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Despite the widespread adoption of higher-order mathematical structures such as hypergraphs,
methodological tools for their analysis lag behind those for traditional graphs. This work addresses a
critical gap in this context by proposing two microcanonical random null models for directed hypergraphs:
the directed hypergraph degree model (DHDM) and the directed hypergraph JOINT model (DHJM). These
models preserve essential structural properties of directed hypergraphs such as node in- and out-degree
sequences and hyperedge head- and tail-size sequences, or their joint tensor. We also describe two efficient
Markov chain Monte Carlo algorithms, NUDHY-DEGS and NUDHY-JOINT, to sample random hypergraphs
from these ensembles. To showcase the interdisciplinary applicability of the proposed null models, we
present three distinct use cases in sociology, epidemiology, and economics. First, we reveal the oscillatory
behavior of increased homophily in opposition parties in the U.S. Congress over a 40-year span,
emphasizing the role of higher-order structures in quantifying political group homophily. Second, we
investigate a nonlinear contagion in contact hypernetworks, demonstrating that disparities between
simulations and theoretical predictions can be explained by considering higher-order joint degree
distributions. Last, we examine the economic complexity of countries in the global trade network,
showing that local network properties preserved by NUDHY explain the main structural economic
complexity indexes. This work advances the development of null models for directed hypergraphs,
addressing the intricate challenges posed by their complex entity relations, and providing a versatile suite of
tools for researchers across various domains.

DOI: 10.1103/PhysRevX.14.031032 Subject Areas: Complex Systems,
Interdisciplinary Physics

I. INTRODUCTION

Higher-order mathematical structures such as hyper-
graphs and simplicial complexes have emerged as powerful
modeling tools that overcome the limitations of traditional
graph models, which by construction are restricted to
binary relations between entities [1–4].
Indeed, their adoption ismotivated by the observation that

real-world scenarios often entail interactions among multi-
ple entities simultaneously. Examples span systems across
multiple spatial and temporal scales, including cellular
processes [5,6], chemical reactions [7], protein interaction
networks [8], neural processing [9,10], whole-brain
activity [11,12], coauthorship networks [13,14], and contact
networks [15]. Hypergraphs, in particular, are natural and
flexible generalizations of graphs that model arbitrary q-ary

relations among entities. Directed hypergraphs further
extend this concept by representing a link from a set of
nodes (the head of the hyperedge) to another set of nodes (its
tail). Consider, for instance, the case of citations among
scientific publications. In this case, each citation in a
publication can be modeled as a directed hyperedge from
the set of authors of the publication to the set of authors of the
cited work. The application of hypergraphs already spans
diverse domains, from forecasting urban traffic [16] and
modeling Bitcoin transactions [17] to representing web
structures for accurate page reputation scoring [18] and
studying the synchronization of nonlinear oscillators [19].
However, the current methodological tools for hypergraphs
lag behind their counterparts in the graph world.
Understanding complex networks often involves com-

paring observed structures against models that mimic
random scenarios. Originating from Fisher’s groundwork
in hypothesis testing [20], this methodology has expanded
into graph theory with the study of random graph null
models [21]. These models define graph ensembles that
retain only selected features of the observed graph while
being random in any other respect [22]. They are key tools
in graph theory because they allow us to assess the

*Contact author: giulia.preti@centai.eu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 14, 031032 (2024)

2160-3308=24=14(3)=031032(19) 031032-1 Published by the American Physical Society

https://orcid.org/0000-0002-2126-326X
https://orcid.org/0000-0002-3062-4485
https://orcid.org/0000-0003-1847-5031
https://orcid.org/0000-0002-2415-494X
https://ror.org/03hdf3w38
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.14.031032&domain=pdf&date_stamp=2024-10-04
https://doi.org/10.1103/PhysRevX.14.031032
https://doi.org/10.1103/PhysRevX.14.031032
https://doi.org/10.1103/PhysRevX.14.031032
https://doi.org/10.1103/PhysRevX.14.031032
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


significance of the observed properties of real-world net-
works by comparing them to those obtained from ran-
domly generated graphs [23]. This comparative analysis
unveils the influence of local node features versus addi-
tional factors on network properties, and aids in identify-
ing structural irregularities within the networks [24].
Furthermore, it enables us to assess the role of specific
properties in the presence of specific empirically observed
topological and structural features.
Akin to any hypothesis test, the selection of topological

features to preserve in these ensembles significantly
influences the conclusions drawn from the analyses.
Common approaches preserve the degree sequence [25,26]
and the joint degree sequence [27,28]. Random graph
ensembles can be categorized into two fundamental fam-
ilies: microcanonical and canonical [29]. Microcanonical
ensembles preserve the properties in a “hard” fashion; i.e.,
each of the graphs in the ensemble satisfies the imposed
constraints. Conversely, canonical ensembles preserve the
properties in a “soft” fashion: They maintain the constraints
in expectation across the graphs in the ensemble. The
choice between these approaches should be based on
principled criteria, considering factors such as the charac-
teristics of the observed data. Canonical ensembles, for
instance, are better suited for scenarios where data may
contain measurement errors or noise since they maintain
constraints on an average basis.
Despite the vast literature on canonical and microcanon-

ical graph ensembles [22,26,30–35], little attention has
been devoted to defining null models for directed hyper-
graphs and developing efficient sampling algorithms for
their corresponding ensembles. Existing work in the realm
of hypergraphs predominantly focuses on configuration
models for undirected hypergraphs [36–42], introduces
max entropy models [43], or generalizes the concept of
a dK-series to undirected hypergraphs [44,45].
Transitioning to developing null models for directed

hypergraphs brings unique challenges due to their intri-
cate entity relations characterized by a broader set of
properties—and thus, constraints. Parameters such as the
number of nodes, number of hyperedges, head- and tail-
size sequences, and the frequency of nodes within hyper-
edge heads or tails should be taken into consideration when
defining these models. Recently, Kim et al. [46] proposed
two samplers for generating directed hypergraphs in the
canonical ensemble with prescribed head- and tail-size
sequences. However, due to certain design choices aimed at
improving efficiency, the generated hypergraphs often
exhibited structural dissimilarities from the real-world ones
(see Sec. III C and Supplemental Material [47]).
This work proposes two microcanonical null models for

directed hypergraphs. The first model, the directed hyper-
graph degree model (DHDM), preserves the in- and out-
degree sequences of the nodes, as well as the head-size and
tail-size sequences of the hyperedges. The second model,

called the directed hypergraph JOINT model (DHJM),
preserves the joint out-in degree tensor, which encodes
information about the in- and out-degree of the nodes
involved in hyperedges of specific head and tail sizes. We
also describe two samplers, NUDHY-DEGS and NUDHY-JOINT,
to efficiently draw random hypergraphs from the corre-
sponding ensembles. Both samplers are Markov chain
Monte Carlo (MCMC) algorithms based on Metropolis-
Hastings and employ targeted shuffling operations for
traversal within the Markov graph.
We demonstrate the wide interdisciplinary applicability

of the proposed suite of null models by showcasing three
distinct use cases in sociology, epidemiology, and eco-
nomics, respectively. The first one shows the role of higher-
order structures in quantifying genuine political group
homophily by uncovering an oscillatory behavior of
increased homophily in opposition parties in the U.S.
Congress across a 40-year span. The second one focuses
on a nonlinear contagion in contact hypernetworks, dem-
onstrating that the disparities observed between simulations
in the hypernetworks and theoretical predictions can be
explained when considering higher-order joint degree
distribution, thus shedding some light on the underlying
mechanisms governing these phenomena. The third and
final one studies the economic complexity of countries in
the global trade network and shows that the main structural
economic complexity indexes [48–50] can be almost
entirely explained by local properties of the network
preserved by NUDHY. A more comprehensive evaluation
of NUDHY with respect to other existing null models and
related samplers is provided in Supplemental Material [47].

