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Abstract—Trust is key to the efficient functioning of any fiat
or crypto-currency and so is for the consensus algorithm behind
the functioning of blockchain systems. By an arbitrary design
choice, Bitcoin and most Proof-of-Work (PoW) blockchains have
a limited supply. Once block rewards vanish, only transaction
fees will remain as an incentive for miners to partake in the
verification process. In this paper, we analyse the impact that
miners bargaining over block composition has on consensus
in the absence of block rewards: in this situation, competing
blocks at the same height may be more attractive to peers
by including less transactions (i.e. sharing the mempool). The
mining and acceptance of blocks can be modelled as an Ulti-
matum Game, where miners’ strategies represent their fairness
sentiment. Extending previous Literature, our study focuses on
the effect of the transaction arrival rate on global consensus
in the system and whether local consensus is formed under
certain assumptions about the strategies of miners. We find
that consensus is threatened when the supply of transactions
is low and stable consensus only emerges when the amount of
unconfirmed transactions remains sufficient. In addition, when
miners are set with randomised strategies, it is more difficult
for the system to achieve consensus. Our research suggests that
transitioning from a block reward incentive to a transaction fee
incentive may weaken and even destroy the consensus of PoW-
based systems.

Index Terms—Blockchain consensus, Bitcoin, Agent-based
Model, Ultimatum Game, Gillespie algorithm

I. INTRODUCTION

Miners in a Proof-of-Work (PoW) based blockchain system

are in charge of the confirmation of transactions. They commit

computing resources to find blocks, which extend the existing

blockchain and allow transactions to be recorded in the public

ledger. For example, Bitcoin incentivises miners to commit

computing resources by rewarding each block with a fixed

block reward and a variable fee collected from the transactions

they confirm in a block [1]. The current design of Bitcoin and

many derivatives (its forks, Litecoin, etc.) is chosen such that

a fixed amount of cryptocurrency can be issued. Therefore,

when the last Bitcoin will be mined, only transaction fees

will fund the incentive to continue mining Bitcoin [2]. It will

then resemble a sequential bargaining game. The absence of

block rewards leads to a situation in which miners may have an

incentive to strategically adjust the amount of transactions they

confirm within a block. The transition from a block reward

regime to a transaction fee regime could increase the forking of

the blockchain and threaten efficiency and consensus. Miners

may end up in disagreement.

In order to study a blockchain consensus system in the

absence of block rewards, we expand the stochastic model

of blockchain consensus provided by Tessone et al. [3], incor-

porating transactions and modeling the strategies of miners as

an Ultimatum Game. We model transactions as objects which

can be processed by miners in blocks. Additionally, miners

are endowed with strategies representing their perception of

block fairness. In our agent-based model of Bitcoin mining,

the construction of its blockchain is modelled as an Ultimatum

Game. Miners of a block act as proposers and miners who

receive a block act as responders. We use the seminal work of

Teixeira et al. [4], where they analyse fairness in multiplayer

Ultimatum Games as a motivation.

As consensus is key to the efficient functioning of a

blockchain system, the main purpose of this work is to analyse

the impact that miners’ strategies will have on consensus

in the absence of block rewards. Firstly, our study focuses

on what effects the transaction arrival rate and the network

delay have on global consensus in the system. Secondly, we

analyse whether the global or local consensus is formed under

the random strategies of miners. To sum up, we are able to

conclude that when transitioning from block reward incentive

to transaction fee incentive, the consensus of the system may

be at risk. In order to ensure a stable consensus in the absence

of block rewards, PoW-based blockchain, like Bitcoin, will

have to maintain a plenty of unconfirmed transactions in the
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system.

The paper is organised as follows: Section II provides a lit-

erature review; Section III introduces the modelling approach

and simulation; Section IV defines measures for global and

local consensus; Section V shows the results of consensus

under miners’ global and random strategies. Finally, Section

VI draws conclusions and poses venues for future research.

II. LITERATURE REVIEW

We present related work along the two conceptual dimen-

sions discussed above: (i) Bitcoin and blockchain systems and

(ii) Ultimatum game. The literature that analyses the limit case

of diminishing block rewards in Bitcoin is scarce. Differently

the literature on the Ultimatum Game is vast, so we focus on

the literature that inspired this paper.

