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A B S T R A C T

Pricing derivatives goes back to the acclaimed Black and Scholes model. However, such a modelling approach
is known not to be able to reproduce some of the financial stylised facts, including the dynamics of volatility.
In the mathematical finance community, it has therefore emerged a new paradigm, named rough volatility
modelling, that represents the volatility dynamics of financial assets as a fractional Brownian motion with
Hurst exponent very small, which indeed produces rough paths. At the same time, prices’ time series have been
shown to be multiscaling, characterised by different Hurst scaling exponents. This paper assesses the interplay,
if present, between price multiscaling and volatility roughness, defined as the (low) Hurst exponent of the
volatility process. In particular, we perform extensive simulation experiments by using one of the leading rough
volatility models present in the literature, the rough Bergomi model. A real data analysis is also conducted
to test if the rough volatility model reproduces the same relationship. We find that the model can reproduce
multiscaling features of the prices’ time series when a low value of the Hurst exponent is used, but it fails
to reproduce what the real data says. Indeed, we find that the dependency between prices’ multiscaling and
the Hurst exponent of the volatility process is diametrically opposite to what we find in real data, namely a
negative interplay between the two.
1. Introduction

The history of derivatives pricing goes back to the famous Black and
Scholes model (Black & Scholes, 1973; Merton, 1973). In the literature,
several models added robustness to this original model by trying to
adapt it more to reality. In particular, some models have introduced
the direct modelling of the volatility dynamics of the diffusive price
process (Heston, 1993). This modelling approach has the advantage of
incorporating the dynamics of the volatility in the pricing procedure,
avoiding the strong assumption of constant volatility. Moreover, in
order to accommodate the stylised facts for which the volatility and
price dynamics are empirically negatively dependent, a correlation pa-
rameter has been introduced between the Brownian motion that drives
the two dynamics (Heston, 1993). Still, these features are not able to
depict some aspects of the empirical data, i.e. the implied volatility sur-
face (Bayer et al., 2016; Gatheral et al., 2018). For this reason, Gatheral
et al. (2018) has introduced the concept of rough volatility. In this
setting, the volatility dynamics is depicted as a fractional process (a
fractional Brownian motion) with a very small Hurst exponent (the
long-memory parameter). This is supported by the empirical analysis of
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1 Realised variance is the sum of squared returns over a specific time window for a specific time frequency. For example, the RV can be the sum of squared
intra-day returns at 10 min frequency, which is an estimate of price variation over the day.

Realised Variance (RV) measures1 estimated by using high-frequency
data. Several papers have reported that the realised variance has a
value of the Hurst parameter very small, i.e. 𝐻 ∼ 0.1, i.e. volatility
is rough (Bayer et al., 2016, 2019; Fukasawa et al., 2019; Gatheral
et al., 2018; Takaishi, 2020). This new formulation is able to reproduce
implied volatility surface dynamics more accurately.

However, in all these models, the stochastic process that drives
the price dynamics is a standard Brownian motion, i.e. a process with
Hurst parameter equal to 0.5. Indeed, log prices have been empirically
shown to deviate from the Brownian motion paradigm in two main
aspects. First, the long-memory parameter, the Hurst exponent, is not
(statistically) equal to 0.5, and second, in contrast with the Brownian
motion, different statistical moments yield different Hurst exponents,
i.e. financial time series are multiscaling. The deviation from the Brow-
nian motion paradigm can lead to arbitrage opportunities (Bender
et al., 2007; Cheridito, 2003). However, as reported in various pa-
pers (Antoniades et al., 2021; Carbone et al., 2004; Grech & Pamuła,
2008; Kristoufek, 2010; Morales et al., 2012), the scaling exponents,
when computed dynamically, are fluctuating and therefore difficult
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to predict, making arbitrage strategies unreliable. Multiscaling is by
now identified as stylised facts in financial time series. The study of
scaling and multiscaling has been a prominent topic in the quantitative
finance literature, which devoted most of the attention to financial time
series to understand the source of multiscaling from an empirical and
theoretical point of view (Buonocore et al., 2019; Calvet & Fisher, 2002;
Di Matteo, 2007; Di Matteo et al., 2005; Gençay et al., 2001; Lux,
2004; Lux & Marchesi, 1999; Mandelbrot, 1963, 1967, 1971, 1972;
Mantegna & Stanley, 1995). The estimation of multiscaling properties
is challenging, and it requires robust statistical procedures (Brandi &
Di Matteo, 2021).

Both multiscaling and rough volatility have been understood to orig-
inate from one or more phenomena related to trading dynamics. Still,
unlike the analysis of the prices-volatility dependence, which has been
shown to be strongly negative, to our knowledge, no dependency anal-
ysis of their scaling properties’ has been produced so far. In particular,
an important point is to investigate if rough volatility models are able to
produce the multiscaling features empirically found in price time series
and to study their interplay with volatility roughness (defined as the
Hurst exponent of the volatility process). This might have substantial
implications for modelling price behaviours and risk forecasting since
by calibrating a wrong interplay, the degree of multiscaling in the price
process would be under- or over-estimated.

In this paper, we fill this gap by studying the dependency between
rough volatility and prices’ multiscaling by using one of the benchmark
rough volatility models, namely the rough Bergomi model (Bayer et al.,
2016), and check if it is able to reproduce multiscaling and the same
scaling structure of the real data. To this end, we first compute the
Hurst exponent of the volatility process and the multiscaling measure
of the price time series by using the methodology proposed in Brandi
and Di Matteo (2021) and then compute a set of correlation coefficients
between the two measures. We also use an outlier-robust correlation
estimation methodology to check if results are affected by outliers (Per-
net et al., 2013; Wilcox, 2004, 2011; Wilcox et al., 2018). The paper
is structured as follows. Sections 2 and 3 review some concepts of
fractional Brownian motion and rough volatility. Section 4 reports the
statistical procedures used to estimate multiscaling and the correlation
analysis. Section 5 shows the results of a simulation experiment by us-
ing the rough Bergomi model, while Section 6 those of the dependency
analysis between prices’ multiscaling and volatility roughness for real
data. Section 7 concludes.

