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Abstract

We provide quantitative evidence suggesting social learning in sperm whales across
sociocultural boundaries, using acoustic data from the Pacific and Atlantic Oceans.
Traditionally, sperm whale populations are categorized into clans based on their vocal
repertoire: the rhythmically patterned click sequences (codas) that they use. Among these
codas, identity codas function as symbolic markers for each clan, accounting for 35-60% of
codas they produce. We introduce a computational method to model whale speech, which
encodes rhythmic microvariations within codas, capturing their vocal style. We find that
vocal style-clans closely align with repertoire-clans. However, contrary to vocal repertoire,
we show that sympatry increases vocal style similarity between clans for non-identity codas,
i.e. most codas, suggesting social learning across cultural boundaries. More broadly, this
subcoda structure model offers a framework for comparing communication systems in other
species, with potential implications for deeper understanding of vocal and cultural
transmission within animal societies.
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eLife assessment

This important study, which presents novel data on variation in sperm whale
communication, contributes to a richer understanding of the social transmission of
vocal styles across neighbouring clans. The evidence is solid but could be further
improved with some clarification of the specialized measurements and terms used,
particularly for comparisons to other taxa. This research will be of interest for
bioacoustics and animal communication specialists, particularly those working on
social learning and culture.

https://doi.org/10.7554/eLife.96362.1.sa3

Introduction

Cultural transmission is defined as the transmission of information or behaviors between
individuals of the same species by means of social learning [1     ]. While humans represent a
benchmark of such capacity, cultural transmission has been observed in a wide variety of animals,
including cetaceans [2     , 3     ], songbirds [4     ], non-human primates [5     ], and insects [6     ]. It
typically takes one of three forms: vertical transmission, from adult kin to young kin; oblique
transmission, from unrelated adults to young; or horizontal transmission, from peer to peer [7     ].

When animals have the capacity for social learning, group-specific differences can arise and
remain stable when they become distinguishable by symbolic markers: arbitrary group-identity
signals that are recognizable by both members of the group itself and by members of other groups
[8     , 9     ]. In humans, symbolic markers can take a myriad of forms, ranging from visible signs,
such as tattoos or garments, to communication cues or signals, such as idiomatic sentences or
accents [8     , 9     , 10     ]. In animals, however, quantitative evidence of symbolic markers is
remarkably scarce, one exception being recent results on the use of identity codas in sperm whale
social communication [11     ].

Sperm whales live in multi-tiered societies and have a complex vocal communication system
[13     ]. They communicate through rhythmic patterns (codas) of short broadband sounds (clicks),
which have traditionally been classified into a finite set of coda types based on the total number of
clicks, their rhythm, and their tempo [14     , 15     ] (Fig. 1A     ). For example, the 4-regular (4R2)
type refers to a pattern of four evenly spaced clicks, whereas the 1+3 type refers to two clicks
separated by a longer pause followed by two clicks in quick succession. Coda types are thus
standardized rhythmic patterns, but individual vocalizations of a given coda type exhibit micro-
variations around that pattern.

The set of vocalized coda types (coda usage) combined with how frequently each is vocalized (coda
frequency) makes up a vocal repertoire (Fig. 1B     ). For example, the 4R2 coda is used by many
sperm whales, but other coda types are more specific in their usage or frequency to certain groups
of sperm whales. While there is evidence of individual variation in vocal repertoires [16     , 17     ,
18     ], sperm whales belonging to the same social unit—a stable, matrilineally-based group of
whales, share a common vocal repertoire that is stable across years [17     , 18     , 19     ]. Social
units that share substantial parts of their repertoire are said to be part of the same vocal clan
[20     , 21     ]. There is clear social segregation between members of different clans, even when
living in sympatry, and thus clans mark a higher level of social organization, which appears to be
defined on the basis of cultural vocal markers [20     , 21     , 11     ] (see Table 1      for a summary of
the key concepts).
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Figure 1

Statistical modeling of subcoda structure in sperm whales.

A Sperm whale communication consists of rhythmic sequences of clicks, called codas. A coda is specified by a sequence of
inter-click intervals (ICIs). Codas are classified into types based on their rhythmic pattern, which can have various degrees of
regularity (e.g., 4R2 vs 1+3). B Social groups of sperm whales employ specific vocal repertoires: the set of coda types they use
and their associated usage frequencies. As an illustration, we show those of the EC1 and EC2 clans from the Dominica dataset
[12     ]. Only the most numerous coda types are shown: the rest of the vocal repertoires consists of more coda types with
residual frequencies. C The subcoda structure can be modeled by considering rhythmic variations within codas of the same
coda type. To do so, codas are represented as sequences of discrete inter-click intervals (dICIs), by discretizing absolute ICIs
into discrete bins, which can then be considered akin to symbols (e.g. A, B, C, …), providing a tokenization of codas. Different
instances of a single coda type can correspond to slightly different dICI sequences. The resulting dICI sequences are modeled
using variable-length Markov chains, which can be represented as subcoda trees. These trees can be built for an individual
speaker or for a group of speakers, and capture the statistical and memory structures of rhythm variations within codas and
in the transitions between those. In other words, the tree captures a vocal style—how they say what they say. The vocal styles
of different groups of sperm whales can be quantitatively compared by calculating a distance between their subcoda trees.
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The clan specific and frequent usage of certain coda types, termed identity codas [15     , 11     ],
align with the expectations for symbolic markers of group membership [9     ]. Furthermore,
quantitative evidence that sperm whales themselves use identity codas as such markers has
recently emerged: the more two clans overlap in geographic space, the more different their
identity coda usage is [11     ]. This is consistent with computational models [9     ] of the evolution
of symbolic marking, which predict that differences between cultural norms will be starkest when
inter-group interactions are more common (e.g., in boundary or overlap regions).

All remaining coda types have been referred to as non-identity (non-ID) codas and constitute a
very large fraction of sperm whales’ total number of coda utterances. In fact, the total number of
emitted non-ID codas accounts for more than 6 out of 10 codas (see SM Section 1.1 for the counts
per clan and per coda type). This begets the question: if ID codas are used as clan identity signals,
what can be said about the remaining 65% of codas?

Here, we introduce a novel descriptive framework that focuses on the subcoda structure, that is,
the rhythmic micro-variations of intervals between clicks within codas (Fig. 1C     ). This
framework, formally encoded in what we call a “subcoda tree”, captures how codas are uttered: a
vocal style. We find that variations in this vocal style, even for a single coda type, identify an
individual’s social unit and clan, effectively fingerprinting vocal repertoires. With this, we add a
new dimension with respect to previous approaches based on which codas are said—vocal
repertoires. Thus, we propose a new concept of vocal identity of sperm whales that comprises both
vocal style and vocal repertoire.

By applying our modeling framework to acoustic data from the Atlantic and Pacific Oceans, we
obtain two main results. First, we partition sperm whale populations into vocal style-defined
clans, which we find to recapitulate the previously defined vocal repertoire clans. This confirms
that our method does capture meaningful speech characteristics. Second, and crucially, we find
that the vocal style of non-ID codas is more similar for more sympatric clans, i.e. clans whose
territory overlaps more spatially. In contrast, we do not find an effect of sympatry on the
similarity of vocal styles when studying only ID codas. This suggests that geographic overlap
induces vocal styles to become more similar between clans, without jeopardizing each clan’s
acoustic identity signals. Our results strengthen previous results on the use of ID codas as symbolic
markers, while supporting cultural transmission and social learning of vocalizations among
whales of different clans, as predicted by theoretical models [22     ].