The issues with a public blockchain in which miner’s veri-

fication is incentivised are multiple and have given raise to a

growing body of Literature [5], [6]. Some examples of miners’

strategic behaviour include Li et al. [7], [8] who conducted an

empirical study of miners’ selfish mining that was proposed

as an attack on Bitcoin by Eyal and Sirer [9] in 2014, and

miner’s dilemmas induced by which mining pool to join [10].

The selfish mining strategy shows that miners (respectively

mining pools) could increase their revenue by withholding

blocks intentionally. These analysis is bound to the case where

miners are incentivised by a block reward. Carlsten et al. [11]

studied how different strategies might threaten the efficiency

of Bitcoin when transaction fees are the only incentive left

to encourage mining. They show that the security of the

blockchain is threatened by miners who may undercut blocks

of other miners, by including less transactions in their own

blocks. Furthermore, they explored the possibility of a mining
gap, where miners would stop to mine Bitcoin, when not

enough transactions are available to cover the (electricity) cost

miners face in order to discover blocks. These results were

extended in the so-called gap game [12], which shows that

miners may select different gap sizes to optimise their utility,

even when their operating costs are identical and that the

system creates incentives for miners to reduce decentralisation

through the creation of coalitions.

About the modeling of blockchain evolution, Tessone et

al. [3] proposed a minimalist stochastic model of blockchain

systems in order to study the effect of network delay in such

systems. They identified two regimes, a functional regime in

which consensus is given and a non-functional regime in which

the blockchain disperses into a branched state. They observed

a phase transition from a non-consensus state to a state of

consensus as network delay drops. Their model serves as the

foundation of our analysis.

Teixeira et al. [4] analysed fairness, measure by the av-

erage proposal amount and average fitness in a population,

in a multiplayer ultimatum game. Nodes of a network are

interacting with each other based on an implementation of

the ultimatum game in a multiplayer setting. They studied

the effect of a network-based role assignment of nodes and

find that low-degree proposers increase the fairness in such

a setting. Although their concepts are not fully applicable in

the case of Bitcoin, our model is motivated by their train of

thought.

III. MODEL AND SIMULATION

A. Model Elements

1) Basic Notions: The stochastic model proposed by Tes-

sone et al. [3] consists of a network, which simulates the

structure of the P2P network in Bitcoin and blockchain

systems in general. The nodes of the network represent the

miners of the blockchain, each of whom is endowed with a

computational power, πi, which, as Bitcoin is a PoW system,

ultimately determines with what probability a node discovers

a new block. The edges of the network represent whether the

miners are connected with each other and thus may exchange

their state of the blockchain. They can only communicate with

their peers and their view of the blockchain is dictated by what

information they receive. Each miner possesses its own local

copy of the blockchain, denoted by Bi(t), which represents

his view of the current state of the system.

Tessone et al. [3] also model the discovery of blocks and

the diffusion of blocks over the network. Since the mining

of blocks are independent and occur at a fixed rate ηi, the

mining of new blocks is described by a Poisson process. Hence

the time it takes for miner i to find a block is distributed

according to an exponential distribution with parameter ηi. In

addition, according to PoW protocol, the interval in which

blocks are mined is adjusted on the global level, namely

difficulty adjustment. The Bitcoin mining interval as a design

choice is 10 minutes and denoted by: τ = 10′. Thus, we can

derive that the global rate at which blocks are mined by all the

miners in a given interval can be denoted by
∑

i ηi = τ−1.

After mined, the blocks will be diffuse over the network. To

model block propagation with a network delay, we assume that

block propagation follows a Poisson process and we define the

parameter of the network delay as τnd. It follows, as in the

case of the mining process, that the average time it takes for

a block to be propagated from a node to another follows an

exponential distribution with parameter τ−1
nd .

Each block b in the chain has a certain height hb (number of

blocks between block b and the genesis block). As mentioned

above, each miner has at any point time t a local copy of

the blockchain Bi(t) = {b0, b1, b2...}, and it is worth noting

that miners usually count the longest chain valid in current

Bitcoin protocol. Differently, we assume that there is no block

reward, thus implying that the longest chain rule might not

hold. Instead of holding any information of the reward, we

will allow the blocks to bear information about the number of

transactions each block contains, denoted as θb. This will be

the important point at which miners can apply their (offering)

strategies. Meanwhile, blocks will have a finite size in respect

to transactions, to which we will refer to as θmax, representing

the equivalent to the block size maximum.