2. Fractional Brownian motion

Historically, the Black–Scholes (BS) model for option pricing (Black
& Scholes, 1973; Merton, 1973) has been (and still is) the corner-
stone in quantitative finance. By means of the Geometric Brownian
motion, the authors provided an equation that can be used to compute
the price of vanilla options. However, some researchers questioned
the BS model’s assumptions (Mandelbrot, 1967). In particular, one
of these assumptions is the adoption of a Brownian motion for the
price fluctuations, which implies no memory (Markovian property). A
possible solution to this inconsistency with respect to the real data was
identified by replacing the Brownian motion with a fractional Brownian
motion (Mandelbrot, 1967; Mandelbrot & Wallis, 1968). A fractional
Brownian motion is a stochastic process characterised by the following
three properties (Taqqu, 2013):

(1) the process is Gaussian with zero mean;
(2) it has stationary increments;
(3) it is self-similar with index 𝐻 , 0 < 𝐻 < 1.2

2 The letter H denotes the original Hurst exponent, as in Mandelbrot and
an Ness (1968).
2

Fractional Brownian motion reduces to Brownian motion when 𝐻 =
1∕2, but in contrast to Brownian motion, it has dependent increments
when 𝐻 ≠ 1∕2, i.e. it is a non-Markovian process.3 To compute the
Hurst exponent from sample data, in this paper, we use the method
of Brandi and Di Matteo (2021) that is based on the Generalised Hurst
Exponent method (GHE) (see Antoniades et al., 2021; Buonocore et al.,
2016, 2017; Di Matteo, 2007; Di Matteo et al., 2003, 2005; Kantelhardt
et al., 2002). This methodology relies on the measurement of the direct
scaling of the 𝑞th-order moments of the distribution of the increments
(described in Section 4).4 The GHE methodology returns the scaling
exponent 𝐻𝑞 . The most relevant (and used) values of 𝑞 to assess the
scaling properties of a time series are 𝑞 = 1 and 𝑞 = 2. The first one de-
picts the scaling of the absolute values of the increments and is closely
related to the Hurst exponent originally proposed by Hurst (1956) while
the second is associated with the scaling of the autocorrelation function
of the process (Di Matteo, 2007). In the remainder of the paper, when
not specified differently, we refer to 𝐻 as the Hurst exponent computed
for 𝑞 = 1.

3. Rough volatility

Building on the work of Gatheral et al. (2018) on the statistical
analysis of realised variance, rough volatility became a new paradigm
in quantitative finance. It has been shown that realised variance (a
proxy for rough volatility) is characterised by a process rougher that
Brownian motion, i.e. 𝐻 < 1

2 . This empirical observation led to the
construction of stochastic models with strong anti-persistent volatility
dynamics, the so-called rough volatility models (Fukasawa et al., 2019;
Gatheral et al., 2018; Livieri et al., 2018; Takaishi, 2020). One of the
leading models in this category is the rough Bergomi model (hereafter
rBergomi) (see Bayer et al., 2016, 2019). In the rBergomi model, the
dynamics for the asset price process 𝑆𝑡 and the instantaneous variance
process 𝑣𝑡 are given by
d𝑆𝑡
𝑆𝑡

=
√

𝑣𝑡d
(

𝜆𝑊𝑡 +
√

1 − 𝜆2𝑊 ⊥
𝑡

)

(1)

𝑣𝑡 = 𝜉0(𝑡) exp
(

𝜂𝑊 𝐻
𝑡 − 1

2
𝜂2𝑡2𝐻

)

, 𝑡 ∈ [0, 𝑇 ]. (2)

Here 𝑊𝑡 and 𝑊 ⊥
𝑡 are two independent Brownian motions, 𝑇 is the final

time step, 𝜆 ∈ [−1, 1] is the correlation parameter between the price
and volatility dynamics, 𝜂 > 0 denotes the volatility of the volatility
rocess, and 𝜉0(𝑡) is the initial forward variance curve and 𝐻 is the
urst exponent. Moreover, 𝑊 𝐻 is a fractional Brownian motion given
y

𝐻
𝑡 =

√

2𝐻 ∫

𝑡

0
(𝑡 − 𝑠)𝐻− 1

2 d𝑊𝑠, 𝑡 ∈ [0, 𝑇 ], (3)

ith the Hurst parameter being 𝐻 ∈ (0, 1). Generally, rough volatility
odels are calibrated for 𝐻 to be very small, i.e. 𝐻 ∼ 0.1. Due to the

ack of Markovianity, conventional analytical pricing methods cannot
e employed and Monte Carlo pricing methods based on simulated
aths are used instead (McCrickerd & Pakkanen, 2018).

. Multiscaling

In Section 2, we have recalled the fractional Brownian motion
nd the estimation of the Hurst exponent. However, financial time
eries have been shown to be not only scaling but also multiscal-
ng (Di Matteo, 2007). To detect multiscaling, it is necessary to study
he non-linearity of the scaling exponents of the 𝑞-order moments
f the absolute value of the process increments (Calvet et al., 1997;

3 Pricing derivatives under non-Markovianity is very challenging, and
onte-Carlo procedures are usually employed.
4 For fractional Brownian processes, 𝐻 = 𝐻 for all values of 𝑞.
𝑞
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Di Matteo, 2007; Mandelbrot et al., 1997). In particular, for a pro-
cess 𝑋(𝑡) with stationary increments (at time aggregation 𝜏) 𝑟𝜏 (𝑡),
.e. 𝑟𝜏 (𝑡) = 𝑋(𝑡 + 𝜏) − 𝑋(𝑡), the GHE methodology considers a function
f increments (Di Matteo, 2007) of the form

(𝜏, 𝑞) = E
[

|𝑟𝜏 (𝑡)|
𝑞] ∼ 𝐾𝑞𝜏

𝑞𝐻𝑞 , (4)

here 𝑞 = {𝑞1, 𝑞2,… , 𝑞𝑀} is the set of evaluated moments, 𝜏 =
𝜏1, 𝜏2,… , 𝜏𝑁} is the set of time aggregations used to compute the log-
eturns, 𝑁 and 𝑀 are the maximum numbers of moments and time
ggregation’ specifications, i.e. 𝑞1 = 𝑞𝑚𝑖𝑛, 𝑞𝑀 = 𝑞𝑚𝑎𝑥, 𝜏1 = 𝜏𝑚𝑖𝑛 and 𝜏𝑁 =
𝑚𝑎𝑥, 𝐾𝑞 is the 𝑞-moment for 𝜏 = 1, and 𝐻𝑞 is the so called generalised
urst exponent which is a function of 𝑞. Recently Brandi and Di Matteo

2021) proposed to compute the value of 𝐾𝑞 by evaluating 𝛯(1, 𝑞) rather
han estimating it via regression in order to remove any possible bias
ntroduced in the estimation. By normalising the structure function
(𝜏, 𝑞) as

̃(𝜏, 𝑞) =
𝛯(𝜏, 𝑞)
𝐾𝑞

, (5)