Results

Subcoda structure captures variability
in sperm whale communication
We model the internal structure of codas, in terms of rhythmic variations at the level of clicks, by
using variable length Markov chains (VLMCs). Our analytical pipeline is illustrated in Fig. 1C     .
We build each VLMC in two main steps. We first convert codas, naturally represented as sequences
of continuous, absolute, inter-click intervals (ICIs), to sequences of discrete ICIs (dICIs), by
discretizing time into bins. In this way, each dICI represents a narrow range of possible ICI values.
The bins have a fixed width (or resolution) St and thus implicitly correspond to the temporal
resolution of our representation (see Methods for details on the optimal choice of St). Note that
although ICIs have units of time (seconds), dICIs are (unit-less) symbols (e.g. A, B, C, etc.),
representing multiples of St (and so the smaller St, the more the symbols). For example, the
shortest ICIs will be mapped to the symbol A whereas longer ones will be mapped to symbols
further down the alphabet. Hence, each coda (a sequence of ICIs) is mapped to a sequence of
discrete symbols (a sequence of dICIs). The second part of the pipeline focuses on modeling the
internal structure of codas in terms of dICI sequences. Essentially, we want to estimate transition
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Table 1

Summary of key concepts

Figure 2

Vocal style recovers social structure of vocal clans in Dominica sperm whales.

A We show the similarity of vocal style, measured as subcoda tree-distance, among social units within a vocal clan (within,
darker color shade) and between two clans (between, lighter color shade). We used the manual clan assignments from [21     ]
as ground truth. Vocal style is more similar within clans than between clans. B We show the hierarchical clustering of social
unit subcoda trees. Each leaf corresponds to a social unit, and the colors below show their known clan assignments. The
clustering recovers the two-clan structure observed in past work [21     ].
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probabilities from a dICI sub-sequence to the next dICI (Fig. 1B     ). A standard way would be to
describe this using k-order Markov chain models, which encode information on previous sub-
sequences up to k steps in the past of the sequence. However, it is possible that different sequences
of dICIs contain different amounts of information or memory regarding potential next dICIs. This
is akin to what happens with words (e.g., a word beginning with “re” can continue in more ways
than one starting with “zy”). To account for this possibility while also retaining only the most
compressed statistical representation of how codas are structured in terms of dICIs, we employ
VLMCs.

VLMCs are generalizations of standard (fixed-memory) Markov chains that allow sub-sequences of
dICIs of variable lengths. Longer sequences are kept only if they are significantly more
informative in predicting the next dICI than random chance, yielding an optimally compressed
representation (see Methods for details on model fitting and selection, including the optimal
choice of St). Furthermore, VLMCs naturally have a tree structure (see Fig. 1C     ), because of the
natural order between sequences and their sub-sequences. In particular, each node represents a
sub-sequence of dICIs, and is equipped with a probability distribution of transitions to the next
dICIs. The origin node corresponds to the empty sequence, leaf nodes correspond to the longest
sequences, and all nodes forming the branch in between correspond to the sub-sequences of that
leaf node. Thus, we call VLMCs fitted to coda ICI data subcoda trees.

Note that dICI sequences encode rhythmic variations within codas. Indeed, a coda type is a
standard rhythmic pattern that can be realized with variations in its ICIs and thus in its dICIs too.
For example, the 4R2 coda type can be vocalized as BCC but also as CBB (in a representation with,
say, 26 symbols). In that sense, subcoda trees, through the dICIs sequences that they contain and
their transition probabilities, capture information about a vocal style. Four more features of
subcoda trees are noteworthy: (i) because the method’s input is a set of codas, we can build
subcoda trees for repertoires corresponding to different social scales, from individual sperm
whales, to social units, all the way up to vocal clans; (ii) the difference between different subcoda
trees can be measured using a probabilistic distance (see Methods), which we can use to compare
subcoda trees across sperm whale clans; (iii) certain features of the vocal style can be quantified
via metrics on the subcoda tree: for example we can define a complexity of the vocal style
measured by an entropy on the tree; and (iv) subcoda trees can also be used as generative models,
to create new synthetic codas in the form of dICI sequences to train downstream machine learning
models.

Vocal style recovers vocal clan structure
The information about vocal style contained in subcoda trees is sufficient to recover the social
structure of sperm whales (social units and clans). We show this in two ways. First, we analyze a
dataset from sperm whales in Dominica (Dominica dataset) [21     ]. This dataset has rich
annotations (coda type annotations, identity of recorded whales, social relations of recorded
whales) which makes it particularly useful for validation. Specifically, the sperm whales in the
Dominica dataset are divided into well known social clans, each composed of several social
units,each with its own specific vocal repertoires, and thus can be defined as two different vocal
clans. For each social unit in this dataset, we aggregate the individual whales’ coda samples and
build a subcoda tree. Computing the distance between these trees (see Methods), we find that the
distances between social units within the same clan are significantly smaller than between clans
(Fig. 2A     ). We also find that an agglomerative clustering (average linkage, see Methods for
details) on the distance between the subcoda trees correctly clusters social units into their
respective clans (Fig. 2B     ). Without a priori knowledge of the clan memberships, we used vocal
style to recover the existing classification of social units into two clans, which was previously done
based on similarity between vocal repertoires (i.e., coda types and usage) [21     ].

https://doi.org/10.7554/eLife.96362.1
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Figure 3

Vocal style recovers social structure of vocal clans in Pacific Ocean sperm whales.

A We show the similarity of vocal style, measured as subcoda tree-distance, between coda samples within a vocal clan (within,
darker color shade) and between a clan and all others (between, lighter color shade). We used the vocal clans identified in
[11     ]. Vocal style is more similar within a clan than between clans. B We show the hierarchical clustering of subcoda trees.
Each leaf corresponds to a coda sample, and the colors below show their vocal clan assignments (based on coda usage) from
[11     ]. We find generally good overlap between the groups obtained from clustering vocal style and those from vocal
repertoire, with the exception of the Short clan (red) that is somewhat mixed with the Palindrome (orange) and Rapid
Increasing (yellow) clans.

https://doi.org/10.7554/eLife.96362.1
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Second, we find that the subcoda structure of synthetic codas, generated from subcoda trees fitted
on real data, closely reproduces that of real codas. To do this, we first train a simple classifier to
assign codas to one of the two vocal clans, based on coda type. Variations of the same classifier,
trained on the same real data, have been shown to discriminate between individual whales, social
units, and clans with high accuracy [12     ]. We train the classifier on real codas, and then test it on
both real and synthetic ones. The synthetic codas were generated using the subcoda tree of each
clan, with a number of codas similar to that of the original dataset for a fair comparison (see
Methods for details). We find that synthetic codas are correctly classified into their clans with an
accuracy close (~ 85%) to that obtained on the real data (~ 90%, see Supplementary Materials     
Section 4).

Motivated by these results, we extend our analysis to a much larger dataset from the Pacific Ocean
(Pacific dataset) [11     ]. This dataset is more sparsely annotated because of the breadth of its
spatial coverage. We restricted our analyses to a well-sampled subset (n = 57 coda samples) of the
full Pacific dataset (see Methods for details). Coda samples are only labeled by the spatial position
at which they were recorded, but no information is available about the identity of the vocalizing
sperm whales (see Methods for details). In fact, each repertoire likely contains codas from multiple
individuals of a single clan. It has recently been shown that these coda samples can be divided into
seven vocal clans based on their coda usage [11     ]. We use those clans as a benchmark for the
following analysis.

Since there is no social unit-level information for this dataset, we fit a subcoda tree for each
repertoire (i.e., all of the codas recorded on a single day in a single region). Trees are significantly
more similar for coda samples belonging to the same vocal clan than for those belonging to
different vocal clans (Fig. 3A     ). We also find that clustering coda samples based on vocal style
returns a dendrogram that closely matches the one obtained from coda usage in [11     ] (Fig.
3B     ). The major exception we find is the Short clan (red), named because member whales
produce short codas with very few clicks, for which anomalous results were previously reported
as well [11     ]. In our case, this is due to the Short clan being less well localized in the space of
trees, while the other clans have well-defined centroids (see Supplementary Materials      Fig. 9      for
a low-dimensional representation subcoda tree metric space).

