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Reconstructing higher-order interactions in
coupled dynamical systems

Federico Malizia1,2, Alessandra Corso3, Lucia Valentina Gambuzza3,
Giovanni Russo4, Vito Latora1,5,6,7 & Mattia Frasca 3

Higher-order interactions play a key role for the operation and function of a
complex system.However, how to identify them is still an open problem.Here,
we propose a method to fully reconstruct the structural connectivity of a
systemof coupled dynamical units, identifying both pairwise and higher-order
interactions from the system time evolution. Our method works for any
dynamics, and allows the reconstruction of both hypergraphs and simplicial
complexes, either undirected or directed, unweighted or weighted. With two
concrete applications, we show how the method can help understanding the
complexity of bacterial systems, or themicroscopicmechanismsof interaction
underlying coupled chaotic oscillators.

Higher-order interactions are present in ecosystems, in which the way
two species interact can be influenced by a third species1, in social
systems, where interactions in groups of three or more individuals
naturally occur2, in the brain cortex3, and in many other complex
systems4. Recent studies based on mathematical tools such as simpli-
cial complexes5,6 and hypergraphs7 have already demonstrated that
the dynamics in presence of higher-order interactions can be sig-
nificantly different from that of systems where interactions are
exclusively pairwise2,8–11. How to infer and model higher-order inter-
actions is then crucial for understanding the dynamics and functioning
of complex systems12,13.While in complex networks, the reconstruction
problem, also known as the inverse problem, i.e., determining the
network from the dynamics of a system, has been dealt with different
techniques14, the question onhow to infer connectivity in the presence
of higher-order interactions is still open.

Concerning reconstruction in complex networks, two different
types of approaches, which target either the functional or the structural
connectivity of the system, have been developed14. Functional con-
nectivity accounts for the statistical dependencies that develop among
the network units as the result of their dynamical interactions. As such, it
may depend on the function and state of the system, and the same
physical system may display different functional connectivities depend-
ing on the dynamical state where it is operating. On the contrary, the
structural connectivity represents how the units of a system physically

interact with each other. Functional networks are typically constructed
from the network temporal evolution by evaluating statistical similarity
measures15, Granger causality16,17, or transfer entropy among the signals
of the different network units18,19, or using Bayesian inferencemethods20.
The underlying structural connectivity of a network can be, instead,
obtained from the network response to external perturbations21, from its
synchronization with a copy containing adaptive links22,23, or from the
solution of optimization problemsbasedonmeasurements of node time
series, when the functional form of the node dynamics is known24–26.

The reconstruction problem in the presence of higher-order
interactions ismore convoluted. Recently, the fundamental distinction
between higher-order mechanisms, i.e., the presence of higher-order
terms in the microscopic structure of the interactions, and higher-
order behaviors, i.e., the emergence of higher-order correlations in the
dynamical behavior of a system, has been pointed out27. The rela-
tionship between these two is not trivial as higher-order behaviors do
not necessarily rely on higher-order mechanisms. As an example,
three-node correlations can appear even in systems with pairwise
interactions only, due to the particular structure of the network, rather
than to the presence of genuine three-body interactions. However, for
the identification of higher-order interactions, techniques that go
beyond pairwise statistics are required. For instance, information-
theoretic approaches to study multivariate time series (of node activ-
ities) based on hypergraphs28, higher-order predictability measures
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(such as generalizations of Granger causality and partial information
decomposition)29, or simplicial filtration procedures30 have been pro-
posed to extract important informationonhigher-order behaviors that
otherwise would not be visible to standard, i.e., network-based, ana-
lysis tools. Higher-order behaviors, which are likely due to the pre-
sence of higher-order mechanisms, can be identified by recently
introduced techniques to assess the statistical significance of certain
hyperlinks31,32. Other statistical approaches to the problem are based
on Bayesian methods and have been used to construct hypergraphs
directly from pairwise measurements (link activities), even in cases
where the higher-order interactions are not explicitly encoded33,34.
Statistical inference and expectation maximization are also at the
basis of a method recently developed to reconstruct higher-order
mechanisms of interaction in simplicial SIS spreading and Ising
Hamiltonians with two- and three-spin interactions35. However, this
method can only be applied to binary time series data produced by
discrete two-state dynamical models.