Eq. (5) eliminates the possible bias introduced by the estimation of 𝐾𝑞
ia regression. Further, the q-order normalised moment is defined as

⃛(𝜏, 𝑞) = 𝛯(𝜏, 𝑞)
1
𝑞 (6)

from which follows that Eq. (4) becomes

𝛯(𝜏, 𝑞) ∼ 𝜏𝐻𝑞 . (7)

Within this new formulation, the 𝑞 regressions have a 0 intercept and
the multiscaling is present only if the regression coefficients 𝐻𝑞 differ
for distinct values of 𝑞. To assess multiscaling, it is then possible to
analyze the equation of the form

𝐻𝑞 = 𝐴 + 𝐵𝑞, (8)

where 𝐴 is the linear scaling index while 𝐵 is the multiscaling proxy.
n this mathematical setting, as for different multifractal models in
inance (Bacry et al., 2001; Calvet & Fisher, 2002, 2004; Jiang et al.,
019), we implicitly assume a quadratic function of 𝑞𝐻𝑞 . Eliminating

the multiplication by 𝑞 from both sides of Eq. (8), we reduce the
possibility of spurious results in case 𝑞 is a dominant factor in the
multiplication. By estimating 𝐵 and testing its statistical significance,
we are statistically able to identify multiscaling time series. In the
following, we will refer to the scaling measures of the volatility process
with the superscript (𝑣) and with the superscript (𝑃 ) for the prices,
e.g. 𝐻 (𝑣), 𝐵(𝑣), 𝐻 (𝑃 ) and 𝐵(𝑃 ).

4.1. The choice of 𝜏𝑚𝑎𝑥

As reported in Brandi and Di Matteo (2021), the choice of the
maximum aggregation time is pivotal for the correct estimation of the
scaling exponents and, by consequence, the multiscaling properties.
This pivotal choice is mainly because in real data, even for very
persistent time series, there is an aggregation cutoff from which the
financial time series behave as uncorrelated. If we choose the maximum
value of the aggregation time arbitrarily, we could mix a long-range
correlation with an uncorrelated state, producing an erroneous esti-
mation of the scaling exponents. To this extent, several methodologies
have been proposed in the literature (Jiang et al., 2019). In this paper,
we use the Autocorrelation Segmented Regression proposed in Brandi
and Di Matteo (2021). The idea of this approach is to perform a
segmented regression on the autocorrelation (or the autocovariance)
function computed on the absolute returns and take 𝜏𝑚𝑎𝑥 = 𝜏∗ as
the splitting point between the long-range dependence state and the
random state, which minimises the sum of squared residuals. By using
the Autocorrelation Segmented Regression (ACSR), we can write the
3

s

autocorrelation function of the absolute returns 𝑟𝜏 (𝑡) for lag 𝜏, 𝜙𝜏 (|𝑟𝜏 (𝑡)|)
as:

𝜙𝜏 (|𝑟𝜏 (𝑡)|) =

{

𝛼 + 𝜏𝛽 , if 𝜏 < 𝜏∗
𝛼 + 𝜏𝛽∗ , if 𝜏 ≥ 𝜏∗

(9)

where 𝛼 is the intercept of the regression and that can be fixed to be
equal to 𝜙1, 𝛽 is a memory exponent for the autocorrelation function,
𝜏 is the lag at which the autocorrelation is computed, and 𝜏∗ is the
estimated value of aggregation which split the autocorrelation function
between the correlated and random states. This estimated parameter
will be used as 𝜏𝑚𝑎𝑥 in the GHE estimation procedure.

4.2. Analysis of dependence

In this paper, we are interested in analyzing the dependency be-
tween the scaling and multiscaling measures of the volatility time series
and the scaling and multiscaling measures of the price process. Among
the different measures available in the statistical literature, we use the
Pearson and Spearman correlation coefficients. The Pearson correlation
coefficient for any two random variables 𝑋 and 𝑌 is defined as

𝜌 = 𝜌(𝑋, 𝑌 ) =
𝐶𝑜𝑣(𝑋, 𝑌 )
𝜎𝑋𝜎𝑌

, (10)

where Cov(𝑋, 𝑌 ) is the covariance between 𝑋 and 𝑌 and 𝜎𝑋 and 𝜎𝑋
are the standard deviation of 𝑋 and 𝑌 , respectively. Contrary to the
Pearson correlation, the Spearman correlation captures the monotonic
dependency (linear or nonlinear) between the two variables analyzed.
Indeed, the Spearman correlation corresponds to the Pearson correla-
tion between the rank values of the random variables. Let us define as
𝑅(𝑋) the ranks of 𝑋, the Spearman correlation is defined as:

𝜌𝑆 = 𝜌(𝑅(𝑋), 𝑅(𝑌 )) =
𝐶𝑜𝑣(𝑅(𝑋), 𝑅(𝑌 ))

𝜎𝑅(𝑋)𝜎𝑅(𝑌 )
, (11)

where the quantities are defined as for the Pearson correlation.

5. The interplay between multiscaling and rough volatility: syn-
thetic data

In this section, we simulate the rough Bergomi (rBergomi) model
(Bayer et al., 2016, 2019) and check if it is able to produce multiscaling
prices as recently demonstrated in Forde et al. (2022) for 𝐻 (𝑣) → 0. If it
is the case, we want to understand what type of dependency structure
there is between the model’s parameters and the simulated prices
multiscaling.5 For the simulations, we use the parameters used in Bayer
et al. (2016), i.e. 𝜂 = 1.9, 𝜉0 = 0.1 and varying values of the Hurst
exponent 𝐻 and correlation parameter 𝜆 in Eq. (1). We are interested in
analyzing the model’s potentiality to generate a dependency structure
between the scaling measures of the two processes by changing the two
parameters, 𝐻 and 𝜆. In particular, we set the correlation parameter
𝜆 to vary between −1 and +1 and the Hurst exponent 𝐻 to vary
between 0.01 and 0.99. To mimic the real data structure presented in
Appendix B, and take into account any possible finite sample effect,
for each combination of 𝐻 and 𝜆, we simulate 100 sets of time series
(volatility and prices), each of which has been taken with the same
lengths as the ones of the original dataset, i.e. 𝑇 = 5000 time steps. We
then compute 𝐻 (𝑣) and 𝐵(𝑃 ) of the two simulated processes and analyze
their dependence. Fig. 1 shows the impact of the Hurst parameter 𝐻
and correlation parameter 𝜆 on the estimated multiscaling proxy 𝐵,
𝐵(𝑃 ).