Therefore, we find that sperm whale vocal clans in the Atlantic Ocean (Caribbean Sea) and Pacific
Ocean can be identified by a vocal identity that encompasses both clan-specific vocal repertoire
[21     , 24     , 20     , 11     ] and vocal style as defined in this work.

Clan sympatry impacts vocal style of non-ID codas only
While interesting, the fact that both vocal repertoires and vocal styles discriminate between clans
might imply that considering both could be redundant for vocal identity. However, we find that
this is not the case when we consider the functional role of ID versus non-ID codas.

More precisely, different clans can share significant portions of their total range, overlapping
across large swaths of ocean. Such sympatric clans exhibit a decreasing similarity of their ID coda
usage with increasing clan overlap [11     ]. This means that the more two clans overlap in space,
the more dissimilar their vocal repertoires are in terms of ID coda types and their usage
frequency. This is consistent with the idea that ID codas are used as symbolic markers to delineate
cultural boundaries between social groups [11     , 9     ]. In contrast, non-ID coda usage do not show
any relationship to clan overlap.

We find the exact opposite effect when considering vocal style. The similarity in vocal style for ID
codas across clans does not depend on the level of clan overlap (Fig. 4a     ). In contrast, the
similarity in vocal style for non-ID codas displays a clear and significant increase (i.e., decreasing
subcoda tree-distance) as clan spatial overlap increases (Fig. 4b     ). In the Supplementary
Materials      (see Section 2.4.2), we show that the same results hold at the single coda type level, in
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addition to the whole clan level, along with an analysis of the confidence intervals. These results
imply that the internal structure of codas is more similar for groups that likely spend more time in
the same space, akin to accents aligning in human populations that share the same territory [25     ,
26     ]. This also highlights the complementarity of vocal repertoire and style: the trends are
different precisely because the two concepts describe different aspects of whale speech.

Discussion

We have presented a general method for modeling animal communication systems and their
complexity based on VLMCs. In the context of sperm whales, this new method allows the
extraction of subcoda trees, which succinctly describe the internal temporal structure of codas.
Previous work on the structure of sperm whale communication has largely focused on supra-level
coda analyses: for example, by classifying codas into types, quantifying how often different types
are used, and distinguishing between individual whales, social units, or clans based on those
counts [18     , 27     ]. Here, we adopted a more fine-scale approach by investigating potential
structure within codas. To do so, we used VLMCs to model the transition probability of observing a
specific ICI given the previous ones. A VLMC, or here a subcoda tree, encodes all those
probabilities but only for dICI sequences that are informative—other sequences are automatically
discarded. As such, a subcoda tree is a statistically validated representation of the internal
memory structure of codas at the level of sequences of clicks. It contains information about
important rhythmic variations and transitions between them: a vocal style.

Using such representations, we propose a novel concept of vocal identity for sperm whales
composed of vocal repertoire (what they say) and vocal style (how they say it), the latter being
captured by our framework. We find that: (i) vocal styles vary between social units and clans, and
can be used to distinguish them; (ii) the similarity of clan vocal styles for non-ID codas increases
with increasing spatial overlap, while no change occurs for ID codas; and (iii) social learning
across symbolic cultural boundaries most parsimoniously explains the observed trends.

Vocal style recovers hierarchical social structure
Using the Dominica dataset, sperm whales had previously been divided into two vocal clans, based
on their vocal repertoires and observed social interactions [21     ]. In our study, comparing the
vocal styles of those same whales led to the same assignment of social units to two vocal clans.
Similarly, for the Pacific dataset, clustering based on vocal styles yielded clans that were in good
agreement with those previously defined based on vocal repertoires [11     ] (Supplementary
Materials      for an extended comparison). The difference between the two partitions was mainly
due to the Short clan, which was more spread out in subcoda tree space than the other clans,
causing overlap with other clans that showed less variability. This variability could be linked to
the fact that Short clan whales typically make codas with very few (e.g., three or four) clicks,
leading to subcoda trees with very few nodes. In Ref. [11     ], the authors observe a similar lack of
uniformity in coda usage of the Short clan.

Identity and non-identity codas show different trends
For ID codas, we show that the similarity between clan vocal styles is not affected by spatial
overlap, while it has recently been shown that the similarity between clan vocal repertoires
decreases with overlap [11     ]. This means that spatial overlap does not affect how whales
produce ID codas (in terms of their fine-scale rhythmic structure; our results) but does affect how
often they produce them. In contrast, for non-ID codas, we show that the similarity between vocal
styles increases with spatial overlap between two clans, while no change was observed for vocal
repertoires in previous work on the same dataset. In other words, increasing spatial overlap is
correlated with more similar fine-scale rhythmic structure of non-ID codas produced by whales

https://doi.org/10.7554/eLife.96362.1
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Figure 4

Clan overlap influences non-ID coda vocal styles

Comparing the similarities of different VLMC models fit for each Pacific Ocean clan for both ID and non-ID coda samples. The
y-axis represents the measured distance between the subcoda trees, and the x-axis shows the geographical clan overlap (as
calculated in [11     ]). Each point represents a pairwise comparison between two clans. The effect of overlap on ID coda vocal
style similarity is minimal and non-significant while the opposite is true for non-ID codas: overlapping clans produce non-ID
codas with a more similar vocal style. The VLMC distances are also typically much greater for ID codas than for non-ID codas.
Note that while these results are visually opposite to those reported in Hersh et al. [10     ], they support the same final
conclusions (see “Identity and non-identity codas show different trends” for details).
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from different clans (our results), but does not affect how often non-ID codas are produced. Our
study thus supports and nuances the results of Hersh et al. [11     ]. We provide further support for
selection acting to produce unambiguous, recognizable identity signals in the ID codas. However,
ID codas only account for 35% of the total vocalizations; the remaining 65% of codas have
traditionally been lumped into a catch-all category (i.e., non-ID codas) and their function remains
enigmatic (these numbers are an average over the Pacific clans, and go up to 93% for non-ID codas
when counting number of coda types instead of number of codas emitted, see SM 1.1 for details).
We could still discriminate among clans using non-ID coda vocal style; however, the increased
similarity of non-ID coda vocal styles between clans with greater spatial overlap, as demonstrated
here, suggests that non-ID codas are likely vocal cues and not identity signals like the ID codas.
Accordingly, vocal repertoire and vocal style capture different and complementary information on
sperm whale communication, and should be considered in tandem in future studies.

Evidence for social learning across cultural boundaries
There are several potential mechanisms driving the similarity in non-ID coda vocal styles—but not
ID coda vocal styles—across spatially overlapped clans: environmental variation, genetics, and/or
social learning.

Local adaptation to specific ecological conditions can lead to geographic variation in acoustic
signals [28     ]. If environmental pressures alone were responsible for the trends we observe in
sperm whales, this would imply that (i) more spatially overlapped clans experience more similar
environments, (ii) non-ID coda vocal style is impacted by or dependent on environmental
parameters, and (iii) ID coda vocal style is not impacted by/dependent on environmental
parameters. Although the first point is somewhat intuitive, to date there is no evidence that coda
production systematically varies with environment. In fact, clans are recognizable across ocean
basins, making local adaptation an unlikely driver of the observed trend in non-ID coda vocal
style.

If genetic relatedness were responsible, this would imply that (i) more spatially overlapped clans
are more genetically related, (ii) non-ID coda vocal styles are genetically inherited, and (iii) ID coda
vocal styles are not genetically inherited. If all three requirements were met, then the observed
similarity in non-ID coda vocal styles for more spatially overlapped clans could be due to genetic
determination under a general isolation by distance structure. However, research to date suggests
this scenario is unlikely. Rendell et al. [29     ] found little evidence to support genetics as an
explanation of differences in vocal dialects among clans in the Pacific Ocean. Furthermore,
Alexander et al. [30     ] found that regional genetic differentiation in the Pacific Ocean is very low:
while social group is important for explaining both mitochondrial and nuclear DNA variance,
geographic region is not. This contrasts with results from the Indian Ocean, where region was the
strongest predictor of mitochondrial DNA variance. Given that gene flow in sperm whales is
largely male-mediated and that mitochondrial DNA haplotypes are broadly shared across the
Pacific Ocean, it is unlikely that coda dialects are genetically determined [30     , 31     ]. Agent-based
models grounded in empirical data from Pacific Ocean sperm whales further support coda usage
as socially learned, not genetically inherited [22     ]. To fully rule out a genetic explanation for our
results, the analyses in [29     ] could be replicated for ID coda usage and non-ID coda usage
separately. This would shed light on whether certain coda types are genetically inherited vs.
socially learned, as has been suggested for some humpback whale (Megaptera novaeangliae)
vocalizations [32     ].