II. NULL MODELS FOR WEIGHTED
DIRECTED HYPERGRAPHS

We consider weighted directed hypergraphs of the form
H ≐ ðV; EÞ, where V ¼ fv1;…; vng is a set of nodes and
E ¼ fe1;…; emg is a multiset of directed hyperedges
where the multiplicity of each hyperedge represents its
weight. Each hyperedge e ≐ ðh; tÞ∈E consists of a head h
and a tail t such that h; t ⊆ V. The size of e is the sum of the
sizes of its head and tail jej ¼ jhj þ jtj. The in-degree of a
node v inH denoted as idegHðvÞ is the number of tails that
contain v; the out-degree of v in H denoted as odegHðvÞ is
the number of heads that contain v.
A weighted directed hypergraph H can be represented,

without loss of information, as a directed bipartite graph
G ≐ ðL;R;DÞ, where L ¼ V (left vertices), R ¼ E (right
vertices), and D is a set of triplets defined as follows:

∀ e ≐ ðh; tÞ∈E; ∀ v∈ h ⇒ ðv; e;þ1Þ∈D;

∀ e ≐ ðh; tÞ∈E; ∀ v∈ t ⇒ ðv; e;−1Þ∈D:

For clarity, we refer to nodes when talking about the
elements of the hypergraph and to vertices when talking
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about the elements of the bipartite graph. Each triplet
ðv; e; dÞ is a directed edge involving a node v and a
hyperedge e, where d denotes the direction of the edge: þ1
indicates that the edge goes from a left vertex to a right
vertex, whereas −1 indicates the opposite direction. We
denote with D⃗ the set of pairs of vertices connected by an
edge with direction d ¼ þ1, i.e., ðv;αÞ∈D⃗⇔ðv;α;þ1Þ∈D.
Similarly, we denote with D⃖ the set of pairs of vertices
connected by an edge with opposite direction d ¼ −1. For
any vertex v∈L, we denote with ΓG

�!ðvÞ the set of vertices
α∈R such that ðv; αÞ∈ D⃗, and with ΓG

 �ðvÞ the set of

vertices α∈R such that ðv; αÞ∈ D⃖. The size of ΓG
�!ðvÞ is

called the out-degree of v, while the size of ΓG
 �ðvÞ is the in-

degree of v. Similarly, we can define the in-degree
(respectively, out-degree) of a vertex α∈R as the size of
the set of vertices v∈L such that ðv; αÞ∈ D⃖ [respectively,
ðv; αÞ∈ D⃗]. Fig. 1(a) shows an example of a directed
hypergraph and the corresponding bipartite graph.
To encode the information of both the in- and out-degree

of the vertices connected by the edges in G, we define the
bipartite joint out-in-degree tensor (JOINT) TG.

Definition 1 (JOINT). Let G ≐ ðL; R;DÞ be a directed

bipartite graph, and INL ¼ maxv∈Lj ΓG
 �ðvÞj and OUTL ¼

maxv∈Lj ΓG
�!ðvÞj be the largest in- or out-degree of a vertex

in L, respectively. INR and OUTR are similarly defined for
R. The bipartite JOINT TG ofG is a five-dimensional tensor
with size INLþ1×OUTLþ1× INRþ1×OUTRþ1×2,
and whose ði; j; k; l; dÞth entry TG½i; j; k; l; d� for
i∈ ½0; INL�, j∈½0;OUTL�, k∈½0;INR�, l∈½0;OUTR�, and
d∈fþ1;−1g is the number of edges with direction d
connecting a left vertex with in-degree i and out-degree
j and a right vertex with in-degree k and out-degree l, i.e.,

TG½i; j;k; l;d�≐ jfðv;α;dÞ∈D∶j ΓG
 �ðvÞj ¼ i∧ j ΓG

�!ðvÞj ¼ j

∧ j ΓG
�!ðαÞj ¼ k∧ j ΓG

 �ðαÞj ¼ lgj:
A. Null model

Let P be a set of properties of an observed hypergraph
H̊. A null model Π ≐ ðZ; πÞ is a tuple where Z is the set of
all the hypergraphs where each P in P holds (i.e., the
ensemble of hypergraphs that preserve these properties),
and π is a probability distribution over Z.

(a) (b)

FIG. 1. Construction of directed hypergraph configuration models. (a) A directed hypergraph (top) and its representation as a bipartite
graph (bottom). The left vertices (circles) correspond to hypergraph nodes, while the right vertices (hexagons) correspond to
hyperedges. Dotted lines in the directed hypergraph separate the head and tail of each hyperedge, with arrows pointing toward the tail.
(b) The characteristics of the observed hypergraph preserved by DHDM and DHJM: left and right in- and out-degree sequences (top) and
JOINT (joint out-in-degree tensor) (bottom). The right in-degree sequence corresponds to the head-size sequence, while the right out-
degree sequence corresponds to the tail-size sequence.

HIGHER-ORDER NULL MODELS AS A LENS FOR SOCIAL … PHYS. REV. X 14, 031032 (2024)

031032-3



The first null model proposed, the DHDM and denoted
as ΠDHDM ≐ ðZDHDM; πÞ, preserves the following four
properties:

P1: head-size sequence ½jh1j;…; jhmj�;
P2: tail-size sequence ½jt1j;…; jtmj�;
P3: in-degree sequence ½idegH̊ðv1Þ;…; idegH̊ðvnÞ�;
P4: out-degree sequence ½odegH̊ðv1Þ;…; odegH̊ðvnÞ�.
Each H∈ZDHDM has the same head-size, tail-size, in-

degree, and out-degree sequences of H̊. Preserving P1 and
P2 is equivalent to preserving the sequences of the out- and
in-degrees of the vertices in R in the bipartite graph
representation G̊ of H̊, and automatically preserves the
sequence of the sizes of the hyperedges in H̊. Preserving P3
and P4 corresponds to preserving the sequences of the in-
and out-degrees of the vertices in L in G̊, and automatically
preserves the number of times each node is contained in a
tail and a head of a hyperedge in H̊. The in-degree, out-
degree, head-size, and tail-size sequences of the directed
hypergraph in Fig. 1(a) are illustrated in Fig. 1(b).
The DHDM can be regarded as a specific instance of the

annotated hypergraph configuration model [51], wherein
the input is a degenerate hypergraph. In these hypergraphs,
each node can assume multiple roles, which in our context,
manifests as a node occupying both head and tail positions
within a hyperedge.
The second null model proposed, the DHJM and denoted

as ΠDHJM ≐ ðZDHJM; πÞ, preserves the following property:
P5: JOINT TG̊.
Preserving P5 also preserves P1–P4.
In fact, for every a∈ ½0; INR�, b̄∈ ½0;OUTR�, c̄∈ ½0; INL�,

d̄∈ ½0;OUTL�, it holds

P5 preservesP1∶

jfα∈R∶idegH̊ðαÞ¼ āgj¼1=ā
XINL

i¼0

XOUTL

j¼0

XOUTR

l¼0
TG̊½i;j;ā;l;þ1�

P5 preservesP2∶

jfα∈R∶odegH̊ðαÞ¼ b̄gj¼1=b̄
XINL

i¼0

XOUTL

j¼0

XINR

k¼0
TG̊½i;j;k;b̄;−1�

P5 preservesP3∶

jfv∈L∶idegH̊ðvÞ¼ c̄gj¼1=c̄
XOUTL

j¼0

XINR

k¼0

XOUTR

l¼0
TG̊½c̄;j;k;l;−1�

P5 preservesP4∶

jfv∈L∶odegH̊ðvÞ¼ d̄gj¼1=d̄
XINL

i¼0

XINR

k¼0

XOUTR

l¼0
TG̊½i;d̄;k;l;þ1�

To facilitate the visualization of the JOINT of the
directed hypergraph in Figs. 1(a) and 1(b) illustrates a
simplified representation. For each head size k and each tail

size l, it shows a two-dimensional array of size
INL þ 1 ×OUTL þ 1, whose ði; jÞth entry indicates the
number of edges with direction −1 connecting left vertices
with in-degree i and out-degree j to right vertices with in-
degree k and out-degree l. The (0, 0) entry of each array is
in the upper-left corner. In this particular example, there is
only one head size (1) and two tail sizes (1 and 2). To aid
comprehension, we color code the edges in the bipartite
representation, matching the color of each edge to the
corresponding number in the array cell it contributes to. For
instance, there are two left vertices with in-degree 1 and
out-degree 1 (3 and 6), each of which with one ingoing
edge from a right vertex with out-degree (and thus tail size)
2. These two edges are colored in blue. Consequently, the
bottom-right cell of the lower two-dimensional array
contains the number 2, also colored in blue.

III. RESULTS

In this section, we present three distinct case studies that
employ NUDHY-DEGS and NUDHY-JOINT, showcasing their
versatility in analyzing various types of data models. While
originally designed for generating random directed hyper-
graphs, these samplers extend their applicability to pro-
ducing random undirected hypergraphs and (directed)
bipartite graphs. By conceptualizing an undirected hyper-
graph as a directed hypergraph where heads and tails
coincide, NUDHY-DEGS produces undirected hypergraphs
with prescribed node degree and hyperedge size distribu-
tions, while NUDHY-JOINT produces undirected hypergraphs
with prescribed joint node degree and hyperedge size
distributions. Moreover, by recognizing the lossless map-
ping between (directed) hypergraphs and (directed) bipar-
tite graphs, NUDHY-DEGS and NUDHY-JOINT can produce
random (directed) bipartite graphs with specified left and
right degree sequences, and joint degree matrices. The three
case studies explore different domains, each utilizing a
distinct data model. The first study delves into under-
standing group affinity within political parties through the
analysis of sponsorship and cosponsorship relations in the
U.S. Congress. We reveal nuanced patterns that evade
detection when solely examining unnormalized affinity
values. The second study focuses on validating a recently
proposed nonlinear social contagion model for undirected
hypergraphs, demonstrating how the JOINT can explain
deviations from the theoretical framework in the observed
data. Lastly, the third study investigates the impact of
certain node properties preserved by our null models,
namely, degree and joint degree distribution, on the
economic competitiveness of countries measured via met-
rics defined for bipartite country-to-product trade networks.
Here, we demonstrate that the JOINT adequately preserves
rankings according to each measure of competitiveness
considered. These case studies not only highlight the value
of NUDHY as a lens but also yield valuable insights within
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each domain, thus enriching our understanding of these
complex social systems.