Fig. 1 shows that the rBergomi model is indeed able to produce
multiscaling prices for small values of 𝐻 irrespective of the value
of 𝜆. Indeed, the effect of 𝜆 is very small and almost negligible.
As it is possible to notice, the dependency relationship is stronger

5 We report in Appendix A also the analysis done with respect to other
caling measures.
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Fig. 1. Multiscaling proxy 𝐵(𝑃 ) as a function of 𝐻 and 𝜆 in the rBergomi model. The
result is averaged over the 100 datasets and the plot is smoothed via interpolation for
better representation.

Fig. 2. Pearson correlation between Multiscaling proxy 𝐵(𝑃 ) and �̂� (𝑣) as function of
𝐻 and 𝜆 in the rBergomi model. The result is averaged over the 100 datasets and the
plot is smoothed via interpolation for better representation.

for small values of 𝐻 while it becomes negligible for high values
of 𝐻 . To numerically quantify this finding, we compute the Pear-
son and Spearman correlations between the volatility roughness �̂� (𝑣)

and the price multiscaling 𝐵(𝑃 ) for the 100 sets of time series. To
better understand the local behavior of the dependency, we have
partitioned the entire set of 𝐻 values in 10 subsets with width 0.1,
i.e. {(0, 0.01,… , 0.10), (0.10, 0.11,… , 0.20),… , (0.90, 0.91,… , 1)} and we
have computed the correlation coefficients between the estimated 𝐻 (𝑣)

on each subset and the corresponding estimated values of the prices’
multiscaling proxy 𝐵(𝑃 ).6 Results of the averaged Pearson correlations
computed over the 100 simulated sets of times series are shown in
Fig. 2.7

Fig. 2 confirms what was deduced from Fig. 1. The correlation
between volatility roughness and price multiscaling diminishes as the
Hurst exponent 𝐻 of the volatility process increases. Furthermore,
the correlation becomes negligible already for 𝐻 near 0.3.8 From this
exploratory analysis, we might conclude that in order to retrieve both
multiscaling and interplay between �̂� (𝑣) and 𝐵(𝑃 ), we would need to
use very low values of the Hurst exponent in Eq. (1), while the value
of the parameter 𝜆 does not have a strong impact on the interplay.

6 We repeated the same exercise with respect to 𝜆, but we find an erratic
behavior as 𝜆 does not play a significant role. For this reason, we do not report
the plot.

7 We report the same analysis with respect to the Spearman correlation in
Fig. A.2 of Appendix A. The results are qualitatively equivalent to the Pearson
correlation.

8 The correlation for values equal or higher than 0.3 is not statistically
significant at 5%.
4

6. The interplay between multiscaling and rough volatility: Real
data

In the previous Section, we have shown that the rBergomi model
is able to generate multiscaling prices when small values of 𝐻 are
used in Eq. (1), irrespective of the model’s correlation parameter 𝜆.
We also found an overall nonlinear relationship between the level of
multiscaling and the Hurst exponent 𝐻 . In this section, we repeat a
similar exercise as the one done in Section 5 and compute the correla-
tion coefficients between the volatility roughness and price multiscaling
of real data. This exercise allows us to understand if rough volatility
models are in line with the empirical observations. In particular, by
using data from the Oxford volatility library (Heber et al., 2009),9 we
first compute the Hurst exponent 𝐻 on the realised variance (10 min
frequency) time series, i.e. �̂� (𝑣) and the multiscaling proxy 𝐵 on the
prices time series, i.e, 𝐵(𝑃 ). We then produce a set of correlation
measures to quantify their interplay.10

6.1. Results

In this section, we report the procedure used on real data to compute
the scaling exponents and the multiscaling proxy, defined as follows:

1. We first compute 𝜏∗ with the Autocorrelation Segmented Re-
gression method introduced in Section 4.1 by using the absolute
value of the open to close log-returns;11

2. We then perform the log–log regression of Eq. (7) for each index
with 𝜏𝑚𝑎𝑥 = 𝜏∗, that is the estimated 𝜏∗.12

3. We finally compute the multiscaling proxy 𝐵 for each index by
using Eq. (8) and test for its statistical significance.

Results of this procedure for the rough volatility measure (Realised
Variance 10 min frequency) are reported in Table 1. A set of prelimi-
nary conclusions can be drawn from these results. First of all, it can be
appreciated that there is heterogeneity in terms of optimal aggregation
time even if many indices fall in the range between 1 and 3 trading
years, with an average of 2 trading years. The second piece of evidence
that can be extracted from Table 1 is that the volatility is indeed rough
with a Hurst exponent (�̂� (𝑣) in the table) between ∼ 0.08 and ∼ 0.15
and that rough volatility presents very low (negligible) multiscaling
values, as reported in other research papers (Gatheral et al., 2018;
Livieri et al., 2018). In contrast to the realised variance time series, the
prices time series present a much stronger multiscaling feature (𝐵(𝑃 )

in the table) across all markets, confirming what was found in a set
of recent papers (Brandi & Di Matteo, 2021; Buonocore et al., 2019).
Finally, it is possible to notice that apart from some cases, the Hurst
exponent for prices is different from the 0.5 benchmark.13

After we computed the Hurst exponent of the realised variance time
series and the multiscaling proxy of the prices time series and con-
firmed that prices are indeed multiscaling, we computed the correlation
coefficients to measure their interplay. We find a negative correlation
between �̂� (𝑣) and 𝐵(𝑃 ) using both the Pearson and Spearman corre-
lations. We found a Pearson correlation coefficient of −0.43 and a
Spearman correlation coefficient of −0.51, both statistically significant
at 5% level.