The most parsimonious explanation for the observed similarity of non-ID coda vocal styles of clans
with increasing spatial overlap is social learning across clan boundaries. This is remarkable, given
that sperm whale clans belonging to different clans have rarely been observed physically
interacting at sea [3     ]. However, that does not preclude the possibility that they are within
acoustic range of each other [33     ] and that cross-cultural social learning opportunities arise. This
explanation is compatible with (and bolsters) past work suggesting that ID and non-ID codas
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function differently in sperm whale communication, and further suggests that they experience
different evolutionary pressures [22     ]. Whether social learning has facilitated stochastic (i.e.,
cultural drift) or deterministic (i.e., cultural selection) processes is more difficult to determine, and
it is unclear whether the observed non-ID coda vocal style alignment has been neutral or adaptive
[34     , 28     ]. Importantly, these findings suggest that vocal learning in sperm whales may not be
limited to vertical transmission from related adults to young kin, but that horizontal and/or
oblique social learning from outside the natal social unit might also be occuring.

Vocal identity in sperm whales is thus consistent with both cultural selection on ID codas to
maintain discrete signals for vocal recognition in sympatry, and social learning between clans
leading to a vocal style more similar to that of other whales with which they are in acoustic
contact more frequently. This highlights a more complex system of transmission in which clan
identity is maintained through selection, while gradual change over time may occur within and
across clans for vocalizations which do not function in social recognition and thus may create
similar vocal styles.

Future directions
Our results can be expanded in multiple ways in future work. The first, and the simplest
conceptually, would be to conduct the present analysis on a larger dataset. More codas would
improve the quality of the statistical analyses and ensure that all codas are represented in realistic
proportions for each clan. Moreover, longitudinal datasets might provide direct evidence to
discriminate between the social learning hypothesis and competing ones (e.g. drift in vocal style).
Similarly, confirmations could emerge from large scale genetic datasets addressing the issues of
phylogenetic relatedness (or lack thereof) in clans that are closer in vocal style distance. Such
datasets do not exist at present, but efforts towards automated and semi-automated collection
techniques are underway (e.g. Project CETI [35     ]). Second, from a methodological perspective, we
could add spectral information (in terms of acoustic frequencies) to the temporal information
currently used. Although sperm whale acoustic communication seems mostly based on rhythm,
spectral features of individual clicks may convey additional information. This possibility could be
incorporated into our method by labeling the dICIs according to the frequency content of the
associated click (or by extending the available “alphabet” for the VLMC). Third, it would be
interesting to investigate in more detail the function of non-ID codas. Indeed, even though ID
codas were only recently formally named for the first time, they have been the primary focus of
sperm whale coda research for decades. As previously mentioned, non-ID codas are a catch-all
category for anything that is not an ID coda, but that does not mean that all non-ID codas function
in the same way. To start to unveil their function, we need to consider the context (behavioral,
environmental, etc.) in which different non-ID codas are produced [36     ]. The pattern we
documented may or may not apply to all non-ID codas, but it is at least strong enough that we
detect the relationship with clan spatial overlap when collectively considering all non-ID codas.

Methods

Acoustic data
In social situations, sperm whales acoustically communicate through short bursts of clicks with
recognizable patterns based on rhythm and tempo referred to as codas. Codas are generally
represented as sequences of ICIs, equivalent to a time series of click onsets.

We analyzed two datasets in the present study. The Dominica dataset contains 8719 annotated
codas recorded in the Atlantic Ocean off the island of Dominica between 2005 and 2019. The codas
come from 12 social units grouped into two vocal clans (EC1 and EC2). The Pacific dataset was
collected between 1978 and 2017 at 23 locations in the Pacific Ocean (the recording methods are
available in the supplementary materials of [11     ]). The codas were divided into coda samples
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according to their recording day and each repertoire was assigned a single vocal clan inferred in
[11     ]. When considering a clan-level analysis (Fig. 3     ) all coda samples were used to compute
the subcoda trees (23555 codas). However, when analysing at a coda samples level (Fig. 4     ), we
discarded coda samples with less than 200 codas with statistical inference in mind, resulting in a
final count of 57 coda samples (17046 codas) for the Pacific.

Representation of sperm whale
communication as discrete inter-click intervals
As a preliminary step, we discretized the (continuous) ICI values into bins of width δt seconds. In
other words, we represented the continuum of ICI values by a finite set of discrete ICIs (dICIs)
based on the duration of the ICI. The bin width δt controls the temporal resolution of the
representation: a higher value of δt implies a coarser representation with fewer dICIs. We also
imposed an upper bound tmax: any ICI value greater than that was truncated to tmax. This ensured
that the set of dICIs was finite. Note that although ICIs have units of time (seconds), dICIs are
unitless (they represent time intervals). The resulting representation of ICIs as dICIs is a discrete
random variable defined as

which takes values in the finite set . We represented the sequences of ICIs by

sequences of dICIs from that finite set. Note that any ICI value above tmax is mapped to the dICI
 and therefore represents the end of a coda. We set tmax = 1 (longer than any ICI) and δt =

0.05 throughout the analysis (see Supplementary Materials      section 3.3.2 for justification of this
choice and section 3.4.3 for an analysis on the influence of this parameter).

Variable length Markov chains
We then modeled these dICI sequences using variable length Markov chains (VLMCs). VLMCs
provide the large memory advantage of higher-order Markov chains when needed, without the
drawback of having too many unnecessary parameters in the model.

Fitting a VLMC is the process of deciding how much memory is necessary to model specific
sequences. The criterion for making this decision is the following: longer sequences are discarded
if their distribution of transition probabilities is similar to that of shorter subsequences. This
process is often called context tree estimation and consists of two steps.

The first step is to consider WD the set of all sequences of maximum length D (which we set to 10)
and to assign the following probability distribution qw to each sequence:

that is, the probability of observing a state x ∈ χ given the sequence w.

The second step is to prune the sequences that do not add information. Take two sequences u, w ∈
WD, one being the suffix of the other w = σu. The information gained Hw by considering the longer
sequence can be measured with a weighted Kullback-Leibler (KL) divergence DKL [37     ]. The
longer memory sequence w is kept only if the information gain is greater than some threshold K
[38     , 39     ]
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where N(w) denotes the length of sequence w. Sequences that satisfy this condition are called
contexts and sequences that do not are discarded. A VLMC can be defined as the set of these
contexts w and their associated probability distribution qw (see Supplementary Materials      section
3.1 for details).

A VLMC can be visualized as a tree by representing each context w by a node and setting the root
node as the context of length zero. Contexts that are subsequences of each other are then part of
the same branches, which end with the longest contexts.

Quantitative Comparison of VLMCs
If two VLMC models T1 and T2 are built over the same finite set of dICIs χ, there exists a map ϕ1 :
WD → T1 that maps any sequence of elements of χ into the longest sequence present in T1, and
similarly for T2. This map also induces a map between the probability distributions of T1 and T2.
Given two distributions over the same set χ, we can measure how different they are with the KL
divergence. Therefore, it is possible to define a dissimilarity between T1 and T2 by considering the
average KL divergence over all sequences of T1 and their map ϕ1(T2) ⊆ T1

Refer to the Supplmentary Materials      section 3.4 for a more detailed explanation.