2) Transactions: To retain the simplicity of the model,

we refrain from modelling the size and fees of transactions

explicitly. Instead we assume all transactions to be of the same
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size and to bear the same positive transaction fee which are the

ultimate incentive for miners to keep on mining after no block

rewards are obtainable anymore. We further assume that each

transaction will be verified, i.e., there are no transactions that

would be refused, thus transactions are only awaiting their

confirmation into a block. Finally, we make the assumption

that transactions flow into the system at a average constant

rate τ−1
t , named as transaction arrival rate.

When a transaction tx enters the system, the transaction

is stored in a global pool T (t) = {tx1, tx2...}. We denote

Θg(t) = |T (t)| as a counter of the total number of transactions

in the system. By defining the pool of transactions in a global

way (all nodes connected to it), we assume that transactions,

upon entering the system, are immediately known to all nodes.

In reality, transactions are being received by a specific node,

where they are verified, and then propagated throughout the

network. Nonetheless, we make this assumption based on the

research of Decker et al. [13] as transactions are much smaller

in size than blocks and hence face a shorter propagation time

than blocks.

Even though we have defined a global counter of transaction

Θg , it is important to note that each miner would have a

distinct memory pool which contains different amount of

unconfirmed transactions. Only when the blockchain is in con-

sensus will the memory pools of nodes coincide. Specifically,

since each node has a local blockchain copy, Bi(t), when

the blockchain is forked, the local blockchain copies do not

have to agree on the same longest block (main-chain) and,

thus, the amount of unconfirmed transactions may differ. We

denote the transaction that are incorporated in a block b as

Tb = {tx1, tx2...}. Thus, the number of transactions included

in that block is θb = |Tb|. The total amount of transactions

which are confirmed in a miner i’s main-chain Vi(t) then

equals: Vi(t) =
∑

b∈BM
i (t) θb, where BM

i (t) represents the

chain of blocks originating from the genesis block (b0) to the

currently highest block in miner i’s blockchain. Equipped with

the knowledge of Vi(t), a miner is able to calculate the amount

of transactions that are awaiting confirmation by setting

Ui(t) = Θg(t)− Vi(t), (1)

where Ui(t) refers to the memory pool of a miner i, the stock

of unconfirmed transactions specific to miner i’s blockchain.

Ui(t) also refers to the memory pool in Bitcoin, as participants

only verify a transaction, which has not yet been written

(confirmed) in the blockchain. Fig. 1 shows how different

local blockchain copies lead to differences in the amount of

transactions that can be confirmed. Both miners have the same

information about the total number of transactions that entered

the system, Θg , but miner j has already received a different

fork of the blockchain, which is longer than miner i’s copy.

When calculating the number of transactions confirmed in

their respective main-chain, both miner i and j will encounter

different amounts.
3) Ultimatum Game Strategies: Mining in Bitcoin resemble

the ultimatum game [14] in the absence of block rewards. To

effectively describe the decisions a miner faces in the context

Fig. 1. Distinct memory pools: Differences in the memory pool can be
witnessed if miners local blockchain copies are not the same.

of the ultimatum game, we have to define when miners act

as proposers or responders, and how they decide what share

of the memory pool Ui(t) they consider fair, to propose and

to accept. As in the Ultimatum Game our agents will possess

idiosyncratic strategies representing their strategic choices on

how to divide their amount of unconfirmed transactions Ui(t)
and decide whether a division of Ui(t) is fair. Therefore,

each miner is also endowed with a strategy set Si, containing

two parameters: Si = (pi, qi), where pi denotes the offering
strategy, the strategy miner i will use when acting as a

proposer and qi denotes the accepting strategy of miner i,
which he applied when acting as a responder.