In this paper, wepropose anoptimization-based approach to infer
the high-order structural connectivity of a complex system from its
time evolution, which works in the case of the most general
continuous-state dynamics, i.e., when node variables are not restricted
to take binary values. Namely, we consider a system of ordinary dif-
ferential equations (ODE) describing a set of dynamical units (nodes)
coupled through pairwise and higher-order interactions. We assume
that the local dynamics and the functional form of the interactions are
known36 or identifiable37,38, and we propose a method to extract the
topology of such interactions by solving an optimization problem
based on themeasurement of the time evolution of the node variables.
The method relies on the derivation of a set of algebraic equations for
the parameters that appear in the ODE model under consideration.
Similar approaches have already been adopted to solve identification
problems in other contexts25,26,39–41. The unknown terms in the alge-
braic equations are determined through least square minimization,
possibly applying regularization methods. Such unknown terms can
either describe the ways in which the variables are combined together
(namely, the coefficients of the different linear and nonlinear terms
effectively appearing in the equations of a single dynamical unit39), or
the way in which variables from different units are effectively coupled
(namely, the weights of the pairwise interactions in a network of
coupled dynamical units25,26,40,41). In the first case, the approach aims at
deriving the governing equations of an unknown dynamical system
from measurements of its state39, whereas in the second case, the
functional form of the local dynamics is supposed to be known and
the approach aims at reconstructing the interactions among the
units25,26,40. In both cases, the problem is sparse, as various dynamical
systems can be modeled by using a small number of nonlinear terms
from the large dictionary of possible nonlinear functions, and the
interactions among the units of a complex system are often mapped
into a sparse network. This enables the use of optimization problems
based on compressive sensing, such as the Lassomethod, to solve this
type of problem. While previous works25,26,40 have addressed the
reconstruction problem of pairwise networks, themethodwe propose
heredeals with themore general case of structureswith interactions of
any order. With two concrete applications, we will show that our
method can effectively reconstruct which nodes are interacting in
pairs and which in groups of three or more nodes.

Results
Reconstructing pairwise and higher-order interactions
As a generalmodel of a dynamical system ofN nodes coupled through
pairwise and higher-order interactions, we consider the following set
of equations:

_xi = f iðxiÞ+
XD

d = 1

XN

j1 ,..., jd = 1
aðdÞ
ij1 ...jd

gðdÞðxi,xj1
, . . . ,xjd

Þ, ð1Þ

with i = 1, …, N. Here xiðtÞ 2 Rn is the state vector of unit i,f i : R
n !

Rn is the nonlinear function describing the local dynamics at node i,
while gðdÞ : Rn× ðd + 1Þ ! Rn are the nonlinear functions of order d,
modeling interactions in groups of d + 1 nodes, with d = 1, …, D. The
topology of the (d + 1)-body interactions is encoded in the tensor A(d),
whose components are real numbers denoting the strengths of the
interactions. The components with two or more equal indices vanish
because the interaction is in this case described by a lower rank tensor
(or there is no interaction if all indices are equal). Therefore, for a given
i, the number of non-zero entries is at most N − 1 for fað1Þ

ij g,ðN � 1ÞðN �
2Þ for fað2Þ

ijk g, and so on.
Here we want to infer the complete structural connectivity

of a dynamical system, which means we want to reconstruct,
not only the entries of the adjacency matrix Að1Þ = fað1Þ

ij g from the
knowledge of the evolution of the state variables x1(t),…, xN(t), but
also the higher-order interactions encoded by the tensors
Að2Þ = fað2Þ

ijk g, . . . ,AðDÞ = faðdÞ
ij1 ...jd

g. In doing this, we do not assume any
specific structure for the tensors, except that their maximum rank
is D + 1. Conversely, we assume that the functions fi and g(1), g(2)…,
g(D), are known. This is reasonable as the local dynamics of many
real-world complex systems, as well as the functional forms of
their interactions, have been well identified. For instance, well-
established mathematical models that describe the dynamics of
neurons and synapses, or the growth of a biological species when in
isolation, or when in interactions with other species, are available.
In the absence of such models, we assume instead that, prior to the
structural connectivity reconstruction, the model of the isolated
dynamics of a single unit, a pair, a group of three units, etc. can be
derived using proper identification techniques37.