This results in a dissimilarity measure that captures not just the difference in emission
distribution but also the structural differences of the associated context trees. When comparing
the distribution of distances in Fig. 2A      and Fig. 3A      we performed a Kolmogorov-Smirnov test
to test if the distances between social units/coda samples of the same clan and distances between
social units/coda samples of different clans had come from the same distribution. For every pair,
we can reject the hypothesis of the distances coming from the same distribution with 95%
confidence.

Hierachical Clustering of VLMCs
The dendrograms in Fig. 2B      and Fig. 3B      were obtained by hierarchical clustering using
average linkage on the set of subcoda trees (VLMCs). Since the distance is not symmetric, for
agglomerative clustering we considered the symmetric distance:

Measuring clan overlap
We used the clan spatial overlap values from [11     ]. Briefly, given two clans A and B, and the coda
samples associated to them, the amount of geographical overlap of A in B was measured as the
fraction of coda samples belonging to clan A that were recorded within 1000 kilometers of at least
one repertoire of clan B. One thousand kilometers is the approximate annual home range span of
sperm whales in the eastern tropical Pacific [40     , 41     ].

Statistical Testing
On Fig. 2      and Fig. 3      we compare the distributions of distances between subcoda trees of coda
samples/social units of the same clan (within) and of different clans (between). The purpose is to
assess whether these distributions originate from the same underlying population. We employ
both the Kolmogorov-Smirnov test and the T-test. The observed p-values were well below 0.01 for
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all clans. This allows us to confidently reject the hypothesis that there is no difference between the
vocal style between different clans. For more information check the Supplementary Materials      in
section 3.4.2.

To assess the existence of a relationship between clan overlap and vocal style similarity, we
applied an ordinary least squares linear regression model (OLS). We show the resulting p values of
the OLS statistical test at the bottom left of each plot of Fig. 4      along with the observed r2 value.
To assess whether there is true difference between the two cases, we also bootstrapped the linear
regression calculation to obtain 95% confidence intervals for the slopes of the fits, resulting in
both negative and positive values in the ID case, but only negative slope values for the non-ID case,
thus confirming our interpretation.
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Supplementary Materials

Evidence of social learning across symbolic cultural barriers in sperm whales

1 Data and Preprocessing
Sperm whales communicate vocally via clicks : short bursts of sound emitted in sequence. These
clicks are combined into recognizable patterns called codas. Clicking sperm whales were recorded
with a hydrophone, and clicks were detected in the resulting audio files by human experts. The
data that we used consists of time sequences of inter-click intervals (ICIs), i.e. the times between
two consecutive detected clicks—this is equivalent to having a time series of click onsets.
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We used two datasets: the Dominica and Pacific datasets. The Dominica dataset contains 8719
annotated codas recorded in the Atlantic Ocean near Dominica. The codas come from 12 social
units grouped into two vocal clans (EC1 and EC2). The Pacific dataset consists of around 23555
codas recorded between 1978 and 2017 in 23 Pacific Ocean locations. The codas were divided into
coda samples according to their recording day and each coda sample was assigned a single vocal
clan inferred in [11     ]. When considering a clan-level analysis all coda samples where used to
compute the VLMC models. However when analysing at a coda sample level, we discarded coda
samples with less than 200 codas with statistical inference in mind, resulting in a final count of 57
coda samples (17046 codas) for the Pacific.

To model the ICI sequences in the datasets, we represented the ICIs by a finite set of symbols (or
states), in three main steps (Fig. S1     ). First, we denoted X a continuous random variable that
represents an ICI:

Second, we imposed an upper bound tmax on the values taken by X. This was to make sure that we
are modeling with a finite number of states. Specially, in situations here the maximum number of
states have to be known. We set this value to 1 second to be sure that it is longer than any ICI.

Thirdly and finally, we discretized the values of the ICIs into a set of bins, akin to a histogram. We
denote δt the width of these bins in seconds and call it the temporal resolution of the
representation. Formally, we define

By construction, this defines a discrete random variable that takes values in the finite set
. Note that each element of this set represents a range of ICI values of length δt

seconds. Any ICI value above tmax is mapped to the symbol . It thus represents the end of a

coda. We set the upper bound to tmax = 1 seconds and δt = 0.05 (see Section 3.3 for details about the
choice of values).

We then modeled sperm whale communication sequences (Xi)i∈ℕ. In addition, for clarity, we will
denote the elements of χ by letters of the Latin alphabet A, B, and so on. In terms of terminology,
we will also refer to χ as an alphabet, and to its elements as symbols or states, interchangeably.

1.1 ID and non-ID codas

Some coda types are considered ID for some clans but non-ID for others. The Pacific dataset [11     ]
has annotations specifying this label (ID or non-ID) for each coda and each clan. For each clan, we
counted the total number of codas that are ID and the total number of codas that are not (see
Table S1     ).

We also provide similar statistics for the count of different coda types (see Table S2     ).
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Supplementary Figure S1

Representing sperm whale communication as a sequence of symbols.

a The temporal patterns of click onsets are equivalently encoded as sequences of inter-click intervals (ICIs). b We discard ICI
values larger than a threshold tmax seconds, and (c) discretize the others into a finite set of bins of width δt seconds. Each bin
is then assigned a symbol (here a letter of the Latin alphabet), so that each symbol represents an ICI in a given range. d We
then represent sperm whale communication as a sequence of these symbols.

Supplementary Table S1

Count of Codas
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Supplementary Table S2

Count of Coda Types
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2 The role of memory
A coda is a series of clicks emitted in fast succession. They have traditionally been identified by
practitioners as building blocks for sperm whale communication. Whether or not codas
themselves are composed by series of smaller collections of clicks is however an open question.
We asked: are the codas the smallest such blocks, or is there structure at a scale shorter than codas
—but longer than the individual clicks that constitute them? In order to answer this, we modeled
sperm whale communication as higher-order Markov chains, that is, Markov chains with a
memory h larger than or equal to one (but of fixed length)—see Section 2 for details. In other
words, we assume that the probability of observing an ICI within given range—here referred to as
symbol or state—depends on the h previous states. For a given h, we fit this Markov model to the
data by estimating the transition probabilities from sequence of h state to any other state.

The results are summarized in Fig. S2     , for a range of memory values h, and for two temporal
resolutions for the binning of the ICIs. We note that there is a bifurcation between two different
behaviors around h ≈ 3: transition probabilities go from very low (approximately random
transitions) to very large (almost deterministic transitions). Indeed, for h < 3, these probabilities
are very low [Fig. S2(a)     ] and all similar [Fig. S2(b)     ]. All possible next states are equally likely,
but not very likely: this indicates underfitting. On the contrary, for h > 3, the transition
probabilities are all close to one and all similar. Moreover, only a few of them are non-zero [Fig.
S2(c)     ]. Given a sequence longer than three, only one next state can be observed: this indicates
overfitting. Finally, for h ≈ 3, transition probabilities are heterogeneous: their average is between 0
and 1, their variance exhibits a peak, and more than one state can potentially be observed next.
Moreover, the Akaike Information Criterion (AIC) displays a minimum around that value of the
memory, which indicates that it provides a good trade-off between variance of the data explained
and the number of parameters needed for the model.

This transition around h ≈ 3 suggests that there is structure at that level of memory, which is
shorter than most coda types. This motivates our search for structure within codas. However,
fixed-memory Markov Chains do not allow for different configurations to have different levels of
memory, which leads to variable length Markov Chains (described in the next section).

3 Variable Length Markov Chains
Some states can be predicted with more or less memory of past states than others. This
observation is the base motivation for introducing variable length Markov Chains (VLMCs) which
go beyond the fixed-memory limit of traditional Markov chains. Take for example a state X2 that
has the same probability of occurring knowing the last two states (x0x1 ∈ χ2) or only the last state
(x1 ∈ χ1:

In this case, a shorter memory (h = 1) is sufficient and we do not need a longer one (h2).