Offering strategy: The offering strategy, pi, represents the

case when a miner discovers a block and it is his turn to

propose a share of the unconfirmed transactions included in

his block to the network. pi dictates the fraction of transactions

the miner would want to include in a block he mines – pi is

bounded in the interval between zero and one, pi ∈ [0, 1].
When a block is discovered, miner i will check the current

memory pool size with regards to his local blockchain copy

Ui(t) = Θg(t)− Vi(t). Given his offering strategy, the miner

will decide how many transactions he would like to include by

calculating �piUi(t)�, where �.� indicates the nearest integer

function. Given that the block size is limited number of

transactions, he will include θb transaction, which is given

by:

θb = min(�piUi(t)�, θmax) (2)

where θmax indicates the block maximum. (We will keep the

θmax fixed at 100 throughout our analysis.)

Accepting strategy: The accepting strategy, qi, dictates

what share of transactions in a block a miner i considers

fair and is thus willing to accept, acting as a responder. The

evaluation of fairness is not straightforward. The simplest idea

would be to let the miner only consider the share of the

highest block he receives: when a miner i receives a block

b, he will accept it only if the transactions included in the

block θb are below the accepting strategy qi of a miner i
respective to the size of the memory pool from i’s perspective:
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Ui(t) = Θg(t)− Vi(t) at time t. He will evaluate a block and

accept if

qi ≥
θb

Ui(t)
. (3)

Until now we have implied that the block a node receives is the

direct continuation of its local blockchain (direct as the height

of the block is larger by one). In fact, this may not always be

the case, especially when we deviated from the longest chain

rule. We may consider a block that is several blocks higher

than a miner’s local blockchain or it may be a block on a

different fork. Thus, we need a more general concept on how

a block can be evaluated by a node to accept or not, even if it

is not a direct continuation of his local blockchain. To do so,

a node has: (i) to consider not only the last block that will be

added to the local blockchain, but also all preceding blocks

that will have to be added in order for the last block to be

accepted; (ii) to account for the change of the memory pool

induced by continuing on another fork of the blockchain.

We can tackle both points by allowing agents to not only

evaluate a block based on the last block they receive, but rather

based on the whole set of blocks they have to accept in order to

add that block. For instance, a miner i who is currently mining

on block bi is receiving a block bj from miner j, and both

miners have their respective local blockchain copy, Bi(t) and

Bj(t). In order to evaluate the fairness of a block and to decide

whether to accept it, miner i will search for the highest block

that both he and miner j agree on: br = argmaxb∈Bi∩Bj
(hb),

thus they also agree on the transactions confirmed in the

blockchain up until this block br that is called as root block.

Given that each block possesses exactly one parent block, we

can define the sequence of blocks from block bj backward to

block br (including bj and br) as Bbj→br
j , and similarly the

sequence of blocks from bi to br as Bbi→br
i . Finally, as the

root block br is included in both forks, we may subtract it

from both sets in order to get the non-consensus part of the

local blockchain: We denote Bbj→br+1

j = Bbj→br
j \ {br} and

Bbi→br+1

i = Bbi→br
i \ {br}.

By defining the non-consensus part of blocks, Bbj→br+1

j

and Bbi→br+1

i , we can effectively account for the amount of

transactions that miner i would have to give up (because those

transactions were already added to miner j’s local blockchain

copy) in order to accept the block bj . Thus, in order to

evaluate a block, the miner i will consider the effective share

of transactions φbj that he will have to give up, when accepting

that block bj

φbj =
Θj

Θi + Ui(t)
, (4)

where Θj =
∑

b∈Bbj→br+1

j(t)

θb is the amount of transactions

have been consumed by the fork of miner j, and Θi =∑
b∈Bbi→br+1

i(t)

is the amount of transactions processed in miner

i’s specific fork that he will add back to his memory pool.

Miner i compares φbj to his accepting strategy qi and accepts

the block bj and all preceding blocks if

qi ≥ φbj (5)

It is immediate to see that the formula above will reduce to

evaluating a single block (as Eq. 3) when bi = br, as φbj

collapses to φbj = θb/Ui(t).

B. Simulation

To simulate our model, we rely on an agent-based modelling

approach. The nodes in our network are the agents and their

strategies as described above. The agent-based model evolves

as time goes by and different events occur. We have defined

above the three different processes and events that drive the

evolution of our model: (i) a process for the discovery of

the blocks, dictating the inter block time, (ii) a process that

controls how long it takes blocks to propagate between two

nodes and (iii) a transaction process, which dictates at what

rate transactions enter the system. Given the nature of our pro-

posed parameters, the event times can be calculated efficiently

in an implementation of the Gillespie Algorithm [15], [16]. We

will revise it briefly and show how they are bound together in

terms of the Gillespie Algorithm.

