11 (7): 991–1012.

Clauset, Aaron, Cosma Rohilla Shalizi, and Mark E. J. Newman. 2009. “Power-Law Distributions in Empirical Data.” SIAM Review
51 (4): 661–703.

Cont, Rama. 2001. “Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues.”Quantitative Finance 1 (2): 223–236.
Corbetta, Alessandro, Vlado Menkovski, Roberto Benzi, and Federico Toschi. 2021. “Deep Learning Velocity Signals Allows to

Quantify Turbulence Intensity.” Science Advances 7 (12): eaba7281.
Danielsson, Jon, and Jean-Pierre Zigrand. 2006. “On Time-Scaling of Risk and the Square-Root-of-Time Rule.” Journal of Banking

& Finance 30 (10): 2701–2713.
Di Matteo, T. 2007. “Multi-Scaling in Finance.” Quantitative Finance 7 (1): 21–36.
Di Matteo, T., Tomaso Aste, and Michel M. Dacorogna. 2003. “Scaling Behaviors in Differently Developed Markets.” Physica A:

Statistical Mechanics and Its Applications 324 (1): 183–188.
Di Matteo, T., Tomaso Aste, and Michel M. Dacorogna. 2005. “Long-Term Memories of Developed and Emerging Markets: Using

the Scaling Analysis to Characterize Their Stage of Development.” Journal of Banking & Finance 29 (4): 827–851.
Eom, Cheoljun, Taisei Kaizoji, and Enrico Scalas. 2019. “Fat Tails in Financial Return Distributions Revisited: Evidence from the

Korean Stock Market.” Physica A: Statistical Mechanics and Its Applications 526: 121055.
Fukasawa, Masaaki, Tetsuya Takabatake, and Rebecca Westphal. 2019. “Is Volatility Rough?” arXiv preprint arXiv:1905.04852.
Gatheral, Jim, Thibault Jaisson, and Mathieu Rosenbaum. 2018. “Volatility is Rough.” Quantitative Finance 18 (6): 933–949.
Gençay, Ramazan, Michel Dacorogna, Ulrich A. Muller, Olivier Pictet, and Richard Olsen. 2001.An Introduction to High-Frequency

Finance. San Diego: Elsevier.
Hurst, Harold Edwin. 1956. “Methods of Using Long-Term Storage in Reservoirs.” Proceedings of the Institution of Civil Engineers 5

(5): 519–543.
Jiang, Zhi-Qiang, Wen-Jie Xie, Wei-Xing Zhou, and Didier Sornette. 2019. “Multifractal Analysis of Financial Markets: A Review.”

Reports on Progress in Physics 82 (12): 125901.
Kantelhardt, Jan W., Stephan A. Zschiegner, Eva Koscielny-Bunde, Shlomo Havlin, Armin Bunde, and H. Eugene Stanley. 2002.

“Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series.” Physica A: StatisticalMechanics and Its Applications
316 (1): 87–114.

Katsev, Sergei, and Ivan L’Heureux. 2003. “Are Hurst Exponents Estimated from Short or Irregular Time Series Meaningful?”
Computers & Geosciences 29 (9): 1085–1089.

Kolmogorov, Andrey Nikolaevich. 1962. “A Refinement of Previous Hypotheses Concerning the Local Structure of Turbulence in
a Viscous Incompressible Fluid at High Reynolds Number.” Journal of Fluid Mechanics 13 (1): 82–85.

Kristoufek, Ladislav. 2010. “Long-Range Dependence in Returns and Volatility of Central European Stock Indices.” Bulletin of the
Czech Econometric Society 17: 50–67.

Lee, Hojin, Jae Wook Song, and Woojin Chang. 2016. “Multifractal Value at Risk Model.” Physica A: Statistical Mechanics and Its
Applications 451: 113–122.

Lillo, Fabrizio, and J. Doyne Farmer. 2004. “The Long Memory of the Efficient Market.” Studies in Nonlinear Dynamics &
Econometrics 8 (3): 1–1.

Livieri, Giulia, Saad Mouti, Andrea Pallavicini, and Mathieu Rosenbaum. 2018. “Rough Volatility: Evidence from Option Prices.”
IISE Transactions 50 (9): 767–776.

Løvsletten, O., and M. Rypdal. 2012. “Approximated Maximum Likelihood Estimation in Multifractal Random Walks.” Physical
Review E 85: 046705.