A. Group affinity in collaborative hypernetworks

The concept of homophily describes an individual’s
tendency to connect with those who share similar traits.
Previous studies have consistently found this inclination
across various individual features, such as gender, age,
ethnicity [52], political views, and religious beliefs [53].
From its origins in sociology [54], it later became a
fundamental notion in network science, because of its
natural relation to the connectedness of a system. Indeed,
the focus of homophily research is to grasp how these
similarities among individuals shape their network of
interactions [55].
Homophily can be extended to higher-order relations.

Called group affinity [56], it measures the extent to which
individuals in a certain class participate in groups with a
certain number of individuals from the same class. It offers
insights into whether participation of an individual in a
group is driven by a herding behavior conditional on trait
similarity.
Here, we delve into the group affinity within the

Republican and Democratic parties, known as partisanship,
using directed hypergraphs to represent sponsor-cosponsor
relationships in Senate bills (S-BILLS) and House of
Representatives bills (H-BILLS) from the 93rd to 108th
Congresses [57]. We focus on bills and joint resolutions,
given their potential to become law upon passage. Each bill
is represented as a directed hyperedge, with the bill’s
sponsor (the legislator who introduced the bill) forming
the head, and the set of legislators supporting the bill as
cosponsors forming the tail.
In contrast to roll-call voting, where legislators must cast

a vote, bill cosponsorship data offers a nuanced view of
collaboration behavior as they reflect voluntary expressions
of interest in supporting specific bills and reveal explicit
cooperation that might not be fully captured in voting
records. Thus, cosponsorship hypernetworks provide a rich
account of legislative dynamics. Table II reports some
statistics of the hypernetworks corresponding to each
session of the Congress, for both the House and the Senate.
Formally, we study group affinity in a hypergraph H ≐
ðV; EÞ whose nodes are partitioned in a set of classes
X1;…; Xc. We separately consider hyperedges of the same
size; i.e., we examine each subhypergraph Hk ≐ ðV; Ek ≐
fðh; tÞ∈E ∧ jhj þ jtj ¼ kgÞ of H for each size k, sepa-
rately. Taking inspiration from Veldt et al. [56], who
examined how class labels affect group interactions of a
fixed size k, we define a notion of the group affinity for
directed hypergraphs.
For class Xi, the ðα; β; kÞ affinity represents the extent to

which a node of class Xi belongs to the tail of a hyperedge
of size k where α of the β nodes in the head are from
class Xi:

Aα;β;kðXiÞ ¼
P

v∈Xi
idegHkðv; α; β; XiÞP

v∈Xi
idegHkðv; βÞ ; ð1Þ

where idegHkðv;α;β;XiÞ¼jfðh;tÞ∈Ek∶ jfu∈h∧u∈Xigj¼
α∧ jhj¼β∧v∈tgj, and idegHkðv; βÞ ¼ jfðh; tÞ∈Ek∶
jhj ¼ β ∧ v∈ tgj.
To determine whether the affinity score for a certain

class Xi is significantly high or low, we compare it against
(i) the average score Āα;β;kðXiÞ measured in a collection of
random hypergraphs sampled by NUDHY-DEGS and NUDHY-

JOINTand (ii) a baseline score adapted fromVeldt et al. [56].
Veldt et al. proposed a null probability of interactions
among k nodes, with t nodes belonging to Xi. This is
defined as the probability that a class-Xi node joins a group
where t members are from class Xi, given that k − 1 other
nodes are selected uniformly at random.
Similarly, our baseline ðα; β; kÞ-affinity score for class Xi

represents a null probability of k interactions with head
size β:

Bα;β;kðXiÞ ¼

½1�� jXij
α

� ½2��
n − jXij
β − α

� ½3��
n − 1

k − β − 1

�
�
n

β

�
½4�

�
n − 1

k − β − 1

�
½5�

ð2Þ

¼
�
jXij
α

��
n−jXij
β−α

�
�
n
β

� ; ð3Þ

where n is the total number of nodes in H, [1] and
[2] represent the number of ways to choose a head of size
β with α elements of class Xi, and the remaining elements
from class different from Xi, [3] represents the number of
ways to choose a tail of size k − β, under the assumption that
the samenode can appear both in thehead and in the tail of the
hyperedge, having already selected one node of the tail, and
[4] and [5] represent the number of ways to form a k-size
hyperedge with head size β, under the assumption that the
same node can appear both in the head and in the tail of the
hyperedge, having already selected one node of the tail.
The specific case where the head of each hyperedge has

size 1 is of particular practical interest for studying the
cosponsoring of Congress bills, which are sponsored by a
single member of Congress and supported by any number
of cosponsors. Then, Eq. (1) reduces to

AkðXiÞ ¼
P

v∈Xi
idegHkðv; XiÞP

v∈Xi
idegHkðvÞ ; ð4Þ

where idegHkðv; XiÞ ¼ jfð½u�; tÞ∈Ek∶ u∈Xi ∧ v∈ tgj.
Eq. (4) can be seen as the probability that a node of class
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Xi joins the tail of a hyperedge of size k, knowing that the
head is of class Xi. As α ¼ β ¼ 1, the baseline expressed
by Eq. (2) reduces to

BkðXiÞ ¼
jXij
n

: ð5Þ

In the case of directed hypergraphs with head sequence
½1;…; 1�, we also measure the homophily HO of class Xi
as [58]

HOðXiÞ ¼ mðXiÞ=m̄ðXiÞ; ð6Þ

wheremðXiÞ ¼ 1=jtjPe≐ð½u�;tÞ∈E
u∈Xi

jfv∈ t∶v∈Xigj is measured

in the observed hypergraph, and m̄ is the average across the
samples generated by NUDHY.
Fig. 2 illustrates the mean affinity ratios for democrats

and republicans in each Congress, for S-BILLS and H-BILLS.
The mean affinity ratios for NUDHY-DEGS and NUDHY-JOINT

are computed by averaging the terms AkðXiÞ=ĀkðXiÞ over
all hyperedge sizes k ¼ 2;…; 14. The mean affinity ratios
for Veldt et al. are obtained by averaging the terms
AkðXiÞ=BkðXiÞ over k ¼ 2;…; 14. For each Congress,
the background color indicates which party held the
majority (shades of red for republicans and shades of blue
for democrats). The intensity of color corresponds to the

size of the majority, with darker shades indicating a larger
margin.
These plots show that we can draw similar conclusions

when comparing the affinity values against the null models
obtained by NUDHY-DEGS and NUDHY-JOINT, whereas the
baseline scores offer divergent insights. The panels corre-
sponding to NUDHY-DEGS and NUDHY-JOINT reveal a clear
trend [Figs. 2(a)–2(c)]: When one party holds the majority
of the seats (indicated by the corresponding color in the
background), the opposing party exhibits higher group
affinity. This pattern indicates a more unified front, likely in
pursuit of collecting the required minimum support to pass
their bills.
In instances where republicans held the majority, dem-

ocrats consistently maintained a group affinity 40% to 60%
higher than expected, with the exception of the 104th
Congress, coinciding with the first occurrence of a
republican majority in both chambers since 1953 and a
government shutdown in the U.S. Conversely, during
democratic majority periods, republicans exhibited notably
higher group affinity, particularly leading up to the 104th
session, and especially in the House. Data show a lower
number of bills sponsored by republicans and a tendency to
cosponsor fewer bills. However, when they decide to
cosponsor a bill, it is more likely to be a bill presented
by a republican. This pattern is consistent with past

(a)

(b)

(c)

(d)

FIG. 2. Mean affinity ratios in the U.S. Congress cosponsored bills. We show results for Eq. (4) divided by the mean values in 33
samples for NUDHY-DEGS and NUDHY-JOINT for the U.S. Senate (S-BILLS) (a) and House (H-BILLS) (c). For comparison, we show the
values of Eq. (4) divided by Eq. (5) for Veldt et al. again for the U.S. Senate (b) and House (d). The colors indicate democrats (blue) and
republicans (red). We report the average ratios over k ¼ 2;…; 14.
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observations that “republicans have consistently valued
doctrinal purity over pragmatic deal-making” [59].
In contrast, the baseline yields generally lower affinity

values and tends to attribute higher group affinity to the
Republican party, irrespective of the time period. An
exception is evident in the 107th Congress starting in
2001, where the mean affinity ratio for republicans only
slightly surpasses 1, whereas the ratio for democrats is
roughly 1.45. During this session of the Congress, there is a
discernible disparity in cosponsorship tendencies between
republicans and democrats. On average, a republican
member tended to cosponsor fewer bills, averaging around
119, while their democratic counterparts engaged in a
higher rate of cosponsorship, averaging around 195 bills.
The baseline score, which fails to consider each party’s
relative prevalence and each legislator’s individual cospon-
soring opportunities, inadequately acknowledges the sig-
nificance of republican cosponsoring behaviors for bills
sponsored by republicans versus those sponsored by
democrats. Our null models, instead, maintain these char-
acteristics of the data intact, while randomizing the rest.
In addition, we also found a clear shift in cosponsoring