1) Block creation: a miner discovers blocks at a constant

rate ηi. As each node represents an independent Poisson

process, the aggregate rate at which blocks are discov-

ered is given by
∑

i ηi = τ−1. The design of Bitcoin

fixes this at the global rate to τ−1 = 10′.
2) Block diffusion: the block propagation rate at which a

local blockchain is sent from node i to node j is τ−1
nd .

We define the edge between a miner i and one of its

neighbours j, i → j, as active, if miner i possesses a

block, which i has not yet shared with j. We assume that

the latency τ−1
nd between any active edge is the same,

therefore, the aggregate rate at which a the diffusion

of a blockchain happens is given by Eaτ
−1
nd , where the

number of active edges is given by Ea.

3) Incoming transaction: the rate at which transactions

enter the global transaction pool is given on a global

level by τ−1
t .

We assume that when a node rejects a block, it will not

accept the same block in the future, and the exchange can

only happen if a block is newly found or received and added

to a miners local blockchain copy. Our definition ensures that

a block is sent only once to a miner from one of his peers,

allowing the decision whether a block is fair or not to happen

only once per edge and block. As all events are independent

from each other, the total rate of transition is defined as:

ξ = τ−1 + Eaτ
−1
nd + τ−1

t . (6)

The Gillespie algorithm selects the event that will occur next,

proportional to the total rate of transitions. After selection,

the corresponding event will be triggered in the system. The

events in the system are described hereafter at some arbitrary

time t0 ≥ 0 and the updated blockchain Bi(t0 + t′) and time

increment t′ are defined below.
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1) With probability τ−1/ξ, the next event will be block
discovery: a miner i will be selected proportional

to the computing power he commits to the system,

πi/
∑

j πj . He has chosen a number of transactions

θb (assuming a candidate block was composed im-

mediately before), according to his offering strategy

and the current amount of unconfirmed transactions:

θbnew
i

= min(�piUi(t)�, θmax). He will discover a

block bnewi and append it to his local blockchain copy:

Bi(t0 + t′) = Bi(t0) ∪ bnewi .

2) With probability Eaτ
−1/
nd ξ, the next event will be block

diffusion: a miner i will be selected randomly from

the set of nodes connected to the network, which have

at least one active directed link originating from i.
Then one of the active links of node i is selected

randomly and the blockchain ledger is sent to node j.

The node j will evaluate the highest block of miner i,
bhi = argmaxb∈Bi

(hb), and if the height of Hi(t0) =
maxb∈Bi(t0)(hb) is below the height of miner j local

blockchain ledger (Hi(t0) ≤ Hj(t0)), the block will not

be evaluated and is not accepted. If Hi(t0) > Hj(t0),
then the block will be evaluated based on the accepting

strategy, qj of miner j as it is defined in section of

miners’ acceptiong strategy. The miner will calculate

φbi(t0) = Θi(t0)
Θj(t0)+Ui(t0)

as the fraction of transactions

confirmed in the subset of blocks he has to accept

in order to accept block bi, adjusting his amount of

unconfirmed transactions in case of a switch to another

fork and accepts the block if qi ≥ φbi(t0).
If block bi is accepted, miner j will update his local

blockchain copy with the blocks he did not yet have in

it: Bj(t0 + t′) = Bj(t0) ∪ Bbi→br+1

i .

3) With probability τ−1
t /ξ, the next event will be an in-

coming transaction to the system. The amount of trans-

actions in the global transaction pool will be increased

by one: Θg(t0 + t′) = Θg(t0) + 1.

After the execution of an event, the time in the model is

increased by t′, which follows an exponential distribution with

parameter ξ, t′ ∼ exp(ξ).

IV. EMERGENT PROPERTIES

To study whether consensus can be achieved when miners

are not strictly obeying to the longest chain rule, but following

the notion of fairness embedded in their strategies, we define

two relevant measures: 1) orphan rate Ξ, which measures on

how many blocks the system has achieved consensus; 2) a

measure for the relative efficiency Er based on the height of

the longest chain.