9 Appendix B reports the description of the dataset.
10 We also produced results for other scaling measures and different rough

volatility proxies. Results are reported in Appendix C.
11 Using close to close log-returns, the results remain qualitatively

unchanged.
12 We use 𝑞𝑚𝑖𝑛 = 0.05 and 𝑞𝑚𝑎𝑥 = 1 as prescribed in Brandi and Di Matteo

(2021) and Buonocore et al. (2019).
13 It is important to highlight the fact that being 𝐻 an exponent, even small

deviations from 0.5 are influential.
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Table 1
Estimated maximum aggregation time, scaling, and multiscaling exponents for price and realised variance (at 10 min frequency) time series.
Numbers in parenthesis represent the standard errors related to the estimated coefficients.
Index 𝜏∗ Prices Volatility

�̂� (𝑃 ) 𝐵(𝑃 ) �̂� (𝑣) 𝐵(𝑣)

AEX 516 0.5228 (0.0010) −0.0273 (0.0001) 0.1302 (0.0016) −0.0077 (0.0000)
AORD 507 0.5098 (0.0011) −0.0038 (0.0001) 0.0605 (0.0016) −0.0072 (0.0001)
BFX 446 0.5417 (0.0010) −0.0323 (0.0002) 0.1360 (0.0016) −0.0060 (0.0000)
BSESN 326 0.5346 (0.0013) −0.0051 (0.0002) 0.1041 (0.0018) −0.0066 (0.0000)
BVLG 461 0.4725 (0.0022) −0.0227 (0.0001) 0.1069 (0.0027) −0.0056 (0.0000)
BVSP 335 0.5042 (0.0010) −0.0234 (0.0001) 0.1085 (0.0022) −0.0041 (0.0000)
DJI 445 0.4786 (0.0011) −0.0302 (0.0002) 0.1055 (0.0017) −0.0053 (0.0001)
FCHI 578 0.4992 (0.0010) −0.0322 (0.0001) 0.1227 (0.0016) −0.0117 (0.0000)
FTMIB 256 0.4846 (0.0016) −0.0264 (0.0000) 0.1119 (0.0027) −0.0049 (0.0000)
FTSE 486 0.4854 (0.0012) −0.0215 (0.0000) 0.1049 (0.0016) −0.0094 (0.0001)
GDAXI 502 0.5188 (0.0010) −0.0330 (0.0002) 0.1313 (0.0015) −0.0114 (0.0000)
GSPTSE 337 0.5123 (0.0011) −0.0222 (0.0000) 0.0915 (0.0019) −0.0020 (0.0000)
HSI 669 0.5031 (0.0012) −0.0236 (0.0001) 0.0825 (0.0018) −0.0078 (0.0001)
IBEX 1070 0.5204 (0.0008) −0.0296 (0.0000) 0.1369 (0.0012) −0.0101 (0.0000)
IXIC 927 0.5289 (0.0011) −0.0160 (0.0002) 0.1030 (0.0015) −0.0088 (0.0000)
KS11 985 0.5092 (0.0010) −0.0141 (0.0001) 0.0877 (0.0016) −0.0074 (0.0000)
KSE 103 0.5823 (0.0017) −0.0240 (0.0002) 0.1116 (0.0029) −0.0000 (0.0006)
MXX 1096 0.5402 (0.0008) −0.0392 (0.0002) 0.0749 (0.0016) −0.0170 (0.0001)
N225 344 0.5174 (0.0009) −0.0171 (0.0000) 0.0963 (0.0019) −0.0032 (0.0000)
NSEI 477 0.5307 (0.0011) −0.0138 (0.0001) 0.1041 (0.0015) −0.0054 (0.0000)
OMXC20 439 0.5172 (0.0013) −0.0200 (0.0002) 0.1036 (0.0021) −0.0071 (0.0000)
OMXHPI 371 0.5143 (0.0012) −0.0170 (0.0001) 0.1166 (0.0019) −0.0077 (0.0000)
OMXSPI 444 0.5064 (0.0016) −0.0153 (0.0000) 0.1238 (0.0018) −0.0074 (0.0000)
OSEAX 332 0.5314 (0.0010) −0.0138 (0.0001) 0.0933 (0.0017) −0.0084 (0.0001)
RUT 229 0.4705 (0.0013) −0.0054 (0.0000) 0.1100 (0.0020) −0.0019 (0.0000)
SMSI 643 0.5232 (0.0011) −0.0322 (0.0001) 0.1276 (0.0016) −0.0121 (0.0001)
SPX 477 0.4962 (0.0011) −0.0286 (0.0001) 0.1146 (0.0017) −0.0018 (0.0000)
SSEC 511 0.5700 (0.0013) −0.0197 (0.0001) 0.1141 (0.0017) −0.0070 (0.0000)
SSMI 528 0.5097 (0.0010) −0.0251 (0.0000) 0.1350 (0.0017) −0.0040 (0.0000)
STI 598 0.5568 (0.0013) −0.0177 (0.0001) 0.0724 (0.0023) −0.0091 (0.0001)
STOXX50E 504 0.5043 (0.0010) −0.0347 (0.0002) 0.1178 (0.0017) −0.0191 (0.0000)
6.2. Robust correlation analysis

Although easy to implement, Eq. (10) is known to be strongly
affected by outliers. In fact, even a very small portion of outliers can
severely bias its estimated correlation coefficient. To tackle this issue,
several methodologies have been proposed in the robust statistics liter-
ature. Some methodologies act at reducing the impact of the outliers by
downweighting their contribution in the computation of the correlation
coefficient. In contrast, other methods compute the correlation over
the outliers-filtered dataset. In a set of papers (Pernet et al., 2013;
Wilcox, 2004; Wilcox et al., 2018), it has been shown that the second
approach gives better results in reducing the bias. For this reason,
we compute the correlation coefficient on the outlier filtered dataset.
In particular, we are interested in removing the multivariate outliers,
which are the relevant ones for the computation of the correlation
coefficient. To this extent, we employ the bivariate outliers detection
method of Pernet et al. (2013).14 From this analysis, we found out that
IPC Mexico (MXX) is an outlier and for this reason, we label it as an
outlier in our correlation analysis. We define the robust correlations
as �̃� (or 𝜌𝑆 ), i.e. the correlation coefficient computed on the dataset
without considering IPC Mexico (MXX). The results are depicted in
Fig. 3, where we also report the correlation coefficients that have not
been corrected for the outlier.

As we can observe from Fig. 3, the interplay between volatility
roughness and prices’ multiscaling is strongly negative. In fact, the
rougher the volatility process is, the less multiscaling is the price
time series. Indeed, it is much stronger than what the found in the
simulation experiment (for similar values of 𝐻), and the dependency
is in the opposite direction. This result highlights the fact that the
rBergomi model cannot reproduce this strong empirical dependency
structure. This result calls for the development of models which can

14 The entire procedure used to detect the outliers is reported in Appendix D.
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Fig. 3. Estimated multiscaling proxy of the prices 𝐵(𝑃 ) as function of volatility
roughness �̂� (𝑣) (realised variance at 10 min frequency). Blue dots label different indices,
the black continuous line is the regression line, while the black dashed lines are the
95% confidence intervals. Pearson correlation coefficient 𝜌 is −0.43 and Spearman
correlation coefficient 𝜌𝑆 is −0.51. The outlier-robust versions, �̃� and �̃�𝑆 are equal to
−0.61 and −0.65 respectively. All correlations are statistically significant at 5% level.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

accommodate both multiscaling prices and rough volatility and their
negative correlation.