Our reconstruction technique works as follows. Suppose we
have access to a sample of M + 1 measurements of the variables
x1(t), …, xN(t) at times tm equal to mΔt, with Δt a (constant) sam-
pling interval andm = 0, ...,M. The idea here is to find the entries of
the tensors A(d), d = 1, …, D, which minimize the discrepancy
between the sampled values and the trajectories generated by the
model. We will discuss our method, first under the assumption that
it is possible to directly measure the derivatives _xiðtÞ at times tm,
and, later on, under the less restrictive assumption that we have
access only to the variables x1(t),…, xN(t). In the latter case, we have
to approximate the derivatives _xi in Eq. (1) making use of the
sampled values. In both cases, from system (1) at time tm the fol-
lowing equations hold

zmi = f iðxm
i Þ

+
XD
d = 1

XN
j1 ,..., jd = 1

aðdÞ
ij1 ...jd

gðdÞðxm
i ,x

m
j1
, . . . ,xm

jd
Þ, ð2Þ

where i= 1, . . . ,N,m=mmin, . . . ,mmax,x
m
i is a short notation for xi(tm),

and zmi is the measured value of the derivative _xi at time tm, in the first
case, or its approximation by a suitable finite differencemethod, in the
second case. Here,mmin ≥0 andmmax ≤M are integers that depend on
the approximation adopted (see Methods).

Now, let

ym
i : = zmi � f i xi

m� �
and Yi = ½yiðmminÞ>, . . . ,yiðmmaxÞ>�

>
. Let us, then, define the vector Ai

containing the non-trivial elements of the tensors A(d), d = 1, …, D,
namely the quantities we want to reconstruct for each node i

Ai � ½ðAð1Þ
i Þ>,ðAð2Þ

i Þ>, . . . ðAðDÞ
i Þ>�

>
=

= ½að1Þ
i1 , . . . ,a

ð1Þ
iN ,a

ð2Þ
i12, . . . ,a

ð2Þ
i,N�1,N , . . . ,a

ðDÞ
i,1,...,D, . . . ,a

ðDÞ
i,N�D+ 1,...,N �

>
:
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Then, from Eq. (2), we get:

Yi =ΦiAi ð3Þ

for i = 1, …, N, with

where we introduced the following short notation: gðdÞ
i, j1 ,..., jd

ðmÞ :
= gðdÞðxm

i ,x
m
j1
, . . . ,xm

jd
Þ.

For each node i we need to identify H =N − 1 + (N − 1)
(N − 2) +… + (N − 1)⋯ (N −D) terms, corresponding to the entries ofAi.
Let eM = ðmmax �mmin + 1Þng , where ng represents the number of non-
trivial components of the coupling functions, then Φi 2 R

eM ×H .
When eM<H, the system of Eq. (3) is underdetermined and mul-

tiple solutions may exist14. Conversely, when eM ≥H and the matrices
Φi are full rank, i.e., their columns are linearly independent, the sys-
tem in Eq. (3) is not underdetermined and can be solved in the least
square sense14. In this case, the tensors Ai are uniquely determined.

Solving system (3) for the unknowns Ai, therefore, allows one to
reconstruct all interactions of node i, such that the whole structural
connectivity canbe inferredby repeating the calculations for all nodes,
i = 1,…, N. Notice that Eq. (3) maps the problem of the reconstruction
of the higher-order interactions into that of solving a system of alge-
braic equations in the unknown variables given by the H entries of Ai.

In general, the identifiability38,42,43 of the problemmainly depends
on the collected data, and is difficult, if not impossible, to establish a
priori conditions for it. We, therefore, formulate the identification task
in terms of different optimization problems, depending on the type of
structure (weighted/unweighted, directed/undirected) and also on the
features of the available data. Namely, we propose to use, together
with the ordinary least squares (OLS), twoother different optimization
methods, the Signal Lasso (SL)26 and the non-negative least squares
(NNLS)44. The latter two methods are based on a regularization of the
problem and provide an optimal solution even when eM<H. In general,
all the methods will show an improvement in their results as the
number M of observations increases, provided that the added mea-
surements are able to sample different states of the system dynamics,
thus bringing new information.

We will now show that our approach is able to successfully
reconstruct the full set of interactions at any order for completely
different dynamics. For these reasons,wewill focus on the dynamics of
microbial ecosystems and on that of coupled chaotic oscillators. The
two considered case studies will also demonstrate that our method
works for the reconstruction of both hypergraphs and simplicial
complexes, no matter whether the underlying structure is undirected
or directed, unweighted or weighted.