behavior within the House around the 104th and 105th
Congresses (1995 and 1997). During this period, democrats
began to consistently cosponsor a greater number of bills
sponsored by democrats compared to republicans (see
Table II), possibly hoping to increase the likelihood of
the bills being passed. NUDHY effectively models this shift,
as reflected in the corresponding mean affinity ratios.
Party homophily has been studied also by Neal

et al. [60]. They represent bill cosponsorship data as a
unipartite weighted graph, where legislators serve as
nodes, and edge weights indicate the number of bills
cosponsored by pairs of legislators. To ascertain sta-
tistically significant connections, they employ a stochastic
degree sequence model. Despite using a data model that
overlooks higher-order relations between legislators and
using a simplified analytical framework (a thresholded
weighted graph) [61], they find results akin to our analysis.
Specifically, both studies find evidence for differential
homophily: The strength of republicans’ preference for
collaborating with other republicans differs from the
strength of democrats’ preference for collaborating with
other democrats.
Different from Neal et al., our work remains faithful to

the original data. Moreover, the use of randomized net-
works drawn from ensembles that retain some of the
properties of the observed network is more suitable for
identifying statistically significant connections [62].
Finally, the results concerning Eq. (6) are presented in

Supplemental Material [47]. We observe that both parties
exhibit an inclination toward associating with similar party
members in cosponsorship relations, and that the inverse
relationship between the curves of republicans and dem-
ocrats remains discernible, a pattern that remains unnoticed

when solely examining the values of m measured in the
observed hypergraphs.

B. Contagion processes in contact hypernetworks

The spread of information or diseases often transcends
pairwise interactions and necessitates models that consider
the collective influence of groups of individuals. For
example, in the context of a social and behavioral con-
tagion, multiple studies have shown that exposure to
multiple sources can be required [63,64]. Models of such
complex contagion processes aim to capture group
influences in social phenomena, such as norm adoption,
rumor spread, and disease transmission. These models
embrace nonlinear connections between infection rates
and sources of infection, which allows for mechanisms
such as social reinforcement where multiple (or group)
exposures have a larger collective impact than their sum.
More recently, multiple studies have proposed higher-

order contagion models describing not only repeated
interactions but rather genuine group interactions among
agents. In these models, the substrates over which the
process evolves are simplicial complexes [65], undirected
hypergraphs [66,67], and directed hypergraphs featuring
single-node tails [68]. In particular, undirected hypergraphs
and simplicial complexes have proven more effective in
modeling higher-order interactions between individuals.
Conversely, single-tailed directed hypergraphs better model
group influences on individuals. The dynamic evolution of
such contagion models is typically studied numerically on
real-world hypernetworks and compared to results obtained
(both numerically and analytically) for the same dynamics
on randomhypernetworks [65,66,69]. To date, however, it is
not clear what the minimal constraints are on such random
hypernetworks required to reproduce the dynamical out-
comes observed on the real-world hypergraphs. Here, using
NUDHY, we highlight the role of structural correlations in
shaping the dynamical outcomes of contagion processes. In
particular, we show that stronger constraints (as imple-
mented by NUDHY-JOINT) are required to faithfully repro-
duce results of superlinear contagion dynamics,while looser
constraints on the degrees and tail and head sizes (NUDHY-
DEGS) are sufficient when the dynamics is pairwise (linear).
We consider a hypergraph susceptible-infectious-suscep-

tible contagion model [67] wherein the infection rate is a
superlinear function of the number of infected nodes in the
hyperedges. Let e be a hyperedge and ie be the number of
infected nodes in e. Then, each of the susceptible nodes in e
gets infected at rate βðieÞ ¼ λiνe, where ν is a parameter to
regulate the nonlinearity of the contagion process. The
model assumes that infections from different hyperedges
are independent processes, and thus defines the total
transition rate to the infected state of a node v as the sum
of the infection rates of all the hyperedgesEðvÞ containingv,
i.e.,

P
e∈EðvÞ βðieÞ. Let μ denote the recovery rate (we set

μ ¼ 1 in all the experiments). Nodes undergo multiple
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transitions between susceptible and infected states.
The contagion process is simulated using a Gillespie
algorithm [70]. Starting with an initial density ρ0 of infected
nodes, the process unfolds via the two types of events
(infection and recovery) occurringwith probabilities propor-
tional to their respective rates. Once a hyperedge is selected
for an infection event, a susceptible node in the hyperedge is
chosen uniformly at random to transition to the infected
state. To obtain the density of infected nodes in the stationary
state, we let the system evolve over a burn-in period
τb ¼ 10 000. Then, we sample s ¼ 10 000 states separated
by a decorrelation period τd ¼ 1. Finally, we measure the
mean and standard deviation of the density of infected nodes
in these samples.
We compare the results of the simulations in the

observed hypergraphs and the samples generated by
NUDHY with the output of group-based approximate master
equations (AMEs) that consider the ensemble of hyper-
graphs with the same distribution of hyperedge sizes and
node degrees [67]. We investigate two scenarios. The first
scenario involves undirected hypergraphs depicting face-
to-face interactions among children in a primary school in
Lyon, France [71] (LYON) and among students in a high
school in Lycée Thiers, France [72] (HIGH). These hyper-
graphs are characterized by nearly homogeneous hyper-
edge size distributions (between 60% and 70% of the
hyperedges have size 2, and between 15% and 20% of the

hyperedges have size 3) and bell-shaped node degree
distributions centered at 11.79 and 55.63, respectively.
The second scenario involves email exchanges between
members of a European research institution (EMAIL-EU) and
between Enron employees (EMAIL-ENRON) [73]. These
hypergraphs are characterized by heterogeneous hyperedge
size distributions with mean hyperedge sizes 3 and 3.42,
respectively, and max hyperedge sizes 18 and 25, respec-
tively. The node degree distributions follow a heavy-tailed
distribution. The main characteristics of the four hyper-
graphs are reported in Table III.
Fig. 3 displays the average fraction ρ� of infected nodes

in the stationary state of contagion dynamics on the
observed hypergraphs and on 33 samples generated by
NUDHY-DEGS and NUDHY-JOINT, using ρ0 ¼ 0.01, and
varying infection rate λ and parameter ν. The phase diagram
reports also the output of the AMEs. The infection rate is
rescaled with the invasion threshold λc, which is the
minimum λ above which the healthy state (ρ� ¼ 0) is
unstable. We consider both linear (ν ¼ 1) and superlinear
(ν > 1) contagions. In the case of linear contagions, we
observe two solutions for the stationary fraction of infected
nodes: ρ�1 ¼ 0 (absorbing state) and ρ�2 > 0 (endemic state).
For the case of superlinear contagions, we choose a value of
ν greater than the bistability threshold νc reported in
Table III. The bistability threshold is the smallest nonlinear
exponent allowing for a discontinuous phase transition.

(a) (b) (c) (d)

FIG. 3. Density of infected nodes in contact networks. We show the values of ρ� in the stationary state of contagion dynamics on the
observed hypergraph, and on 33 samples generated by NUDHY-DEGS and NUDHY-JOINT, varying infection rate λ and nonlinearity
parameter ν, for LYON, HIGH, EMAIL-EU, and EMAIL-ENRON. We report also the output of the AMEs as defined in Ref. [67]. The infection
rate is rescaled with the invasion threshold λc. Errors bars correspond to 1 standard deviation.
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In this case, we observe three solutions: ρ�1 ¼ 0 and ρ�3 > 0,
which are locally stable, and 0 < ρ�2 < ρ�3, which is
unstable (dashed lines). To obtain the lower branches in
Figs. 3(c) and 3(d), we run the ordinary simulation method
described above. On the other hand, the upper branches in
Figs. 3(c) and 3(d) and the branches in Figs. 3(a) and 3(b)
are obtained with a quasi-stationary-state method [74]: We
keep a history of 50 past states from which a random state is
used to replace the current state each time the absorbing
state is reached.
Especially in the smaller datasets and for linear contagion

processes, the results for NUDHY-DEGS align well with the
output of the analytical framework. This is expected given
that NUDHY-DEGS samples uniformly from the ensemble of
hypergraphs with the same head- and tail-size sequences and
the same in- and out-degree sequences, which are equivalent
to the hyperedge size sequence and the node degree sequence
when the input is an undirected hypergraph. The disparities
observed in the superlinear processes may potentially be
attributed to a too-small value assigned to τb.
In contrast, the structural correlations present in the

observed data lead to reductions in the stationary prevalence
compared to the output of the AMEs. These deviations
display greater magnitude in the outputs of the superlinear
contagions and in the presence of unstable regions, thus
suggesting a higher influence of structural correlations
within this type of contagion process. Previous works [69]
have shown that the correlations are especially important in
the presence of nodes with large degrees. In line with these
works, we observe smaller discrepancies in LYON, where
node degrees are more homogeneous. Conversely, the
discrepancies in the lower branches in Figs. 3(a) and 3(b)
are due to the simulations being affected by finite-size
effects, while AMEs assume an infinite-size system, and
they become higher for the superlinear processes.
By looking at the curves for NUDHY-JOINT in EMAIL-EU and

HIGH, we observe that part of the deviation in the superlinear
simulations can be explained by the joint degree distribution.
In conclusion, our analysis highlights important insights

into which structure should be preserved to improve fidelity
for which type of dynamical process. By comparing the
results of NUDHY-JOINTwith the original dynamics in the case
of superlinear contagions, we observe that these dynamics
can be better approximated by preserving the joint degree
distributions. This is evident because the results by NUDHY-

JOINT provide a better fit to the original data than those by
NUDHY-DEGS. However, in the case of linear contagions, the
dynamics are better represented by NUDHY-DEGS than by
NUDHY-JOINT, even though NUDHY-DEGS preserves less
structural information from the original hypernetwork.
This demonstrates that it is not always the case that
preserving more structural features leads to better fidelity.
These findings underscore the importance of carefully

selecting which structural features to preserve based on the
specific dynamics being studied. In particular, they

highlight the role of higher-order structural correlations
in nonlinear contagion models, and thus the importance of
preserving the joint degree tensor when strongly nonlinear
processes or strong degree correlations are present (e.g.,
EMAIL-EU and HIGH).