Finally, to check if the result is dependent on the heterogeneity and
distribution of the Hurst exponents �̂� (𝑣) of the real data and to the
maximum time aggregation 𝜏𝑚𝑎𝑥 used for the estimation of the scaling
exponents, we simulated 100 set of time series (prices and volatility)
using the rBergomi model, each one composed by 31 time series with
the specific set of �̂� (𝑣) estimated from the real data (see Table 1) and
with a varying level of the correlation parameter 𝜆 (the remaining
parameters are left unchanged). The estimation is then carried over by
using the same procedure described in Section 6.1, by using the same
𝜏 of Table 1. Results are reported in Fig. 4, where we report both
𝑚𝑎𝑥
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Fig. 4. Correlation coefficients between �̂� (𝑣) and 𝐵(𝑃 ) as function of 𝜆 for the rBergomi
model with 𝐻 taken from Table 1, 𝜉 = 0.01, 𝜂 = 1.9. The black line is the Pearson
correlation, while the red line corresponds to the Spearman correlation. Statistics
computed over 100 simulations, each composed of 31 simulated paths each of 5000
time steps. The error bars represent the standard errors. The plot has been smoothed
via interpolation for better representation. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

correlation measures as a function of 𝜆.15 As it is possible to observe, the
correlation is positive for each value of 𝜆 with a peak near the positive
boundary. This highlights the fact that it is not the heterogeneity of the
true data that produced the result, which is indeed robust.

7. Summary and final remarks

To check for any interplay between prices’ multiscaling and volatil-
ity roughness, we have produced extensive simulation experiments
by using one of the benchmark models in the financial mathematics
literature on rough volatility, namely the rough Bergomi model. By
using the model parameters in Bayer et al. (2016, 2019) and by
changing the Wiener processes correlation and the Hurst exponent, we
have investigated if the simulated volatility and price processes showed
any relationship in their scaling exponents. We have found that the
correlation between prices’ multiscaling and rough volatility is mainly
positive, peaking for small values of 𝐻 , while the correlation param-
eter 𝜆 does not play a major role in this relationship. We have then
computed the same dependency measures by using real data. We have
found that there exists a statistically significant (negative) dependence
between volatility roughness and prices’ multiscaling by analyzing
different indices. In particular, we have found that the rougher the
volatility is, the less multiscaling the price series are. This result shows
that even if the rBergomi is able to produce multiscaling prices for low
values of 𝐻 , the empirical dependence is reversed. To check if the het-
erogeneity of the empirical scaling exponents was producing an artefact
dependency structure, we have produced a new simulation experiment
in which the scaling exponents of the volatility process were taken from
the ones we have estimated from the real data. Even in this case, we
found that the model is not able to reproduce the interplay found in the
real data. This result shows that current models cannot reproduce this
higher-order dependence between the scaling features of the volatility
and price processes. Indeed, calibrating 𝐻 in the volatility process
would produce the opposite effect on the prices multiscaling, e.g. low
𝐻 would imply higher multiscaling prices while it should generate
prices with a low level of multiscaling. A possible solution to this is to
employ multiscaling models for the price fluctuations and a fractional
type of process for the volatility dynamics. In particular, it would
be advisable to link the multiscaling measures of the prices’ process

15 Additional results related to the correlation between other scaling
measures are reported in Appendix C.
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Fig. A.1. Multiscaling proxy 𝐵(𝑣) with respect to 𝐻 and 𝜆 in the rBergomi model. The
result is averaged over the 100 dataset and the plot is smoothed via interpolation for
better representation.

Fig. A.2. Spearman correlation 𝜌𝑆 between the multiscaling proxy 𝐵(𝑃 ) and �̂� (𝑣).
Description as for caption of Fig. 2.

with the volatility roughness. One possibility would be to implement
a time-changed Brownian motion for the log-prices fluctuations, where
the time change measure is indeed multifractal with the intermittency
parameter linked to the Hurst exponent of the underlying volatility pro-
cess. This will generate more reliable price time series that, combined
with turbo-charged Monte Carlo procedures, McCrickerd and Pakkanen
(2018) can be used to make forecasts and price Options. Future analysis
might include the investigation of the dynamic dependency between
the scaling measures in order to check for trends and cycles. Finally,
since rough volatility is not directly observed but proxied by various
measures (realised variance, for example), it would be beneficial to
understand the impact of such volatility proxies on the dependency
structure between price multiscaling and volatility roughness.
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Appendix A. Additional results: Synthetic data

In this Section, we report additional results related to the analysis
of scaling exponents of both volatility and prices processes and their
interplay related to the synthetic data.

As it is possible to see from Fig. A.1, even if the level of multiscaling
increases with respect to 𝐻 , it remains negligible also for 𝐻 ∼ 1.

As for the Pearson correlation of Fig. 2, we find that the Spearman
correlation between the multiscaling proxy 𝐵(𝑃 ) and �̂� (𝑣) is higher for
small values of 𝐻 and becomes negligible for 𝐻 > 0.3.
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Fig. A.3. Spearman correlation between Multiscaling proxy �̂� (𝑃 ) and �̂� (𝑣). Description
as for caption of Fig. 2.

Fig. A.4. Spearman correlation between Multiscaling proxy 𝐵(𝑃 ) and 𝐵(𝑣). Description
as for caption of Fig. 2.

For completeness, we also report the correlations between the Hurst
exponent of the prices and volatility processes, as well as the depen-
dence between their multiscaling features.

As we can observe from Fig. A.3, the correlation between the
Hurst exponents of the two processes is almost entirely generated
by the correlation parameter 𝜆. This is not an unexpected result
since the 𝜆 drives the correlation between the two processes’ diffusive
components.

With respect to the interplay between the multiscaling features of
the two processes, there is a correlation at the boundaries of the pa-
rameter 𝐻 (see Fig. A.4). This is due to the following motivation. As it
is possible to see from Fig. 1, the slope of the prices’ multiscaling proxy
𝐵(𝑃 ) is strongly positive for 𝐻 ∼ 0, then it becomes flat for intermediate
values of 𝐻 . For high values of 𝐻 , even if not statistically significant, it
becomes slightly negative. The same type of behaviour, even if with a
different strength, is reported in Fig. A.1 for the multiscaling feature
of the volatility process. Indeed, the slope of the of 𝐵(𝑣) for small
values of 𝐻 , even if not statistically significant, is positive, while it
is negative for 𝐻 ∼ 1. For these reasons, the correlation between the
multiscaling features of the two processes is positive at the boundaries
of 𝐻 . However, these correlations are not statistically significant at 5%
level.