Lotka–Volterra dynamics on weighted directed hypergraphs
In our first application, we focus on the dynamics of microbial eco-
systems. These consist of species that may engage in diverse rela-
tionships, either cooperative, such as the transfer of complementary
metabolites, or antagonistic, such as competition for a resource45. The
validation of community-wide interactions in microbial communities
is a far from trivial problem, faced both with experimental
approaches46 and through the use of mathematical modeling47. The
problem is further complicated by potential higher-order interac-
tions, which play a role in stabilizing diverse ecological communities
andmaintaining species coexistence1,48,49. Here, wemodel a microbial

ecosystem of N species as a hypergraph of N coupled Lotka–Volterra

type equations50 including both pairwise and three-body interactions:

_xi = f iðxiÞ+
XN
j = 1

að1Þ
ij xixj +

XN
j = 1

XN
k = j + 1

að2Þ
ijk xixjxk ð5Þ

with i = 1, …, N.
The variable xi represents the abundance of species i. The local

dynamics of xi is governed by the logistic function f iðxiÞ= rixið1� 1
ki
xiÞ

where ri and ki are the growth rate and the carrying capacity. The pair-
wise interactions between species are encoded in the real coefficients of

the N×N weighted matrix Að1Þ = fað1Þ
ij g with at most N (N− 1) non-zero

elements,while the three-body interactions in the real coefficients of the

N×N ×N weighted tensor Að2Þ = fað2Þ
ijk g with at most N

N
2

� �
non-zero

elements. This is because when the interaction does not depend on the
permutation of the indices, as is the case of Lotka–Volterra typemodels,

the number of non-zero entries of tensor AðdÞ
i is

N
d

� �
. Equation (5) is in

the form of Eq. (1) with g(1)(xi, xj) = xixj and g(2)(xi, xj, xk) = xixjxk. As an
example, we consider the system of N = 7 species with four cooperative

(að1Þ
ij >0) and four antagonistic (að1Þ

ij <0) pairwise interactions, studied in

ref. 47 and shown in Fig. 1a with blue and red arrows, respectively. In
addition to these pairwise interactions, we have included two coop-
erative three-species interactions, shown as double arrows in the
hypergraph in Fig. 1a. These respectively correspond to a contribution

to the dynamics of x2 given by að2Þ
237x2x3x7 and one to x4 given by

að2Þ
416x4x1x6, with að2Þ

237 =0:0062 and að2Þ
416 = 0:0016

1. The other system
parameters, i.e., the values of ri, ki, i= 1, …, 7, and the initial conditions
have been chosen as in ref. 47. Namely, growth rates ri for all species
have been randomly selected from a uniformdistribution in the interval
(0, 1), similarly, the carrying capacities ki are sampled from a uniform
distribution in the interval (1, 100), and the initial conditions xi(0) are
integers sampled in the interval (10, 100).

Under these conditions, as shown by the time evolution of the
variablesxi(t),with i= 1,…, 7, reported inFig. 1b, themicrobial ecosystem
typically converges to a stable equilibrium point corresponding to the
coexistence of six species over seven. To feed our reconstruction algo-
rithm, we focused on the time window ½0,tmax� with tmax = 20, and we
sampled the seven trajectories atM regular intervals of sizeΔt = tmax=M.
We then used the samples to calculate Yi and Φi from Eq. (4). At this
point, we adopted OLS method based on the complete orthogonal
decomposition (see “Methods” and ref. 51), which provides the optimal
solution of minimal discrepancy E between the measurements Yi, and
the corresponding values produced by the systemΦiAi, where

E =
XN
i= 1

Ei,with Ei �k Yi �ΦiAik22: ð6Þ

The total number of parameters is NH, while the total number of
sampled values is nNM (in this case n = 1). The minimum of the sum is

Φi =

gð1Þ
i,1 ðmminÞ . . . gð1Þ

i,i�1ðmminÞ gð1Þ
i,i+ 1ðmminÞ . . . gð1Þ

i,NðmminÞ gð2Þ
i,1,2ðmminÞ . . . gðDÞ

i,N�D+ 1,...,NðmminÞ
..
. ..

.

gð1Þ
i,1 ðmmaxÞ . . . gð1Þ

i,i�1ðmmaxÞ gð1Þ
i,i+ 1ðmmaxÞ . . . gð1Þ

i,NðmmaxÞ gð2Þ
i,1,2ðmmaxÞ . . . gðDÞ

i,N�D+ 1,...,NðmmaxÞ

2
6664

3
7775 ð4Þ
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obtained by minimizing each term Ei separately. The complete ortho-
gonal decomposition provides the solution of minimal l2 norm when
there is more than one minimizer.

