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We propose a cross-order Laplacian renormalization group (X-LRG) scheme for arbitrary higher-
order networks. The renormalization group is a pillar of the theory of scaling, scale-invariance,
and universality in physics. An RG scheme based on diffusion dynamics was recently introduced
for complex networks with dyadic interactions. Despite mounting evidence of the importance of
polyadic interactions, we still lack a general RG scheme for higher-order networks. Our approach
uses a diffusion process to group nodes or simplices, where information can flow between nodes and
between simplices (higher-order interactions). This approach allows us (i) to probe higher-order
structures, defining scale-invariance at various orders, and (ii) to propose a coarse-graining scheme.
We demonstrate our approach on controlled synthetic higher-order systems and then use it to detect
the presence of order-specific scale-invariant profiles of real-world complex systems from multiple
domains.

I. INTRODUCTION

The renormalization group (RG) [1] is a cornerstone of
modern theoretical physics because it allows us to study
how a physical system depends on the scale of observa-
tion, defining universality classes and, importantly, for-
malizing the concept of scale-invariance. While the RG
has been a powerful tool for understanding a broad class
of physical systems, extending its framework to complex
networks has posed a recent and significant challenge,
mainly due to the correlations between scales caused by
small-world effects [2]. This challenge has gained sub-
stantial attention [3–10] due to its potential to provide in-
sights into the multiscale structural organization of com-
plex networks.

Notable approaches [6, 11] are based on the hypothe-
sis that an embedding space exists and is responsible for
the network structure. This underlying geometry pro-
vides a natural way to identify groups of nearby nodes,
reminiscent of spin blocks in the traditional real-space
RG process [12]. These groups can then be collapsed
into “super-nodes”, providing a coarse-grained network
description. However, this perspective encounters a fun-
damental limitation: networks are inherently topological
structures, devoid of geometry, and thus need a topolog-
ical notion of RG [7, 13].

Diffusion provides such a notion: it is a dynamical pro-
cess that one can define on any combinatorial structure
and depends only on the structure’s topology. Diffusion
on graphs describes the dynamics of information flow-
ing from node to node through edges, eventually becom-
ing uniformly distributed on its connected components.
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This process is formalized as a first-order system of lin-
ear differential equations specified by the graph Lapla-
cian matrix L. One can then see the diffusion time as
a resolution parameter : at short times, information only
diffuses to neighboring nodes, revealing local structure;
at longer times, diffusion reaches nodes further apart and
reveals the global network structure. A recent proposal,
the Laplacian renormalization group (LRG) scheme [10],
leverages this observation to produce coarser descriptions
of a network’s structure by identifying groups of nodes
that are strongly linked by diffusion at a given scale.
Moreover, one can adopt this same approach to define
an informational notion of scale-invariance, based on the
properties of the diffusion process via the Laplacian spec-
trum [14], and thus different from the canonical concept
of scale-freeness, which instead depends directly on the
degree distribution. Both of these results hinge on the
formalism of network density matrices [15] to describe
the complete behavior of information diffusion at a given
scale.

Networks, however, are only part of the story. Great
attention has recently been devoted to the study of
higher-order networks: networks that encode multi-node
interactions, going beyond the pairwise interactions of
traditional networks [16–18]. Higher-order interactions
are present in many natural systems and drastically im-
pact most dynamical processes, such as random walks
[19–21], diffusion [22, 23], spreading [24–30], coordina-
tion [31–37], and synchronization [38–43]. A higher-order
interaction between k+1 nodes is typically called a sim-
plex of order k (or equivalently (k+1)-hyperedges). Sys-
tems with such interactions are formalized using simpli-
cial complexes or hypergraphs, with the former being
more structured, as the presence of interaction also re-
quires the presence of interactions between all of its node
subsets.
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However, little work exists on RG approaches to
higher-order networks despite their importance. A direct
generalization of the Laplacian RG approach [10], based
on the multiorder Laplacian [39], was recently proposed
[44]. This proposal is, however, node-centric: it only
considers the diffusion of information from node to node.
A parallel research line [14, 45, 46] focused on specific
families of simplicial complexes and used renormaliza-
tion group techniques to compute some notable statisti-
cal properties.