C. Economic competitiveness in trade hypernetworks

Economic complexity metrics are indicators that aim to
capture the diversity and sophistication of a country’s
economy through its exported product basket. The diversity
and composition of a country’s exported product basket,
alongwith the complexity of the products therein, are the key
properties exploited by these metrics to asses the competi-
tiveness of countries. In this analysis, we gauge the relative
economic competitiveness of countries via three of these
metrics: the economic complexity index (ECI) [48], the
Fitness [49,75,76], and the generalized economic complexity
index (GENEPY) [50]. We apply NUDHY alongside three
additional null models purposefully designed for directed
hypergraphs, with the aim to investigate which character-
istics of the observed data are sufficient to replicate the
ranking of countries based on these metrics.
Each of the three metrics is defined on an unweighted

bipartite graph that represents the export relationships
between countries and products: the bipartite country-
product network. The nodes of one set represent countries,
and the nodes of the other set represent products.
Unweighted and undirected edges connect countries with
their exported products. Following previous literature in
this field, we consider a country to be an exporter of a
product if its revealed comparative advantage (RCA) [77] is
greater than or equal to a minimum threshold R�. RCA
measures the relative monetary importance of a product for
a country among the export basket of the country compared
to the global average. We follow the standard economics
literature and set R� ¼ 1.0 [76]. An RCAvalue greater than
R� implies that the given country is advanced enough to
compete in the global market for that product. In addition,
following the Atlas of Economic Complexity [78], we
consider only countries with a population above 1 million
and an average trade above USD 1 billion.
LetM be the biadjacency matrix of the bipartite country-

product network defined according to these criteria, and let
W be a transformation matrix defined as W½c; p� ¼
M½c; p�=kchp, where kc is the degree of the left vertex c
(representing a country), and hp ¼

P
c M½c; p�=kc. The

country-to-country proximity matrix between countries is
then defined as follows:

X½c; c�� ¼
(P

p
W½c; p�W½c�; p� if c ≠ c�;

0 if c ¼ c�:

The symmetric matrix X quantifies the similarities in the
export baskets of countries. Let us now recall the three
metrics under study.
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The ECI measures a country’s complexity as the average
complexity of the products it exports, and the complexity of
a product as the average complexity of the countries that
export it. Thus, countries with a high ECI boast diversified
export portfolios, featuring unique and sophisticated prod-
ucts, while those with a lower ECI export a more limited
selection of common goods. In terms of the biadjacency
matrix M, the ECI of a country and the product complexity
index (PCI) of a product are defined by the following
coupled equations:

ECIðcÞ ¼ 1P
pM½c; p�

X
p

M½c; p�PCIðpÞ; ð7Þ

PCIðpÞ ¼ 1P
cM½c; p�

X
c

M½c; p�ECIðpÞ: ð8Þ

The ECI index also possesses an alternative equivalent
definition in terms of the eigenvector corresponding to the
second largest eigenvalue of the country-to-country prox-
imity matrix X [79].
The Fitness FðcÞ of a country c and the Quality QðpÞ of

a product p are defined according to the following coupled
equations [49]:

F̃ðcÞðnÞ ¼
X
p

M½c; p�QðpÞðn−1Þ;

Q̃ðpÞðnÞ ¼ 1P
cM½c; p� 1

FðcÞðn−1Þ
; ð9Þ

FðcÞðnÞ ¼ F̃ðcÞðnÞ
hF̃ðcÞðnÞic

;

QðpÞðnÞ ¼ Q̃ðpÞðnÞ
hQ̃ðpÞðnÞip

; ð10Þ

where h·ix denotes the arithmetic mean over the distribution
of values for x. The main difference introduced by the
Fitness and Quality scores lies in a nonlinear weighting of
the fitness of the countries when computing the quality of a
product rather than using a simple average. Fitness and
Quality can be computed by solving Eq. (9) with an
iterative algorithm, initializing FðcÞð0Þ ¼ 1 for each country
c, and QðpÞð0Þ ¼ 1 for each product p. The iterative
algorithm converges to a single fixed point independent
from the initial conditions [49,76,80].
Finally, the GENEPY index is a combination of the

eigenvectors of the country-to-country proximity matrix X.
More precisely, the GENEPY index of a country c is
defined as

GðcÞ ¼
�X2

i¼1
λc;ie2c;i

�2

þ 2
X2
i¼1

λ2c;ie
2
c;i; ð11Þ

where λc;i is the ith largest eigenvalue of the proximity
matrix X, and ec;i is the corresponding eigenvector.
As a preliminary observation, note that the bipartite

country-product network inherently represents a higher-
order structure [32], as any hypergraph can be represented
as a bipartite graph without loss of information. Therefore,
computing metrics on the bipartite country-product net-
work corresponds to conducting higher-order analyses.
We perform a comparative analysis of country rankings

based on ECI, Fitness, and GENEPY computed from the
observed data and from 33 samples generated by NUDHY.
We consider international trade data for four years: 1995
(first year available), 2009 (global financial crisis), 2019
(COVID-19 outbreak), and 2020 (economic recession) [81].
We consider a directed higher-order data representation
where nodes represent countries and hyperedges represent
products traded by them. Coherent with the construction of
the bipartite country-product network, the head of each
hyperedge includes countries that export the product with a
revealed comparative advantage [77] greater than 1; the tail
of each hyperedge includes countries that import the
product with an RCA greater than 1, and we consider
only countries with a population above 1 million and an
average trade above USD 1 billion. Table IV reports the
characteristics of the resulting hypergraphs. This directed
hypergraph encoding perfectly represents the trade data and
offers opportunities for studying the system more thor-
oughly. For instance, while the country-product network
looks only at the export side of the trades, the directed
hypergraph also represents imports. Higher-order repre-
sentations thus offer a richer and more detailed description
of the system on which more powerful metrics can be
defined (although this specific task is outside the scope of
the current work).
An analysis similar to ours was presented in a previous

study [82] by employing the Fitness score and the BiCM
null model [32] for the bipartite country-product network.
This null model maintains both the left and right degree
sequences but only in expectation (canonical ensemble).
The study revealed that, in general, for each country, the
distribution of its ranks obtained from the samples has a
mean value close to the observed rank and a wide standard
deviation. We find a similar, albeit much stronger, result for
NUDHY. In the following, we discuss the main findings in
HS2019. The results for the other trade networks are
qualitatively similar and are reported in Supplemental
Material [47].

1. ECI

For NUDHY-DEGS, both the Spearman and Kendall’s tau
average correlation values of the rankings of countries are
remarkably close to zero, and the standard deviation values
for both coefficients are small (Table I). This result
indicates independence between the observed ranking
and the rankings provided by the samples. Fig. 4(a) (upper
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left) shows this pattern: The distributions of the ranks of
each country across the samples tend to cluster around
midranking positions and exhibit a wide spread, with
greater variance at the lower end of the observed ranking.
In other words, preserving the degrees via NUDHY-DEGS

does not preserve the ECI.
In contrast, for NUDHY-JOINT both average correlation

coefficients (Spearman and Kendall’s tau) of the rankings
of countries are significantly high (≥0.84), and the standard
deviation values for both coefficients are negligible
(Table I). This observation suggests a dependence between
the observed ranking and the rankings provided by the
samples, as illustrated by the bottom left plot of Fig. 4(a).

The distributions of the ranks of each country across the
samples are aligned with the observed rank of a country and
present a narrow spread.
According to these results, preserving the JOINT is

sufficient to preserve the ranking of countries based on their
ECI score, while the degree sequence is insufficient.