To quantify the accuracy of the reconstruction of the interactions
at any order, we compare the estimation bAi with the true values of the
couplings, Ai, for each i, evaluating the reconstruction error E as:

E2 =

PN
i = 1 Ai � bAi

��� ���2
2PN

i = 1 Ai

�� ��2
2

ð7Þ

Figure 1c shows E as a function ofM/H, under the assumption that
the derivatives are available. Different values of M/H have been
obtained by changing the number of measurements M, while
the number of unknown coefficients we want to determine is H =N −
1 + (N − 1)(N − 2)/2 = 21, where the factor 2 in the denominator is due to
the symmetry of the interaction terms in Eq. (5), and contributes to
reducing the number of unknowns and consequently the computa-
tional cost. The results indicate that our approach correctly recon-
structs both pairwise and three-body interactions of the hypergraph,
as the error drops down when M/H ≈ 1.8.

If only the values of the trajectories are available at sampling
times, then the derivatives have to be estimated numerically, for
example, by finite difference approximation. We used three different
formulas for the computation of the approximate derivatives,
respectively of order of accuracy 1, 2, and 4 (see Methods). As a con-
sequence of this approximation, the identification improves when
increasing the sampling size, mainly because of the improvement in
the accuracy of the numerical derivatives as the sampling time interval
decreases. The results are reported in Fig. 1d. As expected, the fourth-
ordermethod provides a smaller error E for a given sampling data size
M. The level of approximation is limited by the accuracy in the mea-
surement of the trajectories. In particular, because of numerical

cancellation, the relative error in the evaluation of the derivatives is
always larger than the relative uncertainty in the trajectories.

Coupled Rössler oscillators on undirected simplicial complexes
As a second case study, we analyze the following system of Rössler
oscillators coupled with pairwise and three-body interactions:

_xi = � yi � zi + σ1

XN
j = 1

að1Þ
ij g

ð1Þðxi, xjÞ

+ σ2

XN
j = 1

XN
k = j + 1

að2Þ
ijk g

ð2Þðxi, xj, xkÞ,

_yi = xi +ayi,
_zi = b+ ziðxi � cÞ,

ð8Þ

where g(1)(xi, xj) = xj − xi and gð2Þðxi,xj,xkÞ= x2
j xk + xjx

2
k � 2x3

i . As for the
underlying topology of the interactions, namely the components of
tensors A(1) and A(2), we consider simplicial complexes constructed as
follows. We start from the so-called Zachary karate club, which is a
system originally described in terms of an undirected graph with
N = 34 nodes and 78 links52. Since the links form 45 triangles, we can
represent the system as a simplicial complex by turning a randomly
chosen fraction δ of the triangles into two-dimensional simplices4. By
considering different values of δ, we can then tune the percentage of
the nodes forming a triangle which are effectively involved in a three-
body interaction rather than in three, separate, pairwise interactions
only. In Fig. 2, we report the results obtained for δ = 1. Similar results
are obtained for other values of δ. The simplicial complex considered
is shown in Fig. 2a. Notice that, in this case, the components of tensors
A(1) and A(2) can either be 0 or 1, as they describe an unweighted
structure. The strength of the interactions in Eq. (8) is parameterized
by the constants σ1 > 0, σ2 > 0, which are supposed to be known. Here,
we choose σ1 = 10−4, and σ2 = 10−5.

Fig. 1 | Reconstructing higher-order interactions in a microbial ecosystem.
a The underlying weighted hypergraph of a Lotka–Volterra system with
N = 7 species and two- and three-body interactions, which we want to recon-
struct from (b) the time evolution of the seven species abundance xi(t).

c Quality of the reconstruction is measured by reporting the error E as a
function of the ratio between the lengthM of the trajectories and the numberH
of interactions to reconstruct. d Error E for the various approximations of the
derivatives.
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In spite of the fact that the original structure is undirected, in our
reconstruction we treat the problem as if the structure was directed.
Thismeans that for a given pair of connected nodes i and jwe consider
both terms að1Þ

ij and að1Þ
ji in the adjacency matrix as independent

unknowns to be determined. Analogously, taking into account that in
Eq. (8) the only non-zero coefficients of A(2) are those with the third
index larger than the second one, for a 3-node simplex (i, j, k) with
i < j < k we have three independent unknowns að2Þ

ijk ,a
ð2Þ
jik , and að2Þ

kij .
In this way, the discrepancies Ei appearing in Eq. (6) can be mini-

mized independently, therefore simplifying the reconstruction pro-
blem. When M is large enough, so that the error is almost zero, the
reconstructed tensors are indeed almost symmetric, i.e., að1Þ

ij ≈að1Þ
ji for

the first order and að2Þ
ijk ≈a

ð2Þ
jik ≈a

ð2Þ
kij for the second order.