A. Global: Orphan Rate

Due to the latency of the system or when blocks are deemed

unfair, miners may produce blocks which will not be included

in the blockchain copies of other miners. The computational

resources a miner invested for such a block are wasted. The

more such blocks are produced the higher the inefficiency of a

system. When a block is not included in all the other miners’

local blockchain copies, it is deemed to be orphaned. In return,

blocks which end up in all of the local blockchains are said

to be in the main-chain or consensus chain. We define the set

of all blocks existing in the blockchain system as B =
⋃

i Bi.

The set of main-chain blocks is given by M =
⋂

i Bi and the

set of orphaned blocks is given by: O = B −M . The orphan

rate Ξ is then defined as the ratio of the number of orphaned

blocks among all the blocks:

Ξ =
|O|
|B| (7)

where the lower bound of 0 defines a state of complete

consensus, and the upper bound of 1 indicates a state in which

consensus is not reached on any block.

B. Local: Relative Efficiency

When the blockchain stays in a forked state and consensus is

not reached, the orphan rate Ξ is not a sufficient measure of the

system efficiency. Our model introduces a new component that

can lead miners to not be in consensus, which is the perceived

fairness of a block based on the strategies of the miners, even

when the block is higher. This deviation from the longest chain

rule leads to a situation where some nodes may never accept a

chain of blocks, regardless of its height, but rather in terms of

the amount of transactions that were confirmed in that chain.

Consider the case where a miner has an accepting strategy

qi = 0. Given his perception of block fairness, he will never

accept any block (or a chain thereof) that contains a strictly

positive amount of transactions.

Nonetheless, even in a system without consensus, we may

be interested to what degree miners are willing to work

together on a common blockchain fork. In order to do so we

introduce a measure of the relative efficiency Er in absence

of consensus. We define the relative efficiency as:

Er =
hB

|B| (8)

where hB = maxb∈B(hb) denotes the height of the longest

block in the set of all block. In an extreme case: when all

blocks are aligned in a single chain and the height of it is equal

to the amount of block produced in the system, Er will go to

one. In the other extreme case, if miners are not cooperating at

all and they would simply mine on their individual blockchain

fork, every miner is expected to produce a share of blocks

proportional to his share of computational power. Thus, the

longest chain will be given by the the miner who possesses the

maximum of computational power Er = max(πi/(
∑

j πj)).
These two extreme cases will give the upper and lower bound

for Er respectively. For values of Er in between the lower and

upper bound, miners show some cooperation and blocks are

accepted and mined on by other miners, but global consensus

is not necessary reached. Thus, the relative efficiency Er may

be interpreted as a measure of the local consensus between

miners in the network.
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Fig. 2. The orphan rate Ξ for different global strategy (pi = p̄, qi = q̄) combinations, a fixed network delay τnd = 0.01. The different panels account for
different values of the transaction arrival rate τt. Averages of 30 realisations.

V. RESULTS

A. Baseline Parameters

In our simulations we consider a network of one hundred

miners (N = 100), while small we think that such a number of

miners is sufficient to represent the core network of Bitcoin

miners [17]. As a baseline we consider the Barabási-Albert

topology of the peer-to-peer network with parameter m = 3
of edges attached to new nodes such that nodes are on average

connected to 6 peers. The computational power of miners

is distributed according to an exponential distribution with

πi ∼ exp(0.05). According to previous researches [3], [18],

we also assume that an exponential distribution is a reasonable

approximation for the hashing power distribution in Bitcoin.

The maximum amount of transactions in a block is set to one

hundred (θmax = 100), so that one transaction represents one

percent of the size of a block. To avoid situations in which

nodes in the beginning would have to mine blocks with a

very low amount of transactions, we set the initial amount of

transactions in the system to one hundred, Θg(0) = 100, when

not mentioned otherwise. Miners have a common genesis
block as a foundation for the blockchain. The model simulates

a time of 1000 in the system, which translates to 10’000

minutes (as the mining rate is given by τ = 1) and thus

on average the creation of 1000 blocks is expected. The data

presented hereinafter, are averaged results of 50 realisations

of the system, unless otherwise indicated.

B. Global Strategies

In order to analyse the model with regards to consensus

for different combinations of strategies, we allow different

strategies (keeping them fixed at first) for all nodes (pi =
p̄, qi = q̄ ∀qi). Then, we analyse under which conditions

consensus on the global scale is possible. We expect that when

the strategies are aligned, such that q̄ > p̄, consensus should

emerge.