2. Fitness and GENEPY

These two measures behave quite similarly in our
analysis. For NUDHY-DEGS, the average correlation coef-
ficients (Spearman and Kendall’s tau) of the rankings of
countries are significantly high for both Fitness (≥0.88) and

(a)

FIG. 4. Relative competitiveness in HS2019. (a) Ranking distributions based on ECI, Fitness, and GENEPY across 33 samples for
NUDHY-DEGS (top) and NUDHY-JOINT (bottom) compared to the observed rankings, with annotated top-four diverging ranks. (b) Density
plots of the KDE of the observed biadjacency matrix M and of the aggregated matrices across 33 samples of NUDHY-DEGS and NUDHY-
JOINT. Countries are sorted by ECI and Fitness and products by PCI and Quality (descending). The lighter the color, the higher the
density of edges.
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GENEPY (≥0.8), and the standard deviation values for
both coefficients are negligible (Table I). This result
indicates a dependence between the observed rankings
and the rankings provided by the samples. The middle and
right plots of Fig. 4(a) show that the distributions of the
ranks of each country across the samples tend to be close to
the observed rank of a country with a narrow spread.
For NUDHY-JOINT, the average correlation coefficients

(Spearman and Kendall’s tau) of the rankings of countries
are even higher (≥0.96 for Fitness and ≥0.93 for
GENEPY), and the standard deviation values for both
coefficients are extremely small (Table I). There is a strong
dependence between the observed ranking and the rankings
provided by the samples, as shown by the bottom middle
and right plots of Fig. 4(a). The distributions of the country
rank across the samples are aligned with the observed rank
of a country, with a very limited spread.
According to these results, both the degree and joint

degree sequence are sufficient to retain the ranking of
countries based on their Fitness and GENEPY scores.
Figure 4(b) displays density plots representing kernel

density estimations (KDEs) of the biadjacency matrices for
the country-product network of 2019. These matrices are
derived from the observed data (first column) and from the
aggregation of 33 samples generated by NUDHY-DEGS and
NUDHY-JOINT (second and third columns). Countries
and products are arranged in descending order of ECI
and Fitness and PCI and Quality, respectively. The color
intensity within each plot indicates the density of edges,
with lighter colors indicating higher density.
As expected, countries with a high Fitness and ECI

predominantly export products with high Quality and PCI,
while those with lower Fitness and ECI focus solely on
products with lower Quality and PCI. A comparison with
the corresponding plots for NUDHY-DEGS [middle columns
of Fig. 4(b)] indicates that the specialization process of
countries cannot be fully explained by node degrees alone,
as evidenced by the inability of NUDHY-DEGS to accurately
capture the pattern observed in the real data. Conversely,
plots derived from samples of NUDHY-JOINT reveal remark-
ably similar edge density distributions to those observed,
regardless of the metrics used to sort rows and columns
[first and third columns of Fig. 4(b)].

Overall, we find that preserving local properties of the
hypergraph, either the degree sequences and hyperedge
sizes in the case of NUDHY-DEGS or their joint tensor for
NUDHY-JOINT, is sufficient to explain the rankings induced
by most economic complexity measures. As a conse-
quence, it is likely that these measures primarily capture
local network structure and do not fully leverage meso- and
global-scale information. Our suite of null models NUDHY

can help explore the power of these structural metrics and
possibly develop more comprehensive ones that can lever-
age the natural higher-order representation of the under-
lying trade data.

3. Other null models

In this experiment, we also compare our null models with
three null models for directed hypergraphs named BASE,
BASED, andNULL. BASE and BASED are two different versions
of REDI [46]: the first realistic generative model specifically
designed for directed hypergraphs. REDI extends the prefer-
ential attachment model [37] to directed hypergraphs,
allowing the generation of random hypergraphs exhibiting
reciprocal patterns akin to those observed in real directed
hypergraphs. The random hypergraphs generated by this
model preserve, on average, the distribution of head and tail
sizes. The version of REDI dubbed BASE preserves, on
average, the distribution of the number of hyperedges in
which each group of nodes appears, while the version
dubbed BASED preserves node degrees on average. NULL

is a naive sampler that preserves the head- and tail-size
distributions but populates the hyperedges of the random
hypergraph by drawing nodes uniformly at random from the
set of nodes of the observed hypergraph. We note that these
generators do not account for situations where a node is
related to itself and requires three input parameters: the
number of nodes, a proportion β1 of reciprocal hyperedges,
and the extent β2 of reciprocity between a hyperedge and its
reciprocal counterpart. However, precise tuning of β1 and β2
to ensure that the reciprocity of the random samples aligns
with that of the observed hypergraph is challenging due to
the computational complexity of calculating reciprocity
[Oð2jEjÞ]. To circumvent this limitation, we set β1¼β2¼0
as recommended by the authors.

TABLE I. Average Spearman’s correlation and Kendall’s tau of the rankings of the countries based on the ECI, Fitness, and GENEPY
in 33 samples and the observed rankings, for HS2019. Standard deviations are reported in parentheses.

Score Metric BASE BASED NULL NUDHY-DEGS NUDHY-JOINT

ECI Spearman −0.144 (0.143) −0.055 (0.120) 0.007 (0.093) 0.020 (0.121) 0.964 (0.001)
Kendall tau −0.092 (0.092) −0.037 (0.079) 0.005 (0.062) 0.015 (0.082) 0.848 (0.004)

Fitness Spearman 0.051 (0.075) 0.237 (0.055) −0.013 (0.075) 0.981 (0.001) 0.998 (0.000)
Kendall tau 0.034 (0.051) 0.160 (0.038) −0.010 (0.052) 0.886 (0.003) 0.963 (0.001)

GENEPY Spearman 0.015 (0.078) 0.230 (0.054) −0.002 (0.097) 0.941 (0.004) 0.993 (0.000)
Kendall tau 0.010 (0.054) 0.156 (0.040) −0.001 (0.040) 0.801 (0.007) 0.937 (0.002)
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NUDHY offers several key advantages over REDI. First, it
preserves the degree and joint degree distributions exactly.
Second, it can generate directed hypergraphs of any size,
accommodating real-world scenarios where relations
among large groups of nodes are common. Third, it allows
nodes to belong to both the head and the tail of the same
hyperedge, a flexibility that is crucial for accurately
modeling certain types of hypergraphs, such as citation
networks. Lastly, it is at least 1 order of magnitude faster
than REDI, and thus significantly more efficient for large-
scale hypergraph generation. More details on the limita-
tions of REDI can be found in Supplemental Material [47].
According to the results reported in Table I, none among

BASE, BASED, and NULL can explain the ranking of
countries based on these three indexes.

IV. DISCUSSION

In this study, we introduced a suite of null models for
directed hypergraphs encompassing hypergraphs with the
same in-degree, out-degree, head-size, and tail-size distri-
butions, as well as the same JOINT of an observed
hypergraph. We demonstrated a lossless mapping from
directed hypergraphs to directed bipartite graphs and
proposed two MCMC samplers that efficiently sample
from the corresponding microcanonical graph ensembles.
Our approach fills a critical gap in the existing literature,

which primarily focuses on canonical and microcanonical
bipartite graph ensembles [22,26,30–35] and undirected
hypergraph ensembles [36–42,44,45].
We conducted rigorous experiments and evaluations,

highlighting the limitations of recent generative models,
such as the one proposed by Kim et al. [46], specifically
designed for directed hypergraphs. The random hyper-
graphs generated by this (canonical) model preserve, on
average, the distribution of head and tail sizes. However,
our findings revealed structural dissimilarities between
generated hypergraphs and observed ones due to design
choices aimed at improving sampler efficiency.
We then showed the importance of preserving stronger

structural correlations (and hence, the significance of the
proposed null models) in three appropriate case studies
spanning various domains. First, we explored group affinity
within political parties in the U.S. Congress, revealing an
inverse relationship between the affinity curves of repub-
licans and democrats: When one party holds the majority of
seats, the opposing party exhibits higher group affinity.
This pattern becomes apparent only when the JOINT
structural correlations are preserved.
Second, we simulated linear and nonlinear contagion

processes in real and randomized hypernetworks, demon-
strating the explanatory power of the JOINT in elucidating
observed discrepancies between analytical contagion
frameworks and simulations in real data. These results
also suggest that our models could be used for more
realistic data augmentation.

Third, we compared the rankings of countries based on
three economic complexity indices (ECI, Fitness, and
GENEPY) computed in trade hypernetworks and their
randomized counterparts, highlighting the nuanced infor-
mation encoded in the degree sequences and the JOINT.
Our analysis revealed that both our null models accurately
replicate the relative economic competitiveness of countries
as measured by Fitness and GENEPY. However, for ECI,
only the more restrictive null model NUDHY-JOINT suc-
ceeded in preserving the rankings. These results demon-
strate that retaining the local topological properties
independently is insufficient to preserve the ranking of
the countries based on their ECI score. However, in all three
cases, the local properties preserved by NUDHY-JOINT are
sufficient to reproduce and explain the rankings, thus
indicating that the metrics ignore mesoscale and global
properties of the network.
Our findings emphasize the versatility and effectiveness of

our proposed null models and samplers in uncovering
intricate patterns across diverse disciplines. These tools
represent a powerful lens through which to examine
higher-order complex systems. They fill a significant gap
in the analysis of higher-order networks, thus providing
researchers in fields such as neuroscience, ecology, sociol-
ogy, and economics with effective means for analysis and
interpretation. Moreover, thanks to the efficiency of our
samplers, our work empowers researchers to glean deeper
insights also frommore complex and larger datasets. Finally,
from a theoretical perspective, our results provide direct
motivation for extending analytical descriptions of hyper-
networks—and of the processes taking place on them—to
include more nuanced structural correlation patterns.