Appendix B. Data

The data used in this paper are taken from the Oxford volatility
library (Heber et al., 2009). Codes and descriptions are reported in the
Table B.1 while the stock indices available and the time periods for
which the data are available are reported in Table B.2. The data is
checked for missing values, and in the cases in which a datapoint is
not available, a linear interpolation method is used to input the datum.
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Table B.1
Variables of the Oxford Volatility Library used in the paper.

Code Description

close_price Closing (Last) Price
open_to_close Open to Close log-Return
rv10 Realised Variance (10-min)
rv5 Realised Variance (5-min)
rsv Realised Semi-variance (5-min)
bv Bipower Variation (5-min)

Table B.2
Information of the Oxford volatility library dataset.

Index Market name First date Last date

AEX AEX index 03/01/2000 11/11/2021
AORD All Ordinaries 04/01/2000 11/11/2021
BFX Bell 20 Index 03/01/2000 11/11/2021
BSESN S&P BSE Sensex 03/01/2000 11/11/2021
BVLG PSI All-Share Index 15/10/2012 11/11/2021
BVSP BVSP BOVESPA Index 03/01/2000 11/11/2021
DJI Dow Jones Industrial Average 03/01/2000 11/11/2021
FCHI CAC 40 03/01/2000 11/11/2021
FTMIB FTSE MIB 01/06/2009 11/11/2021
FTSE FTSE 100 04/01/2000 11/11/2021
GDAXI DAX 03/01/2000 11/11/2021
GSPTSE S&P/TSX Composite index 02/05/2002 11/11/2021
HSI HANG SENG Index 03/01/2000 11/11/2021
IBEX IBEX 35 Index 03/01/2000 11/11/2021
IXIC Nasdaq 100 03/01/2000 11/11/2021
KS11 Korea Composite Stock Price Index 04/01/2000 11/11/2021
KSE Karachi SE 100 Index 03/01/2000 11/11/2021
MXX IPC Mexico 03/01/2000 11/11/2021
N225 Nikkei 225 02/02/2000 11/11/2021
NSEI NIFTY 50 03/01/2000 11/11/2021
OMXC20 OMX Copenhagen 20 Index 03/10/2005 11/11/2021
OMXHPI OMX Helsinki All Share Index 03/10/2005 11/11/2021
OMXSPI OMX Stockholm All Share Index 03/10/2005 11/11/2021
OSEAX Oslo Exchange All-share Index 03/09/2001 11/11/2021
RUT Russel 2000 03/01/2000 11/11/2021
SMSI Madrid General Index 04/07/2005 11/11/2021
SPX S&P 500 Index 03/01/2000 11/11/2021
SSEC Shanghai Composite Index 04/01/2000 11/11/2021
SSMI Swiss Stock Market Index 04/01/2000 11/11/2021
STI Straits Times Index 03/01/2000 11/11/2021
STOXX50E EURO STOXX 50 03/01/2000 11/11/2021

close_price: Daily closing price. The closing price is the last ob-
served price of the day.

open_to_close: Daily open to close returns are the log-returns com-
puted between the opening price and the closing price for each day.

rv5 and rv10: Realised variance at 5 min and 10 min sampling
frequency. These measures are computed as the sum of squared returns
over a specific time window and a specific time frequency. For example,
the RV can be the sum of squared intra-day returns at 10 min frequency.

rsv5: Realised semi-variance at 5 min sampling frequency. The
realised semi-variance is calculated by first computing the realised
variance for negative and positive returns separately and then summing
them up.

bv: Realised Bipower Variation at 5 min sampling frequency.
mn Bipower variation is computed as the (scaled) sum of products of
adjacent absolute returns.

Appendix C. Additional results: Real data

In this section, we report the additional results related to the analy-
sis of the real data. When computing the correlation over the real data
scaling features, we report both the standard and robust measures of
correlations.
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Fig. C.1. Estimated multiscaling proxy of the prices 𝐵(𝑃 ) as function of volatility
roughness �̂� (𝑣) (realised variance at 5 min frequency). Pearson correlation coefficient 𝜌
is −0.30 and Spearman correlation coefficient 𝜌𝑆 is −0.39. The outlier-robust versions,
�̃� and �̃�𝑆 are equal to −0.51 and −0.51 respectively. Description as in caption of Fig. 3.

Fig. C.2. Estimated multiscaling proxy of the prices 𝐵(𝑃 ) as function of volatility
roughness �̂� (𝑣) (realised semi-variance at 5 min frequency). Pearson correlation
coefficient 𝜌 is −0.42 and Spearman correlation coefficient 𝜌𝑆 is −0.45. The outlier-
robust versions, �̃� and �̃�𝑆 are equal to −0.55 and −0.57 respectively. Description as in
caption of Fig. 3.

Fig. C.3. Estimated multiscaling proxy of the prices 𝐵(𝑃 ) as function of volatility
roughness �̂� (𝑣) (bipower variation at 5 min frequency). Pearson correlation coefficient
𝜌 is −0.30 and Spearman correlation coefficient 𝜌𝑆 is −0.36. The outlier-robust versions,
�̃� and �̃�𝑆 are equal to −0.48 and −0.48 respectively. Description as in caption of Fig. 3.

C.1. Volatility roughness and price multiscaling

In this subsection, we report additional results related to different
volatility measures with respect to the one presented in the main text
(see Figs. C.1–C.3).

As we can see from the figures, the same pattern as for the realised
variance at 10 min sampling frequency analyzed in the main text is
retrieved for different rough volatility measures.
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Fig. C.4. Estimated Hurst exponent of the prices �̂� (𝑃 ) as function of volatility
roughness �̂� (𝑣) (realised variance at 10 min frequency). Pearson correlation coefficient
𝜌 is −0.06 and Spearman correlation coefficient 𝜌𝑆 is −0.06. The outlier-robust versions,
̃ and �̃�𝑆 are equal to 0.03 and 0.00 respectively. Description as in caption of Fig. 3.

Fig. C.5. Estimated Hurst exponent of the prices �̂� (𝑃 ) as function of volatility
roughness �̂� (𝑣) (realised variance at 5 min frequency). Pearson correlation coefficient 𝜌
is −0.09 and Spearman correlation coefficient 𝜌𝑆 is −0.06. The outlier-robust versions,
̃ and �̃�𝑆 are equal to 0.09 and 0.08 respectively. Description as in caption of Fig. 3.