Considering that the interactions to be reconstructed are, in this
case, unweighted, the number of the different higher-order networks
we can obtain is finite and equal to 2NH, where NH is the number of all
possible interactions among theN nodes. An exhaustive searchover all
possible structures is prohibitive for even moderate values of N. For
such a reason we shall resort to methods for continuous weights,
possibly making use of the a priori information of the binary nature of
the tensors in order to obtain a more effective reconstruction.

We have adopted three different methods to solve Eq. (3) when
the derivative is exactly known. In the first method, namely OLS, we
minimize the least square norm of the difference betweenYi andΦiAi,
similarly to what we did in the microbial ecosystem example. The
results, indicated by the blue line in Fig. 2b, show that the method
correctly reconstructs the simplicial complex when M/H approaches
one. In the second method, namely NNLS, we perform the minimiza-
tion of the least square error under the additional constraint that the
elements of Ai are non-negative: minAi ≥0

k Yi �ΦiAik2. The red
curve in Fig. 2b indicates that, including such a priori information on
the nature of the interactions in the optimization problem, reduces the
values ofM/H necessary for the reconstruction. Lastly, we extend SL26

to deal with higher-order interactions. Namely, we consider the fol-
lowing optimization: minðk Yi �ΦiAik22=2 +α k Aik1 +β k Ai � 1Hk1Þ,
where the penalty function includes, together with the square of the
2-norm of the difference between Yi and ΦiAi, a regularization term

that induces sparsity of the solution by penalizing the non-zero ele-
ments of Ai, and another term to shrink the estimates to one, by
penalizing the elements different from one (case of unweighted
graph). The effect of the two penalty terms can be easily understood
graphically by plotting argminfðx̂ � xÞ2=2 +αjxj+βjx � 1jg as function
of x̂ (see Fig. 1 in ref. 26). As indicated by the orange curve in Fig. 2b,
this method provides successful reconstruction with a performance
similar to the NNLS (red line). In conclusion, the last two methods are
able to fully reconstruct the structure of the simplicial complex, with a
smaller sample size than that of OLS.

When the derivatives are not available, we need to approximate
them. Here, we use a fourth-order approximation and consider as a
first example M/H = 34. In Fig. 2c, we show the values of the compo-
nents of the arrays bAi,i= 1, . . . ,N obtained with the OLS (blue dots) and
the NNLS (red dots)methods. For the OLSmethod, the value ofM/H is
still too low and values of the components of bAi spanning from −3 to 3
areobtained; on the contrary, for theNNLSmethod the componentsofbAi are concentrated around the twopossible values (0 and 1), correctly
estimating the true values of the coefficients appearing in the tensors
A(1) andA(2). Nowwe systematically analyze thedependenceof the error
on the ratio M/H. In Fig. 2d, we report the results for the two more
computationally efficientmethods, namelyOLS (blue curve) andNNLS
(red curve). Although larger values of M/H are required when the
derivatives are not available, we find that, due to the approximation
used, the error E decreases as a power-law ofM/Hwith an exponent −4
in both cases, with NNLS consistently giving better results than OLS.

Discussion
The collective behavior of a complex system is the result of the
interactions taking place among its units. Recent evidence suggests
that these interactions occur not only between pairs of agents but also
within groups involving multiple units. Consequently, fully recon-
structing the high-order structural connectivity of a complex system
becomes crucial. In this paper, we have presented an optimization-
based framework aimed at tackle this problem. Our approach takes as
input the measurements of the states of the nodes at different times,
yielding a linear system for the unknowns of the problem, namely the

Fig. 2 | Testing the reconstruction method on a system of N = 34 coupled
Rössler oscillators. a The underlying simplicial complex consists of 78 links and
45 2-simplices. b Reconstruction error E defined in Eq. (7) as a function of M/H
when derivatives are known. c The computed values of the components of the

arrays bAi,i= 1, . . . ,N for M/H = 34 for the OLS method (blue dots) and for the
NNLS method (red dots). d Reconstruction error E as a function of M/H when
derivatives are not known and a fourth-order approximation of the derivatives
is used.
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entries of the adjacency tensors encoding the pairwise and higher-
order interactions. Despite the complexity increases with respect to
both system size and order of interactions, the linear nature of our
approach allows for the application of various numerical methods
specifically designed for such problems53.