Here, we propose a general renormalization group
scheme for arbitrary higher-order networks. Our ap-
proach uses a higher-order notion of diffusion that we
formally define by introducing the cross-order Laplacian.
In this new diffusion process, information can flow be-
tween simplices of any order k via simplices of any other
order m. This proposal provides a natural generaliza-
tion of previous ones [44, 47], which are restricted to
node-node diffusion. By studying the properties of this
diffusion via the cross-order Laplacians, our approach al-
lows us to probe the existence of characteristic scales,
or—crucially—their absence (scale-invariance) in higher-
order networks at each order. In particular, we first
define the appropriate Laplacian matrices to describe
generic higher-order diffusion. We then leverage them
to define (i) a higher-order notion of informational scale-
invariance through the von Neumann entropy and en-
tropic susceptibility, and (ii) an explicit RG scheme in-
formed by a chosen higher-order diffusion process. Us-
ing these tools, we extract a cross-order scale signature
in simplicial complexes obtained from synthetic models
and real-world data and show that in most cases, scale-
invariance is found only under the lens of specific orders,
suggesting the existence of underlying order-specific pro-
cesses.

II. HIGHER-ORDER NETWORKS AND THEIR
STRUCTURE

a. Higher-order networks. Let ∆ be a higher-
order network (also named hypergraph) on a finite set
of vertices V , i.e., a family of subsets of V . Any element
of ∆ is called simplex (or hyperedge) and its order is
defined as its cardinality reduced by one. A vertex will
thus be a 0-simplex, an edge a 1-simplex, a triangle a
2-simplex, and so on. If η ∈ ∆ is a subset of a k-simplex
σ, then we say that η is a face of σ. We write ∆k to
denote the set of k-simplices of ∆ and call nk its cardi-
nality. The object ∆ is a simplicial complex when closed
under inclusion, that is, σ ∈ ∆, η ⊆ σ =⇒ η ∈ ∆.
Having fixed an order k ∈ N, we want to find whether

the hypergraph possesses characteristic scales or is
scale-invariant from the perspective of k-simplices. In
Ref. [10], it is argued that a diffusion process can be seen
as a telescopic scanner of a (pairwise) network capable
of extracting multiscale information about its structure.
This fact suggests studying our hypergraph’s k-th order

properties through a diffusion process on the k-simplices.

b. Cross-order Laplacians. A diffusion-like pro-
cess on the simplices of a higher-order network can be
defined in multiple ways, each associated with a differ-
ent Laplacian matrix. In the case of simplicial com-
plexes, the k-th order combinatorial Hodge Laplacian,
proposed by Eckmann [48], is the one most commonly
considered [49, 50], mainly for its deep connections with
topology [49]. A diffusion process on the k-simplices [22]
can indeed be defined with the Hodge Laplacian, mak-
ing it a natural candidate for our approach. However,
it is possible to see that diffusion through the Hodge
Laplacian does not correspond to a “standard” diffusion
process as, for instance, the total amount of information
flowing between simplices is not conserved (more details
can be found in the Supplementary Information Section
1). Due to this lack of clear physical interpretability, it
is difficult to directly employ it in the Laplacian renor-
malization framework proposed in Ref. [47]. Moreover,
the Hodge Laplacian cannot be naively extended to the
general hypergraph setting.
Thus, we define a new family of Laplacian matrices

that can describe a plethora of higher-order relations
while maintaining a form analogous to the canonical
graph Laplacian. We do this by taking inspiration from
the general theory of combinatorial complexes [51] and
the hypergraph Laplacian [52].
Formally, we fix a number k ∈ N, which we call dif-

fusion order, to describe a diffusion process on the k-
simplices of the hypergraph. We then need to decide
how the process occurs, specifically, how simplices are
“connected” so that information can flow between them.
The most natural approach is to extract this information
from the structure of ∆ by employing a notion of adja-
cency among simplices. In general, two k-simplices σ and
η can be adjacent in two ways:

• σ, η are m-adjacent from above, when there is an
m-simplex ξ, with m > k, containing both of them
ξ ⊇ σ ∪ η;

• σ, η are m-adjacent from below, when they share a
common m-face ξ ⊆ σ ∩ η.