Fig. 2 shows the orphan rate Ξ for different combinations of

global strategies p̄ and q̄. The panels of Fig. 2 from left to right

show the orphan rate for increasing values of the transaction

arrival rate. For higher values of τt, it is a slow rate of newly

appearing transaction, which also means less unconfirmed

transactions left in the memory pool. We identify two different

regimes in each panel, a regime in which consensus is achieved

(Ξ ≈ 0) indicated by the dark shading and a regime in which

consensus is not achieved (Ξ ≈ 1) indicated by the light

shading. The transition of the regimes between the panels

shows how the transaction arrival rate influences both regimes.

With increasing values of τt, and thus less transactions in the

system, consensus is achieved in a smaller and smaller region

of the strategy space defined by p̄ and q̄.

The panel (a) of Fig. 2 shows that given a very small

transaction arrival rate, representing abundant transactions in

the system, the system could achieves consensus for almost all

strategy combinations. Then, in the panel (b) of Fig. 2 shows

a situation at which the transaction arrival rate meets the con-

firmation capacity of the blockchain in terms of transactions.

We can find that, in the upper right corner where values of

p̄ and q̄ close to one, the offering strategy is higher than the

accepting strategy (q̄ < p̄), and consensus still prevails. The

next three panels (c) (d) (e) show Ξ for high values of τt and

in a state where transactions are scarce relative to the capacity

of the blockchain. In this situation, the atomic property of

transactions, its indivisibility, reduces the strategy space in

which consensus can prevail.

The influence of the network delay τnd on the consensus

of a blockchain system with global strategies can be seen in

Fig. 3. Given a fixed transaction arrival rate, τt = 0.01, the

panels from left to right show the results for different network

delays. In the panel (c) we observe that an increase in the

network delay enables regions of the strategy space, where

p̄ > q̄, to reach consensus on a subset of the blocks in the

system (1 > Ξ > 0). The increased network delay leads to

more wasted resources, as blocks are not communicated fast

enough over the network, leading to forks. When we take a

look at the most right panel (e) of Fig. 3, we observe that the

fork introduced by a high network delay leads to a decay of

consensus.

C. Random Strategies

To study consensus in Bitcoin, a more general in PoW

blockchain system, we analyse the setting in which agents’

strategies are not given on a global level, but rather are
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Fig. 3. The orphan rate Ξ for different global strategy (pi = p̄, qi = q̄) combinations, a fixed transaction arrival rate τt = 0.01. The different panels account
for different values of the network delay τnd. Averages of 30 realisations.

Fig. 4. The orphan rate Ξ in a system with random strategies (pi ∼ U(0, 1)
and qi ∼ U(0, 1)) as a function of the transaction arrival rate τt (left) and
the network delay τnd (right).

randomly chosen by the agents. As such we assume that

each strategy pi and qi is chosen by each miner uniformly

pi ∼ U(0, 1), qi ∼ U(0, 1).
Fig. 4 shows the orphan rate in a setting with randomised

strategies, for both the transaction arrival rate τt and the net-

work delay τnd. We observe the disappearance of consensus. In

the left panel, only in the extreme case, where the transaction

arrival rate is substantial low bringing abundant of transaction

in the pool, the system achieves consensus on a subset of

blocks (Ξ < 1). In addition, the right panel shows that the

network delay is not responsible for the lack of consensus.

Although we may not encounter an accepting strategy of zero,

strategies close to zero are possible. And as such miners

may exist, that are very reluctant to evaluate a block as fair.

Therefore, they will never take part in a chain of blocks mined

by miners with offering strategy greater than zero. Consensus

on a global scale is ruled out.

Given that no global consensus emerges, one may nonethe-

less be interested to what degree the system is able to

cooperate on a common fork of the blockchain. Given this,

we resort to the relative efficiency measure, Er, as discussed

in Section IV-B. By measuring the longest chain of blocks

relative to the amount of all blocks discovered, we evaluate

how many resources are committed to the single longest chain

and also to what degree miners are willing to cooperate in the

setting with randomised offering and accepting strategies.