In practice, VLMCs bypass the necessity of having (n − 1)nh parameters by allowing states to have
unequal lengths (memory). Smaller lengths are preferred whenever the additional memory does
not significantly change the distribution of transitions to the next possible states.
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Supplementary Figure S2

Fixed length Markov model bifurcates as a function of memory length h.

We show (a) the mean, and (b) the variance of the transition probabilities as a function of h. We also show (c) the number of
non-zero transition probabilities per state, and (d) the AIC. The dashed and dotted lines represent two different temporal
resolutions (i.e., bin size used during Preprocessing). There is a bifurcation around h ≈ 3 that suggests subcoda structure.

Supplementary Figure S3

Steps for fitting a VLMC from a sequence.

Step 1 (a): Construction of the full (or saturated) suffix tree up to maximum depth D. Step 2 (b): Assigning a probability
measure to every element of the tree. Step 3 (c) Pruning of nodes that carry the same information content as parents
according to Eq. (S10)     . In this example, context CBA is relevant because it changes the distribution of transition
probabilities with respect to its parent BA and therefore it is not pruned.
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3.1 Building a VLMC

For a Markov model of fixed order h, the set of possible states χh is composed of all possible
sequences of length h. For a VLMC, however, states can be sequences of arbitrary length. The set of
possible states is thus a subset of the set of all sequences that can be built from the alphabet χ,
including the empty sequence χ0 = ∅. Let W denote this set.

In this project, because codas are typically constructed from a small number of clicks, we only
consider finite length sequences (see [?] for non-finite VLMCs). In practice, we choose a maximum
memory allowed D, which we set to D = 10, much larger than the typical coda length.

Fitting a VLMC is the process of finding some subset L ⊆ WD where the elements satisfy the
condition: shorter states are preferred if their distribution of transition probabilities is similar to
their longer length equivalents. This is generally called context tree estimation in the literature [?].

Probabilising the tree

We start with WD for some D which we take to be equal to 10. To each element of w ∈ WD we
assign a probability distribution qw over the set χ as the probability of observing a state x ∈ χ
given a previous sequence w.

Where P denotes the likelihood estimation computed as

where N (w) the number of occurrences of the sequence w.

Pruning the tree

Given two sequences u, w ∈ WD, we say that u is a suffix of w if w = σu for some other sequence σ
of length ≥ 1. If σ ∈ χ we say that u is a parent of w. That is, u is a parent of w if u is a suffix of w
and w is longer by only one letter.
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In an intuitive way, u is a parent of w if w “looks into the past” one step further than u. At the core
of the VLMC is measuring the information gain in using the longer memory u instead of its shorter
memory parent w. If this information gain is not sufficient, then we discard the longer memory u.
We measure the information gain in using the longer memory w instead of u with a weighted
Kullback-Leibler (KL) divergence DKL [37     ]:

The longer memory sequence w is kept if and only if the information gain is greater than some
threshold K [38     , 39     ]. Refer to Section 3.3 for a discussion on the value of K. The set of all
sequences that respect the above threshold are called contexts, and denoted by T:

A VLMC is the the Markov model with the set of states:

and with transition probabilities defined by qw for w ∈ T.

3.2 Model Selection

When modeling a process (Xi)i∈ℕ with a Markov model, the memory length h controls the trade-off
between complexity and error. Higher memory values tend to result in models that generalize
poorly. On the other hand, lower values of h fail to capture the patterns, resulting in a uniformly
random model.

To choose an appropriate value of h, it is common to employ some statistic that measures the
trade-off between precision in prediction and the number of parameters. A model with high
predictability and a low number of parameters is favored. There is a wide range of metrics [?] and
one of the most widely used is the AIC [?, ?]:

 is the maximum likelihood of the sequence (Xi)i∈ℕ given the Markov model Mh

with memory length h and k parameters (transition probabilities). The best model is indicated by
the lowest AIC.

3.3 Parameter sensitivity

3.3.1 Information gain threshold K

The threshold value K represents the minimum information gain necessary to increment the
memory of a given context by one. This value ultimately influences the depth and shape of the
VLMC model. Low thresholds result in deep trees with many parameters and are prone to
overfitting, whereas small threshold values cause trees to not expand past low values of memory
and potentially fail to capture statistical dependencies (Fig. S4     ).
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The best value of K should be the one that outputs the optimal VLMC model (i.e., the one that
minimizes the AIC).

However, this search is done over the entire set of possible context trees. The problem of
estimating the optimal context tree is an ongoing research area although many good methods
have been proposed [39     ].

For some threshold K. The above dissimilarity is an expression of differences of deviances and as
such follows an asymptotic  distribution [38     ] with |χ|−1 degrees of freedom. As such we

can set the K thresholds to represent quantiles of a χ2 distribution. We use the 0.95 quantile,
meaning we keep the child whose additional memory exceeds the value:

3.3.2 Temporal resolution δt

The temporal resolution τt denotes the scale at which we discretize the continuous, absolute ICI
values into bins. A small value might provide differentiation between clicks, but also burdens the
VLMC models by increasing the number of parameters and states.

To select the most appropriate resolution parameter, one might be tempted to compare the AIC
obtained from different VLMC models extracted from data at different resolutions. However, that
is not possible since models fit on different data are not really comparable. Imagine the extreme
case with a time resolution so large that all clicks are mapped to the same discrete symbol: any
model fit on this data would achieve an optimal AIC value.

In our case, we compare the AIC obtained from the VLMC model with the AIC obtained from a
fixed length Markov model of order 0 fitted to the same aggregated data. The intuition behind this
approach is that the zero length Markov model represents how “easy” it is to predict the data. The
best resolution would be the one where the difference between the AIC of our fit VLMC is the
biggest when compared to the 0th order Markov model (Fig. S5     ).

3.4 Quantitative comparison of VLMCs

The KL divergence is one of the most used methods for measuring statistical dissimilarity between
two distributions, mostly due to its connections to information-theory. Being a generative model, a
VLMC is not a single probability distribution, but a set of distributions qw one for each context w ∈
T.

Given two VLMC models T1 and T2 over the same alphabet χ. Let p and q be their associated sets of
transitions distributions, respectively. We define the divergence dKL(T1, T2) between them as the
average KL divergence between the set of associated transition distributions.

However, there may not be a one-to-one map between qw and pw. In fact, more often than not T1
and T2 have a different number of contexts. As such, for every w ∈ T1 we associate u ∈ T2 where u
is the longest suffix of w that belongs to T2. This results in a dissimilarity measure that captures
not just the difference in emission distribution but also the structural differences of the associated
context trees:
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Supplementary Figure S4

Selecting the optimal information cutoff K.

The AIC for different VLMC models with respect to the cutoff value (K) used to build them. Above are some context trees
associated with three different VLMCs. The trees decrease in size for the threshold increases since the information gain has
to be greater for a context to be “accepted” in the tree. This effect is also visible in the average path length which can be seen
as the average memory of the model.

Supplementary Figure S5

Selecting the optimal temporal resolution.

The temporal resolution parameter δt for the preprocessing steps is chosen by subtracting the AIC of the 0th order memory
Markov model from the AIC of a VLMC model, which encodes how well the model predict versus how easy it is to predict the
data. We use this setup because the AIC alone is not sufficient, because the actual fitted dataset changes with the resolution
parameter, and thus models with different δt are not directly comparable. The minimum value is the best resolution
parameter although any value between 0.01 and 0.1 seems acceptable. We show this for three individual sperm whales
(colors) from the Dominica dataset.
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Divergence

Given two VLMCs (T1, (qw)w∈T1) and (T2, (pw)w∈T2) built over the finite alphabet χ we define the
distance:

Where  denotes the longest suffix of w ∈ T1 that belongs to T2.