V. SAMPLING ALGORITHMS

This section describes two efficient sampling algorithms,
NUDHY-DEGS and NUDHY-JOINT, designed for sampling
from ZDHDM and ZDHJM, respectively. Both algorithms
leverage the Metropolis-Hastings algorithm as part of the
Markov chain Monte Carlo approach and employ targeted
edge swap operations to traverse the Markov graph.
NUDHY-DEGS uses parity swap operations (Lemma 1), while
NUDHY-JOINT uses restricted parity swap operations
(Lemma 2). The sampling procedures for both algorithms
are illustrated through pseudocode and detailed in
Supplemental Material [47], together with an experimental
study of their mixing time. The code is publicly available
on GitHub [83].

A. NUDHY-DEGS: An efficient sampler for DHDM

We present a Markov chain Monte Carlo algorithm
dubbed NUDHY-DEGS that uses Metropolis-Hastings to sam-
ple fromZDHDM according to π.We first define an edge swap
operation that transforms a bipartite graph into another
bipartite graph while preserving the degree sequences and
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then describe the state space that this operation induces and
over which the Markov chain is constructed.
Lemma 1 (parity swap operation). Let G ≐ ðL;R;DÞ

be a directed bipartite graph and u ≠ v∈L, α ≠ β∈R
such that ∃ d∈ fþ1;−1g for which e1 ≐ ðu; α; dÞ, e2 ≐
ðv; β; dÞ∈D and e3 ≐ ðu; β; dÞ, e4 ≐ ðv; α; dÞ ∉ D.
Swapping e1, e2 with e3, e4 generates a directed bipartite
graph G0 ¼ ½L;R; ðDnfe1; e2gÞ ∪ fe3; e4g� with the same
left and right, in- and out-degree sequences asG. This swap
operation denoted as e1; e2⟶

PSO e3; e4 is called a parity swap
operation (PSO).
For directed unipartite graphs, this operation is known as

a checkerboard swap [84]. An example of a PSO is shown
in Fig. 5(a) (left).
The state space GDHJM is a directed weighted graph. Each

vertex represents a bipartite directed graph with the same
left and right, in- and out-degree sequences as G̊. Each edge
connects two graphs that can be transformed into each other
via a PSO. For any pair of graphs, there is at most one PSO
that connects them; hence, there are no parallel edges
between vertices. Moreover, we add self-loops from each
vertex to itself. All the graphs G0 that can be obtained by
applying a PSO to G are called the neighbors of G in
GDHDM. We associate a weight ξGðG0Þ to each edge ðG;G0Þ

that represents the probability of transitioning to G0 starting
from G.
A fundamental theorem of Markov chains states that an

irreducible, aperiodic, finite Markov chain has a unique
stationary distribution [85]. Therefore, the Markov chain
converges to π independent of the starting state. Furthermore,
we know that if the transition probability matrix is doubly
stochastic, the Markov chain converges to the uniform
distribution over its state space. In fact, πG ¼ ð1=nÞ is
stationary for all G because ½πξG�G ¼

P
G0 πG0ξGðG0Þ ¼P

G0 ð1=nÞξGðG0Þ ¼ ð1=nÞ
P

G0 ξGðG0Þ ¼ ð1=nÞ ¼ πG. As
a result, samples from the chain can be considered as uniform
samples from the state space. In our case, aperiodicity is
guaranteed by the presence of self-loops over the vertices,
while the double stochasticity of the transition matrix can be
inferred from observing that (i) each PSO is reversible (i.e., if
e1; e2 ⟶PSO e3; e4 transformsG intoG0, then e3; e4 ⟶PSO e1; e2
transforms G0 into G) and that (ii) the probability of going
fromG toG0 is equal to the probability of going fromG0 toG,
i.e., ξGðG0Þ ¼ ξG0 ðGÞ. The definition of ξG and the proof that
the transition matrix fξGðG0Þg is doubly stochastic can be
found in SupplementalMaterial [47], together with the proof
of irreducibility. From these results, we obtain that the
stationary distribution is the uniform distribution.

(a)

(b)

FIG. 5. (a) Bipartite graphs obtained from Fig. 1(a) after the application of the PSO (1, green hexagon, þ1), (6, orange hexagon, þ1)
⟶
PSO

(1, orange hexagon, þ1), (6, green hexagon, þ1), and of the RPSO (2, green hexagon, −1), (5, orange hexagon, −1), ⟶RPSO (2,
orange hexagon, −1), (5, green hexagon, −1). The edges involved in the operations are highlighted in red. Left nodes with the same in-
and out-degree are outlined with the same color. Right nodes with the same in- and out-degree are outlined with the same pattern.
(b) Changes in the neighborhood of a left node after the application of a sequence of PSOs and of RPSOs. PSOs preserve the number of
ingoing and outgoing edges of each node. RPSOs preserve also the in- and out-degree of the nodes connected to each node.
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Algorithm 1 illustrates the sampling procedure of NUDHY-
DEGS. Let L⃗ ≐ fv∈L∶odegGðvÞ > 0g the subset of left
vertices with outgoing edges, R⃖ ≐ fα∈R∶odegGðαÞ > 0g
the subset of right vertices with outgoing edges, and Xþu;v ≐
fðα; βÞ∶α∈ Γ⃗ðuÞnΓ⃗ðvÞ ∧ β∈ Γ⃗ðvÞnΓ⃗ðuÞg be the set of pairs
of out-neighbors of u and v that are not out-neighbors of v
and u, respectively. The computational complexity of each
step is ΘðOUTL þOUTRÞ. The algorithm performs a
number of steps s (input parameter) in the state space large
enough that its output can be considered as a uniform
sample from GDHDM. Previous works have shown that s ¼
O½jEj log ðjEjÞ� is, in general, sufficient [86].

B. NUDHY-JOINT: An efficient sampler for DHJM

We introduce an edge swap operation that transforms a
bipartite graph into another bipartite graph with the same
JOINT.
Lemma 2 (restricted parity swap operation). Let G ≐
ðL;R;DÞ be a directed bipartite graph and u ≠ v∈L, α ≠
β∈R such that ∃ d∈ fþ1;−1g for which e1 ≐ ðu; α; dÞ,
e2 ≐ ðv; β; dÞ∈D and e3 ≐ ðu; β; dÞ; e4 ≐ ðv; α; dÞ ∉ D.
If idegðuÞ¼ idegðvÞ∧ odegðuÞ¼odegðvÞ∨idegðαÞ¼

idegðβÞ∧ odegðαÞ¼ odegðβÞ, then swapping e1, e2
with e3, e4 generates a directed bipartite graph G0 ¼
½L;R; ðDnfe1; e2gÞ ∪ fe3; e4g� with the same JOINT as
G. This swap operation denoted as e1; e2 ⟶

RPSO e3; e4 is
called a restricted parity swap operation (RPSO).
An example of an RPSO is shown in Fig. 5(a) (right).
The state space GDHDM is a directed weighted graph

where each vertex is a bipartite directed graph with the
same JOINT of G̊, and edges connect graphs that can be
transformed into each other via an RPSO. For each pair of

vertices, there is at most one RPSO that can transform the
first one into the second one, and self-loops are added to
guarantee that the Markov chain is aperiodic. In
Supplemental Material [47], we define a transition prob-
ability distribution ξG over the set of neighbors of any
G∈GDHJM and prove that

P
G0 ∈GDHJM ξGðG0Þ ¼ 1. By

observing that each RPSO is reversible and that the number
of common in- and out-neighbors between any pair of
nodes does not change after the application of an RPSO, we
have that ξGðG0Þ ¼ ξG0 ðGÞ and that the transition matrix
fξGðG0Þg is doubly stochastic. Finally, in Supplemental
Material [47] we also prove irreducibility by showing that

Algorithm 1: NUDHY-DEGS.

Input: Graph G ≐ ðL;R;DÞ∈GDHDM, Number of Steps s
Output: Graph sampled uniformly from GDHDM

repeat s times
out ← flip a biased coin with heads probability jD⃗j=jDj
if out is heads then

u; v ← different vertices drawn u:a:r:from L⃗
if jXþu;vj ¼ 0 then

continue
else

α; β ← pair drawn u:a:r: from Xþu;v
d ← þ1

else
α; β ← different vertices drawn u:a:r: from R⃖
if jXþα;βj ¼ 0 then

continue
else

u; v ← pair drawn u:a:r:from Xþα;β
d ← −1

apply ðu; α; dÞ; ðv; β; dÞ⟶PSOðu; β; dÞ; ðv; α; dÞ to G
return G

Algorithm 2: NUDHY-JOINT.