Combining these two definitions, we can define the ad-
jacency number a(k,m) of a pair of distinct k-simplices
σ ̸= η as

a(k,m)(σ, η) =





| {λ ∈ ∆m : λ ⊆ σ ∩ η} | if m < k

| {λ ∈ ∆m : σ ∪ η ⊆ λ} | if m > k

0 if m = k

(1)

so that we may consider η and σ to be m-adjacent σ
m∼ η

when a(k,m)(σ, η) > 0. Intuitively, a(k,m)(σ, η) counts the
number ofm-simplices connecting σ and η, allowing us to
differentiate between different “strengths” of adjacency.
For example, a(2,0) = 1 when two triangles share a single
vertex and a(2,0) = 2 when they share an edge.
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FIG. 1. Cross-order Laplacian renormalization scheme: partition and coarse-grain. a. Schematic representation of
how the adjacency graphs are built for a simplicial complex. Notice how there can be cases like G(0,2), where the edges are
weighted (here represented with multi-edges) because two vertices can be connected by more than one triangle. b. Pictorial
representation of our higher-order coarse-graining scheme with k = 2: (i) a partition of the 2-simplices of a simplicial complex,
here represented in color, is obtained through ζ, (ii) each vertex inherits a signature containing the labels of all 2-simplices
it belongs to, (iii) vertices with the same signature are glued together and simplices are induced from the starting simplicial
complex.

The (k,m)-adjacency relations can be formalized into
different adjacency matrices, analogous to those de-
fined in Refs. [51, 53]. If we index the k-simplices as
σ1, . . . , σnk

, we can define the (k,m)-adjacency matrix
with diffusion order k and interaction order m as the
square nk × nk matrix with elements

(A(k,m))ij = a(k,m)(σi, σj). (2)

The adjacency matrix A(1,2), for example, describes
how edges (1-simplices) are connected through triangles
(2-simplices), while A(3,0) tells us how tetrahedra (3-
simplices) are attached to one another through vertices
(0-simplices).

The matrix A(k,m), notice, can be seen as the adja-
cency matrix of a (weighted) graph, which we call adja-
cency graph G(k,m) (see Figure 1a), whose nodes are the
k-simplices and the edges are their adjacency relations
given by m-simplices. In particular, G(0,1) is the graph
underlying the higher-order network (i.e. ∆0 ∪∆1) and
G(1,0) corresponds to its line graph [54]. To each weighted
adjacency matrix, we can associate its (weighted) Lapla-
cian, which we name cross-order Laplacian, through the
usual formula

L×
(k,m) = diag(deg(k,m))−A(k,m), (3)

where deg(k,m) is the vector containing the higher-order

(k,m)-degrees, defined as the row-sums of A(k,m). More
specifically,

deg(k,m)(σ) =
∑

η∈∆k

a(k,m)(σ, η). (4)

The matrix L×
(k,m), being a weighted graph Laplacian,

is symmetric, positive semidefinite and has an eigenvalue

0 with multiplicity given by the number of connected
components of its underlying graph G(k,m). We note that
our definition includes two existing families of Laplacians
as particular cases: (i) the “vertex-centric” higher-order
Laplacians describing how vertices can exchange informa-
tion through simplices (e.g., the generalized Laplacians
of Ref. [39]), as cross-order Laplacians of the form L×

(0,m)

and (ii) Hodge-like Laplacians where diffusion happens
between simplices through simplices of a directly adja-
cent order, as L×

(k,k±1). Cross-order Laplacians general-

ize these two notions, allowing the description of diffusion
processes which, as with Hodge Laplacians, can happen
on simplices of any order and, as with generalized Lapla-
cians, can “jump” orders, connecting them with simplices
of any other order.

III. STATISTICAL PHYSICS OF
HIGHER-ORDER DIFFUSION PROCESSES

a. Cross-order diffusion. From now on, we will
consider the high-order diffusion process on k-simplices
through m-simplices on a given ∆, and thus omit the
(k,m) notation. Such a process can be easily written as
the linear, first-order ODE

ẋ(τ) = −L× x(τ), (5)

where x(τ) ∈ Rnk is a real scalar function on the k-
simplices. Equation (5) can be solved with the time prop-
agation operator (also called heat kernel) at time τ > 0,

ρ(τ) = e−τL×
, (6)

so that

x(τ) = ρ(τ)x(0). (7)
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Due to linearity, the j-th column ρ(τ),j of ρ(τ) describes
the distribution of information over the k-simplices at
time τ , when the total information is concentrated in a
single k-simplex σj at time τ = 0.