In Fig. 5, we show Er as a function of τt and τnd, when

miners have distinct strategies for the offering and acceptance

of blocks, under the assumption that strategies are randomly

Fig. 5. The relative efficiency Er in a system with random strategies (pi ∼
U(0, 1) and qi ∼ U(0, 1)) as a function of the transaction arrival rate τt
(left) and the network delay τnd (right).

chosen. Observing Er in the left panel of Fig. 5, we can see

that the concentration of computational power in the longest

chain can almost equal to one when transactions are arriving

at the system at a fast pace, τt = 10−4, indicating that most

miners are willing to cooperate in a long chain they deem fair.

The relative efficiency then steadily drops as less transactions

enter the system, and stabilises when a transaction arrival rate

exceed about 0.1. We notice that the minimum Er indicated by

the red line Emin
r is still slightly greater than 0, which may

indicate that, even when transactions are very scarce, some

cooperation among miners remain: they accept blocks with

zero transactions, i.e., they might follow the longest chain rule

in the absence of transactions.

Looking to the right panels of Fig. 5 reveals the role of the

network delay τnd. Only for high values of network delay τnd
does the hindered communication between the nodes detain

them from concentrating their computational power in one

long chain. When τnd reaches very high values, the network

enters a completely branched state, in which the computational

resources cannot be concentrated. Even when a miner may

accept a block, the high network delay makes it impossible

to know the other blocks that are mined until they will reach

the miner. We find no indication that a high τnd, by allowing

more transactions to enter the system in the time between

block creation and reception, increases Er. It is possible that

since miners may only decide once per block and peer, the

negative effect of the delay overshadows the positive effects

(of more transactions entering in the meanwhile).
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VI. CONCLUSION

Currently, miners of Bitcoin are incentivised mainly by

block rewards. By design, block rewards in Bitcoin are di-

minishing and, thus, the incentives for miners will shift to a

transaction fee regime. Indeed, at some point only transactions

fees will motivate miners to mine Bitcoin. As the stability of

Bitcoin relies on consensus, it is important to study how it will

be affected by such change. In this work, we argue that Bitcoin

mining will resemble a variation of an Ultimatum Game when

the block rewards vanish, and study the impact on consensus

in the Bitcoin system by modelling the PoW protocol and

miners’ strategies.

The core innovations of our model are along three dimen-

sions: 1) We modelled the arrival of transactions within the

system, 2) extended the miners of the system with distinct

memory pools, and 3) endowed agents with a strategy set sim-

ilar to the Ultimatum Game. Furthermore, we define a measure

for the relative efficiency in a non-consensus environment.

In this paper, we study the existence of consensus for min-

ers’ global strategies and find that consensus is generally pos-

sible, when such strategies are favourably aligned. We show

that a lower transaction arrival rate (abundant transaction in the

system) may loosen such constraints on the strategies. We then

allowe miners to possess random strategies representing their

fairness sentiment and show that no global consensus exists in

such a setting. We analyse the situation of random strategies

and discuss the influence of the transaction rate regarding

the relative efficiency (local consensus) and show how a low

supply of transactions hampers limited consensus. We believe

that in order for Bitcoin to ensure a stable consensus in the

absence of block rewards, Bitcoin will have to maintain a

stable stock of unconfirmed transactions and thus prevent a

situation in which the capacity of the blockchain exceeds the

appearance of new transactions.

Further research can extend our current work in many

meaningful directions. First, our simulations could be directly

extended by allowing different strategy regimes, as we have

only focused on global and random strategies, possible con-

sidering the payoff of miners to evaluate and update their

strategies. Second, the simulation time of our models could be

extended and enhanced with long term processes such as nodes

entering or leaving the network and the adjustment process of

the hashing difficulty. Third, the modelling of transactions may

be extended to incorporate distinct transactions fees and sizes

[19]. This could be tied with an more realistic model of blocks,

where block rewards are made explicit and the block size limit

is modelled realistically [20]. Additionally, the attack strategies

of malicious agents and the response of rational agents could

be further considered in our model [21], [22].

The study of the incentive regime transition in Bitcoin will

increase both the technological and the economic importance

of Bitcoin. Our research suggests that the transition from a

block reward to a transaction fee incentive system is not

without disturbances and consensus may be at risk. Only under

particular conditions consensus may arise.
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