A crucial aspect of our approach relies on understanding the
dynamics of individual units and the coupling functions at different
orders. Prior to reconstructing the interactions, it is necessary to
derive the functional form of the unit dynamics and coupling func-
tions. This can be achieved through either first principles or targeted
experiments. Importantly, these experiments can be conducted on
small-scale systems using an iterative procedure. The process begins
with identifying the dynamical equations of an isolated unit and gra-
dually incorporating higher orders of interaction. At each iteration,
when aiming to determine the functional form of the d-th order
interaction, namely g(d), an ensemble of d + 1 interacting units is con-
sidered. The temporal evolution of the variables in this system is
measured, and identification techniques37 are employed to obtain the
governing equations. In the previous steps, f, g(1), ..., g(d−1) have been
determined, leaving g(d) as the remaining unknown. The process of
accomplishing these steps for a real system remains open, likely
requiring tailored solutions specific to the nature of the system under
investigation.

In this paper, we have demonstrated the effectiveness of our
reconstruction method through a series of practical applications. We
have shown that with our approach we can detect which nodes are
interacting in pairs and which in groups of three or more nodes,
enabling the reconstruction of hypergraphs and simplicial complexes.
Importantly, the technique can be applied to both undirected and
directed structures, as well as unweighted and weighted networks.
Directed topologies have the advantage that the discrepancy function
Edefined in Eq. (6) can beminimized node by node, i.e., by considering
each term Ei separately. Undirected topologies with the same number
of nodes contain fewer unknowns, but the discrepancy function E
cannot be minimized node by node because of the symmetry con-
straints. For instance, the value of að1Þ

ij appearing in Ei needs to be equal
to að1Þ

ji in Ej. When M is large enough, and the signal is not affected by
noise, application of the directed framework is able to recover the
correct network, and thus the symmetry of the coefficients, as illu-
strated by the case study of coupled Rössler oscillators. In other
situations, for example, in the presence of noise or with a more sparse
data sampling, strict symmetry might be violated by a straightforward
application of the directed framework. In such cases, the symmetry of
the coefficients can be imposed by using other techniques, e.g., by
introducing a penalization term on the lack of symmetry.

In our work, we have considered relatively small systems, inwhich
there is no a priori knowledge of their structure. For large systems it is
not feasible to consider all possible interactions, since the number of
unknowns grows as ND, where D is the maximum order of interaction
we consider, making the problem practically intractable. In the case
some basic information is available, for example, if one knows the
graph describing the pairwise backbone of the system, then one could
limit, for instance, the search of higher-order interactions of dimen-
sion 2 among the triangles of the graph.

Finally, we note that, since the reconstruction method proposed
in this paper is based on the numerical approximation of the

derivatives from the data, in the presence of noisy signals the method
cannot be directly applied as is. In such a case one can resort to the
more traditional approach based on the minimization of the dis-
crepancy between the noisy measured trajectories and the computed
ones that depend on the hypergraph parameters. However, this tech-
nique leads to a stronglynonlinear least square problem,whichmaybe
computationally very expensive. An alternative approach consists in
the application of our method after a suitable pre-processing of the
measured data. The latter approach is currently under investigation.

In conclusion, we have shown that our technique can be useful to
understand and predict the behavior of microbial ecosystems and
coupled nonlinear oscillators. We hope that it can shed new light on a
variety of physical phenomena where higher-order interactions have a
fundamental role.