Input: Graph G ≐ ðL;R;DÞ∈GDHJM, Number of Steps s
Output: Graph sampled uniformly from GDHJM

repeat s times
out ← flip a biased coin with heads prob jD⃗j=jDj
out2 ← flip a fair coin
if out is heads and out2 is heads then

i; j ← ints drawn with prob ϑði; jÞ from ½0; INL�
and ½1; outL�

u; v ← different vertices drawn u:a:r: from Lþij
if Xþu;v ¼ ∅ then

continue
else

α; β ← pair drawn u:a:r: from Xþu;v
d ← þ1

else if out is tails and out2 is heads then
i; j ← ints drawn with prob ηði; jÞ from ½1; INL�

and ½0; outL�
u; v ← different vertices drawn u:a:r:from L−

ij
if X−

u;v ¼ ∅ then
continue

else
α; β ← pair drawn u:a:r: from X−

u;v
d ← −1

else if out is heads and out2 is tails then
i; j ← ints drawn with prob ϕ ði; jÞ from ½1; INR�

and ½0; outR�
α; β ← different vertices drawn u:a:r: from R−

ij
if X−

α;β ¼ ∅ then
continue

else
u; v ← pair drawn u:a:r: from X−

α;β
d ← þ1

else
i; j ← ints drawn with prob νði; jÞ from½0; INR�

and ½1; outR�
α; β ← different vertices drawn u:a:r: from Rþij
if Xþα;β ¼ ∅ then

continue
else

u; v ← pair drawn u:a:r: from Xþα;β
d ← −1

apply ðu; α; dÞ; ðv; β; dÞ⟶RPSO ðu; β; dÞ; ðv; α; dÞ to G
return G
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TABLE II. H-BILLS and S-BILLS per session: starting year, majority of seats, legislators, number of republicans (R) and of democrats
(D), number of bills sponsored by republicans and democrats, mean number of bills sponsored by a republican and by a democrat, and
mean number of bills cosponsored by a republican and by a democrat.

(a) House

Start Majority Legislators R D
Bills
(R)

Bills
(D)

Sponsorships
(R)

Sponsorships
(D)

Cosponsorships
(R)

Cosponsorships
(D)

93 1973 D 440 192 241 1612 3237 9.006 13.953 82.574 126.751
94 1975 D 441 144 291 1556 3927 11.358 14.385 88.231 129.823
95 1977 D 440 143 292 1758 4043 12.468 15.257 123.143 140.949
96 1979 D 438 156 276 965 2144 6.307 8.152 155.975 156.119
97 1981 D 440 191 243 1230 2017 6.543 8.732 176.933 188.984
98 1983 D 439 164 269 1023 2332 6.354 8.969 215.174 281.838
99 1985 D 438 181 252 1222 2305 6.983 9.486 241.687 318.203
100 1987 D 441 177 258 1302 2367 7.750 9.430 252.737 329.531
101 1989 D 440 174 259 1370 2660 7.874 10.391 287.596 356.031
102 1991 D 441 167 267 1323 2578 8.067 9.954 264.347 317.478
103 1993 D 441 176 258 1286 2134 7.565 8.570 226.028 223.569
104 1995 R 439 230 204 1640 1041 7.354 5.627 150.013 142.913
105 1997 R 444 226 207 1865 1294 8.216 6.811 168.740 209.708
106 1999 R 437 223 211 2176 1537 9.982 7.319 192.879 284.566
107 2001 R 442 221 211 2049 1756 9.230 8.566 170.009 298.207
108 2003 R 439 229 204 2055 1718 9.215 8.422 166.415 298.222

Senate

Start Majority Legislators R D
Bills
(R)

Bills
(D)

Sponsorships
(R)

Sponsorships
(D)

Cosponsorships
(R)

Cosponsorships
(D)

93 1973 D 101 44 54 571 1054 13.595 18.491 105.833 140.000
94 1975 D 100 37 60 526 943 14.216 15.459 101.703 101.984
95 1977 D 104 38 61 521 942 13.711 14.952 99.395 88.969
96 1979 D 101 41 58 526 866 13.150 14.931 109.927 94.797
97 1981 R 101 53 46 882 612 16.642 13.304 137.167 167.109
98 1983 R 101 54 46 1068 648 19.418 14.087 176.345 221.391
99 1985 R 101 53 46 1150 722 21.698 15.696 192.593 244.149
100 1987 D 101 45 55 770 1120 16.739 20.364 243.826 285.364
101 1989 D 100 45 55 760 1288 16.889 23.418 266.822 300.527
102 1991 D 102 44 56 722 1241 16.409 21.772 240.795 263.655
103 1993 D 101 43 57 535 985 12.159 17.589 165.091 168.228
104 1995 R 102 53 47 778 431 14.679 8.979 103.481 75.708
105 1997 R 100 55 45 912 564 16.582 12.533 123.764 126.467
106 1999 R 102 55 45 1087 822 19.411 18.267 154.036 200.543
107 2001 D 101 50 50 778 1084 15.878 21.680 119.080 195.245
108 2003 R 100 51 48 953 926 18.686 19.292 116.941 206.188

TABLE III. Contact hypernetworks: number of nodes, number of hyperedges, max hyperedge size, mean and std hyperedge size,
mean and std node degree, number of steps performed by NUDHY, invasion thresholds for the linear (l) and superlinear (sl) cases, and
bistability threshold.

Network jVj jEj d μjej σjej μdeg σdeg s λlc λslc νc

LYON 243 1188 5 2.40 0.52 11.79 5.59 57060 0.0474 0.0382 2.5415
HIGH 327 7818 5 2.33 0.53 55.63 27.06 363840 0.0101 0.0096 2.4337
EMAIL-ENRON 143 1512 18 3.00 1.95 31.82 24.22 227500 0.0060 0.0025 1.3182
EMAIL-EU 998 25027 25 3.42 2.84 85.91 114.23 1714740 0.0009 0.0008 1.2313
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GDHJM is strongly connected. From these results, we obtain
that the stationary distribution is the uniform distribution.
Algorithm 2 illustrates the sampling procedure of

NUDHY-JOINT. ∀ 0 ≤ i ≤ INL; 1 ≤ j ≤ OUTL, let Lþi;j ≐
fv∈L∶odegðvÞ ¼ j ∧ idegðvÞ ¼ ig; ∀ 0 ≤ i ≤ INR,
1≤j≤OUTR, let R

þ
i;j≐fα∈R∶odegðαÞ¼j∧idegðαÞ¼ig;

∀1≤ i≤ INL;0≤ j≤OUTL, let L−
i;j ≐ fv∈L∶odegðvÞ¼

j∧ idegðvÞ¼ ig; ∀ 1 ≤ i ≤ INR; 0 ≤ j ≤ OUTR, let R−
i;j ≐

fα∈R∶odegðαÞ ¼ j ∧ idegðαÞ ¼ ig; ∀ u; v∈L ∪ R,
let Xþu;v ≐ fðα; βÞ∶α∈ Γ⃗ðuÞnΓ⃗ðvÞ ∧ β∈ Γ⃗ðvÞnΓ⃗ðuÞg, and

∀ u; v∈L ∪ R, let X−
u;v ≐ fðα; βÞ∶α∈ Γ⃖ðuÞnΓ⃖ðvÞ ∧

β∈ Γ⃖ðvÞnΓ⃖ðuÞg. Each step takes O( log ½maxðjLj; jRjÞ�×
max ðOUTL þOUTR; INL þ INRÞ), and the algorithm per-
forms a number of steps s (input parameter) large enough
that its output can be considered as a uniform sample
from GDHJM.

VI. DATA

We showcased the flexibility of NUDHY, considering both
directed and undirected hypergraphs from various domains.
All the datasets used in our analyses are publicly available
on GitHub.
Table II reports the main characteristics of the directed

hypergraphs representing sponsor-cosponsor relationships
in Senate bills (S-BILLS) and House bills (H-BILLS) from the
93rd to 108th Congresses. We exploited these datasets in
the group affinity analysis presented in Sec. III A.
Table III reports the main characteristics of the undi-

rected hypergraphs representing (i) face-to-face inter-
actions among children in a primary school in Lyon,
France [71] (LYON) and among students in a high school
in Lycée Thiers, France [72] (HIGH), and (ii) email
exchanges between members of a European research
institution (EMAIL-EU) and between Enron employees
(EMAIL-ENRON) [73]. We exploited these datasets in the
nonlinear contagion analysis presented in Sec. III B.
Table IV reports the main characteristics of the directed

hypergraphs generated from international trade data [81] of
four years: 1995, 2009, 2019, and 2020. The head of each
hyperedge includes countries that export the product, while
the tail consists of countries that import the product. We
follow the standard economics literature [76] and consider

a country to be an exporter of a product if its revealed
comparative advantage [77] is greater than 1, and to be an
importer of a product if its revealed comparative
disadvantage [87] is greater than 1. We follow Ref. [78]
and include only countries with population above 1 million
and average trade above USD 1 billion. We exploit these
datasets in the economic complexity analysis presented in
Sec. III C.
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