3.4.1 Statistical testing on distribution of the distances

We fit a VLMC model on coda samples/social units from different clans on both the Pacific and
Dominica dataset. For each clan we compute the distances between all VLMC models belonging to
that clan (within) and between the models of the clan to the ones belonging to other clans
(between) (Fig. S7     ). On each pair (within/between) we tested the distributions to check if they
both came from the same populations. We employed both the Kolmogorov-Smirnov test and the T-
Test. We also measured the effect size using Cohen’s method. The resulting statistics for both
datasets can be found in the tables below.

3.4.2 Non-ID results by coda type

In this section we repeat the approach on comparing the geographical clan overlap with the VLMC
distance on non-ID codas. In contrast to the main text, we segment each set of codas by coda type
and note the slope, the p-value of the Pearson correlation and the p-value according to a Spearman
correlation, Table S4     . Just as the main text, when segmenting by coda type we observe that the
vast majority of correlations is negative, i.e., geographically overlapped clans have a more similar
communication. However, although most correlations are negative, only a small portion is
significant. It is important to take into consideration that the amount of data used to fit each VLMC
model is considerably reduced given the extra segmentation. Furthermore, coda types that were
uttered exclusively by only two clans were also omitted as it is always possible to draw a line
between two points, and thus a linear analysis makes little sense.

3.4.3 Stability under different resolutions

We also show that our results about the effect of sympatry on non-ID coda vocal styles hold for
different values of the time resolution. That is, that the parameter preprocessing steps and the
method parameters have little to no effect on the fundamental results of our approach. In Fig.
S9      we repeat the analysis of the main text. We compare the geographical overlap with the
distance between the VLMC of the pacific clans on both non-ID and ID codas.

We observe that regardless of the time resolution used in the method (for discretizing the
continuous ICIs into discrete ICIs), our results hold. That is, there is never a significant correlation
between overlap and ID codas and that there is always a negative correlation between clan
overlap and non-ID codas.

https://doi.org/10.7554/eLife.96362.1
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Supplementary Figure S6

Measuring dissimilarity between two VLMC models.

The two trees represent two VLMCs models built over the same alphabet χ. We measure their dissimilarity or distance with
the KL divergence.

Supplementary Figure S7

Comparison of the distribution of distances between VLMC models, with statistical significance.

Each color represents a clan of a given dataset: Pacific A) and Dominica B). The within distribution represents the distance
between VLMC models fit on elements of the same clan. The between represent the distance between VLMC models of
different clans.

https://doi.org/10.7554/eLife.96362.1
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Supplementary Figure S8

VLMC distance and geographical overlap relation by coda type.

each bar represents a number of unique coda types. Note that almost all coda types have a negative correlation with
geographical overlap, although only a small portion is significant. The p-values shown are with respect to the Pearson
correlation, Table S4     

Supplementary Table S3

Distance distribution statistics.

Table with the p- values and the effect size corresponding to the comparison of the within/between distance distributions of
coda samples from the Dominica clans (top) and the Pacific clans (bottom), under the Kolmogorov-Smirnov (K-S test) and the
T-Test.

https://doi.org/10.7554/eLife.96362.1
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3.5 Dependence on Coda Type

In this section we provide results highlighting the lack of correlation between VLMC (subcoda
tree) similarity and coda type distribution. First, rythmic variations on how each coda type is
constructed are present and are indicative of the clan (Fig. S11      and Fig. S10     ). For example,
the way the clan EC1 vocalizes codas of type 8R is significantly different from the clan EC2 (Fig.
S11     ).

In fact one can fit a VLMC on each coda type and compare each VLMC (segmented by coda type
and clan) between both elements of the same clan and elements of different clans. We observe that
there is a statistically significant difference between the distances of VLMC from different clans
and VLMC of the same clan (Fig. S10     ). This indicates that whales vocalize different coda types in
a clan-distinctive manner. Which also point to an independence between vocal style and coda type
distribution.

3.5.1 Comparing Dendrograms

Using the distance between the VLMC trees it is possible to create a hierarchical plot of the coda
samples. One can find it beneficial to compare our resulting hierarchical plot with the clan labels
from [11     ] where the authors group the whales by coda type usage and divide the Pacific clans
into the aforementioned 7 clans. However, comparing a dendrogram with a realized set of labels is
not trivial. On the other hand, an effective comparison of two sets of labels can be achieved using
the Adjusted Rand Score, or other entropy based metrics. The Adjusted Rand Score has a value of
0.0 for random labeling (independent of number of clusters) and 1.0 for clusters that match
perfectly. The lowest possible score is −0.5 for exceptionally disparate clusterings.

To obtain two sets of labels we progressively cut the dendrogram obtained by the VLMC and
compared the set of labels with the clan labels from [11     ]. At each cut we calculate the adjusted
rand score (results in Fig. S12     ). We observed a maximum value of 0.5. This reiterates not only
the concordance with the pre-existing vocal usage clans but also emphasizes that vocal style is
capturing new information at a different, lower, scale.

3.6 Confidence Interval on relation
between non-id coda style and clan overlap

An interval confidence for the slope for the result in Figure 4      can be achieved by subsampling
the data (1000 times) and running the same linear regression analysis on the subsampled data.
From the resulting distribution of regression slopes we observe that the 95% confidence intervals
for the non-ID scenario contains only values with negative slope, while on the ID case, the
confidence interval contains both negative and positive values (Fig. S13     )

4 Classification of synthetic codas
The fixed-length Markov chains described above lack flexibility: a model with large memory h
generalizes better but requires estimating an ever-increasing number of parameters. For this
reason, we then used VLMCs, which combine the best of both worlds by determining the optimal
memory needed for each transition individually. Essentially, we keep a transition probability with
a longer memory P(Xi|xjxk) only if it changes the distribution sufficiently compared to a short
memory one P(Xi|xj).

A VLMC can be naturally visualized as a tree, where the concept of order arises from the fact that
shorter memory contexts are subsequences of longer ones. In Fig. S14A and B     , we show
examples of two VLMCs computed from data from a single sperm whale each. The visual structure
of these trees can be related to the actual information-theoretic structure of these sperm whales’

https://doi.org/10.7554/eLife.96362.1
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Supplementary Figure S9

Results are significant for different resolutions.

The dotted line represents the 0.05 confidence value. When varying the time resolution used for fitting the VLMCs we observe
that our main results persist: ID codas are not related with geographical overlap while non-ID codas always are. The bottom
row shows two illustrations of the bin sizes (and subsequently the number of different states) resulting from the
preprocessing using 0.01 and 0.1 seconds time resolution respectively.

Supplementary Figure S10

Clans vocalize different coda types in a distinctive manner

Boxplots for the distances between VLMC’s segmented by coda type and clan (Pacific A and Dominica B). We observe that
VLMC fit on different coda types but from the same clan and more similar than when compared with across clans.

https://doi.org/10.7554/eLife.96362.1
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Supplementary Figure S11

A) and C) Rhythmic variations within coda types.

All codas of type 8R that were vocalized by whales of the Dominican clan EC1 (blue) and EC2 (green), along with the average
position and variation over all vocalizations. B) No correlation with coda type distribution. Comparison between VLMC
distance and KL-Divergence (entropy) between coda type distributions on the data used to fit the VLMC.

Supplementary Figure S12

Adjusted Rand Score for VLMC clustering dendrogram

Comparison of the dendrogram obtained from the VLMC distance between the trees with the vocal clan labels. The values of
the Adjusted Rand Score go from −0.5 to 1.

https://doi.org/10.7554/eLife.96362.1
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Supplementary Figure S13

Bootstraping regression results of Figure 4     .

Resulting distribution of slope values for subsamples of the data for the ID coda case A and the non-ID case B. The shaded
area represents the 95% confidence interval.

https://doi.org/10.7554/eLife.96362.1
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communication. Indeed, the root node is represented in orange, and nodes that are depth h in the
tree (that is h edges away from the root node) represent context (or sequences) of memory h. To
verify that the structure we observe actually contains information, we need to compare it to the
structure of a null model. To do this, we took the same ICI time series used to build the tree from
Fig. S14A     , and randomly shuffled its ICIs. This way, all temporal information is lost. This results
in a tree that has no structure, as shown in Fig. S14C     . The VLMC-indicated structure can thus be
interpreted as coming from the sperm whale communication.