Lux, Thomas. 2004. “DetectingMulti-Fractal Properties inAsset Returns: The Failure of the Scaling Estimator.” International Journal
of Modern Physics C 15 (04): 481–491.

Lux, Thomas, andMicheleMarchesi. 1999. “Scaling andCriticality in a StochasticMulti-AgentModel of a FinancialMarket.”Nature
397 (6719): 498–500.

Mandelbrot, Benoit B. 1963. “The Variation of Certain Speculative Prices.” The Journal of Business 36 (4): 394–419.
Mandelbrot, Benoit. 1967. “The Variation of Some Other Speculative Prices.” The Journal of Business40 (4): 393–413.
Mandelbrot, Benoit B.. 2013. Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Selecta Volume E. New York:

Springer.
Mandelbrot, Benoit B., Adlai Fisher, and Laurent E. Calvet. 1997. “A Multifractal Model of Asset Returns.” Cowles Foundation

Discussion Papers 1164. Cowles Foundation for Research in Economics, Yale University.
Mantegna, Rosario N., andH. Eugene Stanley. 1995. “Scaling Behaviour in the Dynamics of an Economic Index.”Nature 376 (6535):

46–49.
Mantegna, Rosario N., and H. Eugene Stanley. 1999. Introduction to Econophysics: Correlations and Complexity in Finance.

Cambridge: Cambridge University Press.



1382 G. BRANDI AND T. DI MATTEO

Muzy, Jean-François, Emmanuel Bacry, and Alain Arneodo. 1991. “Wavelets and Multifractal Formalism for Singular Signals:
Application to Turbulence Data.” Physical Review Letters 67 (25): 3515–3518.

Muzy, Jean-François, Emmanuel Bacry, and Alain Arneodo. 1993. “Multifractal Formalism for Fractal Signals: The Structure-
Function Approach Versus the Wavelet-Transform Modulus-Maxima Method.” Physical Review E 47 (2): 875–884.

Scalas, Enrico, and Kyungsik Kim. 2006. “The Art of Fitting Financial Time Series with Levy Stable Distributions.” arXiv preprint
physics/0608224.

Sornette, Didier, Yannick Malevergne, and Jean-François Muzy. 2003. “What Causes Crashes?” Risk (Concord, NH) 16: 67–71.
Takaishi, Tetsuya. 2020. “Rough Volatility of Bitcoin.” Finance Research Letters 32: 101379.
Valsamis, Epaminondas Markos, Henry Husband, and Gareth Ka-Wai Chan. 2019. “Segmented Linear Regression Modelling of

Time-Series of Binary Variables in Healthcare.” Computational and Mathematical Methods in Medicine 2019 (3478598): 1–7.
Van Atta, C. W., and W. Y. Chen. 1970. “Structure Functions of Turbulence in the Atmospheric Boundary Layer over the Ocean.”

Journal of Fluid Mechanics 44 (1): 145–159.
Virkar, Yogesh, and Aaron Clauset. 2014. “Power-Law Distributions in Binned Empirical Data.” The Annals of Applied Statistics 8

(1): 89–119.
Wang, Jying-Nan, Jin-Huei Yeh, and Nick Ying-Pin Cheng. 2011. “How Accurate is the Square-Root-of-Time Rule in Scaling Tail

Risk: A Global Study.” Journal of Banking & Finance 35 (5): 1158–1169.
Weron, Rafał. 2001. “Levy-Stable Distributions Revisited: Tail Index > 2 Does Not Exclude the Levy-Stable Regime.” International

Journal of Modern Physics C 12 (2): 209–223.
Yue, Peng, Hai-Chuan Xu, Wei Chen, Xiong Xiong, and Wei-Xing Zhou. 2017. “Linear and Nonlinear Correlations in the Order

Aggressiveness of Chinese Stocks.” Fractals 25 (5): 1750041.


	1. Introduction
	2. Multiscaling in finance
	3. Methodology
	3.1. Statistical procedure
	3.1.1. The choice of q and 
	3.1.2. Multiscaling estimation and testing procedure


	4. Simulation experiment
	5. Empirical application
	5.1. Data
	5.2. Multiscaling test
	5.3. Effect of anomalies in the multiscaling estimation
	5.4. Jump test on the empirical data

	6. Practical application of scaling and multiscaling to VaR
	6.1. Value at risk
	6.1.1. Multiscaling consistent VaR


	7. Conclusions
	Notes
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [536.003 697.493]
>> setpagedevice