It turns out that we can derive aggregate measures
from the heat kernel, both for the standard Laplacian
on networks [15] and for Hodge Laplacians on simplicial
complexes [55]. These can help us probe the character-
istic scales of the structure under consideration. First, ρ
is normalized to a density matrix [15]

ρ̂(τ) =
e−τL×

Z(τ)
(8)

where Z(τ) = Tr
(
e−τL×

)
is called the return probabil-

ity, describing how much of the information has remained
“trapped” and did not diffuse at time τ [56]. With this
density matrix, we can compute the von Neumann en-
tropy associated to the diffusion process as

S(τ) = −Tr(ρ̂(τ) log ρ̂(τ)) (9)

and its entropic susceptibility [47]

C(τ) = − dS

d log τ
. (10)

The density matrix formalism and the associated von
Neumann entropy allow us to describe a network’s trans-
port properties by simultaneously considering all possible
diffusion trajectories. Thus, we can directly apply it to
the cross-order Laplacian to investigate our hypergraph’s
k-th order properties at different scales. This approach,
in the k = 0 case, has been fruitfully explored in the lit-
erature to extract key information about the network’s
structural organization [15, 57–59].

In particular, the maxima and minima of the entropic
susceptibility, associated with times of fast deceleration
and acceleration of the diffusion process, were shown, in
the case of networks, to correspond to the presence of
characteristic scales [10, 47]. Most importantly, when
C(τ) is constant over a time range I = [τmin, τmax], we
say that ∆ exhibits informational scale-invariance [10]
in I. Explicitly writing orders (k,m) again: it is
known that the (network, k = 0 and m = 1) entropic
susceptibility C(0,1)(τ) shows a large plateau in the
case of grid graphs, Barabási-Albert networks, and
random trees, all of which are examples of self-similar
structures. Interestingly, entropic susceptibility and
the associated notion of scale-invariance can be related
to the concept of spectral dimension [60–62], which
intuitively measures the dimensionality “perceived” by
a diffusion process taking place on a manifold or, in our
case, a graph (see Supplementary Information Section 2).

b. Measuring scale-invariance. Following the
considerations above, we want to quantify whether a
higher-order network exhibits scale-invariance at order
k via order m. To do so, we define the scale-invariance

parameter (SIP) P(k,m)(ϵ), as the logarithmic lifespan of
the longest connected plateau of C(k,m)(τ) w.r.t. a given
tolerance ϵ > 0 on its “flatness”. In detail, given a value
y > 0, we define the set

E(k,m)(y; ϵ) =
{
τ > 0 : | logC(k,m)(τ)− y| < ϵ

}
(11)

which, being the inverse image of the open interval (y −
ϵ, y + ϵ), will be given by a countable, disjoint union of
open intervals (ai, bi)

E(k,m)(y; ϵ) =
∐

i

(ai, bi). (12)

We then define the scale-invariance parameter as

P(k,m)(ϵ) = max
y>0

max
i

(log bi − log ai). (13)

If P(k,m)(ϵ) is large, we can say that the hypergraph is
scale-invariant at order k via order m, while if it is close
to 0 then C(k,m)(τ) is peaked, thus signaling the presence
of characteristic scales. Unless stated otherwise, in the
numerical experiments we fix ϵ = 0.2 and omit ϵ in the
notation: P(k,m)(ϵ) ≡ P(k,m).

IV. CROSS-ORDER LAPLACIAN
RENORMALIZATION SCHEME

Let us assume that a hypergraph ∆ has been recog-
nized as scale-invariant with respect to C(k,m)(τ) (10).
We would now like an algorithmic method to reduce it to
a smaller, equivalent one that can still be recognized as
scale-invariant. Similarly to the case of networks, we can
devise a higher-order Laplacian renormalization scheme
based on the relationship between k-simplices through
m-simplices.

It consists of the following steps:

1. first, choose a diffusion order k and an interaction
order m, resulting in the cross-order Laplacian ma-
trix L×

(k,m);

2. choose a diffusion time τ∗ > 0 corresponding to the
scale at which to “zoom out”;

3. compute a partition of the k-simplices from the val-
ues of ρ(k,m)(τ

∗) such that simplices in the same set
are strongly linked by the diffusion process at time
τ ;

4. coarse-grain ∆ by merging its vertices according to
the partition to obtain a new, smaller ∆′.