Having confirmed that our VLMCs capture some communication structure, we ask: What and how
much structure does it capture? To answer this, we took advantage of two facts. First, the VLMCs
can be used to generate new codas by generating sequences of states that correspond to ICIs.
Indeed, like for any Markov model, we can start from the empty sequence, and start adding
suffixes with probabilities defined by the model (see Methods). In other words, we can generate
synthetic data. Second, in [12     ] the authors present an LSTM-based classifier capable of assigning
a coda to a specific clan with over 90% accuracy. We trained it on the original ICI data used to
build our trees, achieving similar accuracy as shown by the black curve in Fig. S15     . To verify
how much information our VLMCs capture, we used that trained classifier on the synthetic codas
generated with our trees. Remarkably, it classified the generated data with between 70 and 80%
accuracy, depending on the temporal resolution 5t (blue in Fig. S15     ). The fairly small difference
in accuracy between the real and synthetic data indicates that a large part of the communication
structure captured by the classifier in the real data is also captured by our VLMC models.

https://doi.org/10.7554/eLife.96362.1
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Supplementary Figure S14

VLMCs capture structure of sperm whale communication.

We show context trees associated with the variable length models built for two individual sperm whales: (a) ATWOOD, and (b)
FORK. For comparison, we show (c) the corresponding tree after randomly shuffling ICIs from the same timeseries data used
to build (a). Note how the shuffled version does not exhibit any structure. The orange node represents the root node, and the
size of each node represents the number of occurrences of the associated context.

Supplementary Figure S15

Deep learning classifier trained on real communication data
generalises well to synthetic data generated by the VLMCs.

We show (a) the accuracy of the classifier on the real data (in black) and the synthetic data (in blue), as a function of the
temporal resolution δt. The dashed grey curve highlights the maximum accuracy of on the generated data. The classifier’s
task was to identify to which of (b) two clans the data belonged to: EC1 or EC2.
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Supplementary Figure S16

Vector Space embedding using UMAP

Embedding of all the Pacific Ocean clans according to their VLMC distance into two dimensions using UMAP.

https://doi.org/10.7554/eLife.96362.1
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Supplementary Table S4

Geographical overlap and subcoda distance by coda type.

Results of comparing the geographical overlap and VLMC distance segmented by coda types. Negative correlations are
highlighted as well as p-values that are below 0.05. “Number of Clans” represents how many clans were compared.
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Reviewer #1 (Public Review):

Summary:

This manuscript presents evidence of 'vocal style' in sperm whale vocal clans. Vocal style was
defined as specific patterns in the way that rhythmic codas were produced, providing a fine-
scale means of comparing coda variations. Vocal style effectively distinguished clans similar
to the way in which vocal repertoires are typically employed. For non-identity codas, vocal
style was found to be more similar among clans with more geographic overlap. This suggests
the presence of social transmission across sympatric clans while maintaining clan vocal
identity.

Strengths:

This is a well-executed study that contributes exciting new insights into cultural vocal
learning in sperm whales. The methodology is sound and appropriate for the research
question, building on previous work and ground-truthing much of their theories. The use of
the Dominica dataset to validate their method lends strength to the concept of vocal style and
its application more broadly to the Pacific dataset. The results are framed well in the context
of previous works and clearly explain what novel insights the results provide to the current
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understanding of sperm whale vocal clans. The discussion does an overall great job of
outlining why horizontal social learning is the best explanation for the results found.

Weaknesses:

The primary issues with the manuscript are in the technical nature of the writing and a lack
of clarity at times with certain terminology. For example, several tree figures are presented
and 'distance' between trees is key to the results, yet 'distance' is not clearly defined in a way
for someone unfamiliar with Markov chains to understand. However, these are issues that
can easily be dealt with through minor revisions with a view towards making the manuscript
more accessible to a general audience.

I also feel that the discussion could focus a bit more on the broader implications - specifically
what the developed methods and results might imply about cultural transmission in other
species. This is specifically mentioned in the abstract but not really delved into in detail
during the discussion.

https://doi.org/10.7554/eLife.96362.1.sa2

Reviewer #2 (Public Review):

Summary:

The current article presents a new type of analytical approach to the sequential organisation
of whale coda units.

Strengths:

The detailed description of the internal temporal structure of whale codas is something that
has been thus far lacking.

Weaknesses:

It is unclear how the insight gained from these analyses differs or adds to the voluminous
available literature on how codas varies between whale groups and populations. It provides
new details, but what new aspects have been learned, or what features of variation seem to
be only revealed by this new approach?
The theoretical basis and concepts of the paper are problematical and indeed, hamper
potentially the insights into whale communication that the methods could offer. Some aspects
of the results are also overstated.

https://doi.org/10.7554/eLife.96362.1.sa1

Reviewer #3 (Public Review):

Summary:

The study presented by Leitao et al., represents an important advancement in
comprehending the social learning processes of sperm whales across various communicative
and socio-cultural contexts. The authors introduce the concept of "vocal style" as an addition
to the previously established notion of "vocal repertoire," thereby enhancing our
understanding of sperm whale vocal identity.

Strengths:

https://doi.org/10.7554/eLife.96362.1
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A key finding of this research is the correlation between the similarity of clan vocal styles for
non-ID codas and spatial overlap (while no change occurs for ID codas), suggesting that social
learning plays a crucial role in shaping symbolic cultural boundaries among sperm whale
populations. This work holds great appeal for researchers interested in animal cultures and
communication. It is poised to attract a broad audience, including scholars studying animal
communication and social learning processes across diverse species, particularly cetaceans.

Weaknesses:

In terms of terminology, while the authors use the term "saying" to describe whale
vocalizations, it may be more conservative to employ terms like "vocalize" or "whale speech"
throughout the manuscript. This approach aligns with the distinction between human speech
and other forms of animal communication, as outlined in prior research (Hockett, 1960;
Cheney & Seyfarth, 1998; Hauser et al., 2002; Pinker & Jackendoff, 2005; Tomasello, 2010).

https://doi.org/10.7554/eLife.96362.1.sa0

Author response:

We thank the reviewers for their positive assessments and constructive feedback.

In light of their comments, we will aim to improve the explanation of the methods and
interpretation of results, as well as their relation to well-established literature in this
research area.

The major contributions of our work are threefold:

First, we introduce a novel way of analyzing codas that specifically targets subcoda
structures by considering inter-click intervals within codas in terms of transition
probabilities. By describing codas’ click patterns via Variable Length Markov Chains,
we do not need to consider codas in their entirety, but we can detect coda
subunits.This enables a new dimension for quantitatively comparing differences
among various individuals, social units, and clans; which we term ‘vocal style’.

Using this approach, we reinforce findings from past research, including the idea that
identity codas function as symbolic markers of vocal clan identity (Hersh et al., 2022;
Sharma et al., 2024). More importantly, we offer new insights into the function of non-
identity codas, which comprise the majority of coda types produced by sperm whales
but have been largely uncharacterized.

Our work reveals that non-identity coda vocal styles are more similar for spatially
overlapped clans, and suggests that this similarity in style may be maintained by social
learning across clan boundaries. This opens up a paradigm shift in our understanding
of between-clan acoustic interactions.

From a broader perspective, our work builds on two well-established research areas: the
form and function of sperm whale codas, and statistical generative models, specifically
Variable Length Markov Chains on finite data spaces. Our methods, results, and
interpretations are grounded in theories and concepts from these fields.

For clarity, we will ensure that our terminology aligns with field standards and existing
research. We will clearly introduce each key theory or concept at first mention and justify its
relevance. In particular, we will clarify the definition and meaning of the distance between
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subcoda trees for a general audience. We agree with the reviewers’ comments on the broader
implications and will refine our work accordingly.

https://doi.org/10.7554/eLife.96362.1.sa4
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