Methods
Representing higher-order interactions
Higher-order interactions are mathematically represented either by
hypergraphs or by simplicial complexes4. Given a setN of N nodes, an
undirected (directed) hypergraphH is an aggregate ofNh hyperedges,
H= fe1,e2, . . . ,eNh

g, where each hyperedge ei, with i = 1, ⋯, Nh, is an
unordered (ordered) subset of two or more nodes, respectively
describing pairwise and group interactions. A simplicial complex S is
also an aggregate of objects, called simplices, that generalize edges
and can be of different dimensions. A d-simplex σ, or simplex of
dimension d is, in its simplest definition, a collection of d + 1 nodes. In
thisway, a0-simplex is a node, a 1-simplex is anedge, a 2-simplex (i, j, k)
is a two-dimensional objectmade by three nodes, usually called a (full)
triangle, a 3-simplex is a tetrahedron, i.e., a three-dimensional object
and so on. A simplicial complex S on the set of nodesN , is a collection
ofNs simplices,S = fσ1,σ2, . . . ,σNs

g, with the extra requirement that, for
any simplex σ 2 S, all the simplices σ0 with σ0 � σ, i.e., all the simplices
built from subsets of σ, are also contained in S. Due to this constraint,
simplicial complexes are a very particular type of hypergraphs7. The
connectivity of a hypergraph or of a simplicial complex of N nodes is
fully described by the set of tensors A(1), A(2),⋯, A(D) whose components
are real numbersdenoting the strengths of the interactions atdifferent
orders. In this article we focus on higher-order structures with D = 2,
i.e., on systemswith pairwise and three-body interactions described by
the matrix Að1Þ = fað1Þ

ij g and the tensor Að2Þ = fað2Þ
ijk g.

Integration of equations and approximation of derivatives
In order to create the two case studies, we choose a set of two- and
three-body interactions (i.e., the tensors A(1) and A(2)) that we aim to
identify, and compute the trajectories by accurate numerical integra-
tion of system (1). The integration of the system of ODE’s has been
performed by the MATLAB routine ode45 with absolute and relative
tolerance equal to 10−12. In the simulation of the microbial ecosystem,
we adopted the values of the parameters reported in Table 1, while in
the simulation of coupled Rössler oscillators we set a =0.2, b = 0.2,
c = 9 and we used initial conditions randomly sampled from uniform
distributions with the following ranges: xi(0)∈ [−3, 3], yi(0)∈ [−3, 3],
zi(0)∈ [−1, 7].

The derivative of each component has been computed by stan-
dard finite difference discretization. In particular, the approximation
of the derivative of the generic function x(t), computed at time
tm =mΔt, is given by the following expressions

_x = xm�xm�1

Δt +OðΔtÞ
_x = xm+ 1�xm�1

2Δt +OðΔt2Þ
_x = �xm+ 2 + 8xm+ 1�8xm�1 + xm�2

12Δt +OðΔt4Þ

In the previous expressions, we havem =0,…,M − 1, i.e.,mmin = 0 and
mmax =M � 1 for the approximation of order one; m = 1, …, M − 1, i.e.,

Table 1 | Parameters and initial conditions used to generate
the data of the example of the microbial ecosystem

Node 1 2 3 4 5 6 7

Ri 0.6099 0.6177 0.8594 0.8055 0.5767 0.1829 0.2399

Ki 88.7647 3.8387 49.5002 17.6248 97.8894 71.5568 50.5467

xi(0) 30 45 32 50 55 30 40
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mmin = 1 and mmax =M � 1 for the order two; and m = 2, …, M − 2, i.e.,
mmin = 2 andmmax =M � 2 for the order four. When the derivatives are
supposed to be known, then m = 0, …, M, i.e., mmin =0 and mmax =M.

Optimization methods
OLS method has been implemented using the MATLAB function
lsqminnorm, which is based on the complete orthogonal decom-
position.lsqminnorm(A,b), whereA 2 Rn×m, solves theminimization
problem

minx k Ax� bk2:

If the vector of minimal norm is unique, i.e., when the rank of A is
greater or equal m, then the method is essentially equivalent to stan-
dard linear least square. If there are more solutions for vector x 2 Rm,
the function returns the one with the minimal l2 norm.

ForNNLSweused theMATLAB functionlsqnonneg, which solves
l2 minimization problem with the constraint that the solution should
be non negative. lsqnonneg(A, b) solves the problem

minx k Ax� bk2

with the constraints x ≥0.
For SL we wrote a custom MATLAB function based on the algo-

rithm described in ref. 26.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study have been obtained through numerical
simulations that can be reproduced using the methods described in
the paper and the codes publicly available at https://github.com/
LValentinaGambuzza/Code-for-Reconstructing-higher-order-
interactions-in-coupled-dynamical-systems.

Code availability
All codes used in our work are based on the MATLAB commands
described in the “Methods”. They are publicly available in the
following repository: https://github.com/LValentinaGambuzza/Code-
for-Reconstructing-higher-order-interactions-in-coupled-dynamical-
systems.
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