Fig. C.6. Estimated Hurst exponent of the prices �̂� (𝑃 ) as function of volatility rough-
ness �̂� (𝑣) (realised semi-variance at 5 min frequency). Pearson correlation coefficient
𝜌 is −0.07 and Spearman correlation coefficient 𝜌𝑆 is 0.01. The outlier-robust versions,
̃ and �̃�𝑆 are equal to 0.10 and 0.12 respectively. Description as in caption of Fig. 3.

C.2. Volatility roughness and price scaling

In this subsection, we report additional results related to the study
of the correlation between volatility roughness and price scaling for
different volatility measures (see Figs. C.4–C.7).

As it is possible to notice from the plots of this section, there is
no statistical relationship between the Hurst exponents of the volatility
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Fig. C.7. Estimated Hurst exponent of the prices �̂� (𝑃 ) as function of volatility
roughness �̂� (𝑣) (bipower variation at 5 min frequency). Pearson correlation coefficient
𝜌 is −0.21 and Spearman correlation coefficient 𝜌𝑆 is −0.11. The outlier-robust versions,
�̃� and �̃�𝑆 are equal to −0.03 and 0.00 respectively. Description as in caption of Fig. 3.

Fig. C.8. Estimated multiscaling proxy of the prices 𝐵(𝑃 ) as function of volatility
multiscaling 𝐵(𝑣) (realised variance at 10 min frequency). Pearson correlation coefficient
𝜌 is 0.44 and Spearman correlation coefficient 𝜌𝑆 is 0.29. No outlier has been detected.
Description as in caption of Fig. 3.

Fig. C.9. Estimated multiscaling proxy of the prices 𝐵(𝑃 ) as function of volatility
multiscaling 𝐵(𝑣) (realised variance at 5 min frequency). Pearson correlation coefficient
𝜌 is 0.41 and Spearman correlation coefficient 𝜌𝑆 is 0.33. No outlier has been detected.
Description as in caption of Fig. 3.

and prices time series. Indeed, all correlation coefficients are not statis-
tically significant, and the robust correlation coefficients also confirm
this result.

C.3. Volatility multiscaling and price multiscaling

In this subsection, we report additional results related to the study
of the correlation between volatility multiscaling and price multiscaling
for different volatility measures.
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Fig. C.10. Estimated multiscaling proxy of the prices 𝐵(𝑃 ) as function of volatility
multiscaling 𝐵(𝑣) (realised semi-variance at 5 min frequency). Pearson correlation
coefficient 𝜌 is 0.30 and Spearman correlation coefficient 𝜌𝑆 is 0.25. No outlier has
been detected. Description as in caption of Fig. 3.

Fig. C.11. Estimated multiscaling proxy of the prices 𝐵(𝑃 ) as function of volatility
multiscaling 𝐵(𝑣) (bipower variation at 5 min frequency). Pearson correlation coefficient
𝜌 is 0.49 and Spearman correlation coefficient 𝜌𝑆 is 0.40. No outlier has been detected.
Description as in caption of Fig. 3.

Figs. C.8–C.11 show that the correlation between the multiscal-
ing features of the volatility and price processes is positive. Further-
more, the Pearson correlation is statistically significant across different
volatility measures, while the Spearman correlation is not statistically
significant for all the volatility measures.

C.4. Simulated data with empirical hurst exponent

Fig. C.12 shows that the rBergomi produces a correlation between
the Hurst exponents of the volatility and the Hurst exponent of the
prices process, which is in line with the input correlation 𝜆 of the
Brownian motions. Indeed, the correlation between �̂� (𝑣) and �̂� (𝑃 ) is
not statistically significant at 5% for values of 𝜆 between −0.6 and 0.5.
On the other hand, the correlation between the multiscaling features is
stable around ∼0.18 irrespective of 𝜆, confirming that 𝜆 does not have
a direct effect on the multiscaling properties of volatility and prices
processes (see Fig. C.13).

Appendix D. Outlier identification procedure

Let’s 𝑋 ∈ 𝑁×2 be the bivariate dataset (in our case 𝑋 is com-
posed by �̂� (𝑣) and 𝐵(𝑃 )) composed by 𝑁 datapoints with indices 𝐼 ∈
{1,… , 𝑁}. The procedure is as follow:

1. Compute the Minimum Covariance Determinant (MCD) of the
dataset (Hubert et al., 2018)

2. Compute 𝜇 as the center of the data scatter cloud given by the
MCD (Pernet et al., 2013)
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Fig. C.12. Correlation coefficients between �̂� (𝑣) and �̂� (𝑃 ) as function of 𝜆 for the
rBergomi model with 𝐻 taken from Table 1, 𝜉 = 0.01, 𝜂 = 1.9. Description as reported
in caption of Fig. 4.

Fig. C.13. Correlation coefficients between 𝐵(𝑣) and 𝐵(𝑃 ) as function of 𝜆 for the
rBergomi model with 𝐻 taken from Table 1, 𝜉 = 0.01, 𝜂 = 1.9. Description as reported
in the caption of Fig. 4.

3. Compute the (Euclidean) distance 𝐷𝑖 to the center of the data,
i.e. 𝑋 − 𝜇 for all set of points 𝑖 = 1,… , 𝑁

4. Use the (corrected) Boxplot rule by Carling (2000) to detect the
outliers in 𝐷𝑖

5. Define the set of outliers as 𝑜 and the set of datapoints without
outliers as 𝑙 = 𝐼 ⧵ 𝑜

6. Compute the robust correlation coefficient �̃� = 𝜌(𝑋𝑙), where 𝑋𝑙
is the set of bivariate datapoints filtered by outliers.

For the parameter choice in the various steps of the procedure, we
use the optimal ones described in Carling (2000), Pernet et al. (2013)
and Hubert et al. (2018). It is important to notice that being the MCD
is a robust method to compute a scatter matrix (covariance matrix), a
robust correlation coefficient can be computed directly from it Hubert
et al. (2018).

Regarding the procedure used to detect outliers, it is possible that
some bivariate datapoints are outliers for one specification (volatility
measure) but not for another. In order to remove only the extreme
outlier(s) which affect all the specifications, we define as the set of
outliers the intersection between the outliers found across different
10
volatility measures.16 Define 𝑚 as the index of a specific volatility
measure. We define 𝑜𝑚 as the set of outliers for a specific volatility
measure 𝑚. The overall outlier set is computed as:

̃ =
⋂

𝑚
𝑜𝑚, (D.1)

where �̃� is the set of outliers for all the specifications.
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