The process is then repeated, resulting in a sequence of
hypergraphs with a decreasing or constant number of ver-
tices. We name such a sequence renormalization flow.
Intuitively, step 3 identifies groups of k-simplices,

which can be seen as generalizations of the spin blocks
of Kadanoff’s renormalization scheme [12]. In general,
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FIG. 2. Scale-invariance and renormalization in pseudofractal simplicial complexes. a. Graphical depiction of the
first three steps of constructing the pseudofractal simplicial complex of dimension 2. b. Entropic susceptibility curves of all the
non-zero cross-order Laplacian matrices, computed for the 2-dimensional pseudofractal simplicial complex built with six steps
(1095 vertices). c. Values of the scale-invariance parameters as the number of steps with which the pseudofractal simplicial
complex is built increases. d. On the left, the first three steps of the L×

(0,1) renormalization scheme with τ = 0.2. On the right,

the first three steps of the L×
(1,2) renormalization with τ = 2.6.

however, they will not be homogeneous, but their shape
will reflect the structure of ∆ (see Figure 1b-i).

Once the partition of the k-simplices is obtained, we
perform a coarse-graining step to aggregate the simplices
belonging to the same block. First, we move the problem
to the domain of the vertices by letting each one inherit
the labels of all the k-simplices to which they belong (see
Figure 1b-ii). Afterward, we glue together the vertices
that inherited the same label set and induce simplices
from the starting ∆ (see Figure 1b-iii). A complete de-
scription of the method and a visualization of step 3 can
be found in Sections 3 and 4 of the Supplementary In-
formation, respectively. A code implementation of the
method can be found in [63].

Note that the choice of the time τ∗ heavily influences
the renormalization process. If τ is too low, no vertices
will be merged, whereas if τ grows large enough, every
family of connected k-simplices in G(k,m) will get the
same label.

V. HIGHER-ORDER SCALE-INVARIANCE

We now show explicit examples of applications of the
cross-order renormalization scheme. We first focus on
synthetic models of simplicial complexes to confirm that,
in controlled situations, the cross-order renormalization
group recovers exactly the scale-invariant structure and
order of the underlying system. After this confirmation,
we extract the cross-order scale signature from some real-
world datasets.

a. Pseudofractal simplicial complexes. As we
mentioned above, there are situations in which the or-
ganization of a system is most evident when looking at
it from a high-order point of view. A pretty interesting
example is given by the family of scale-free pseudofractal
simplicial complexes [64]. Simplicial complexes in this
family are built starting with a single k-simplex and by
iteratively attaching a k-simplex to each (k − 1)-simplex
already present in the complex (Figure 2a).

We expect the evident hierarchical nature of these ob-
jects to be visible in the entropic susceptibility curve of
one or more diffusion processes defined on it.

Figure 2b illustrates how the different entropic sus-
ceptibilities C(k,m) display different non-trivial behaviors.

Most importantly, the curves associated with L×
(1,2) and

L×
(2,1) show oscillating plateaux that span multiple or-

ders of magnitude in τ . These correspond to the differ-
ent, well-separated scales resulting from the iterative con-
struction process, which can be interpreted as an approxi-
mate form of higher-order informational scale-invariance.
Surprisingly, even if the network underlying the simpli-
cial complex is scale-free [65], the curve of L×

(0,1) (the

canonical graph Laplacian) is peaked, meaning that the
self-similarity of the structure is not visible at the vertex-
edge level.

These results are consistently observed when we in-
crease the number of steps with which the simplicial com-
plex is built. As expected for a growing fractal structure,
we find that almost all the scale-invariance parameters
P(k,m) (Equation (13)) for all possible cross-order Lapla-
cians increase with the number of steps in the construc-
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FIG. 3. Higher-order Laplacian renormalization scheme applied to heterogeneous NGF simplicial complexes a.
Entropic susceptibility curves, together with their 95% CIs over 10 repetitions, of the NGF simplicial complexes of flavor s = 1,
dimensions d ∈ {1, 2, 3, 4}, β = 5 and 3000 vertices. The numbers over the curve show the scale-invariance parameters. b. A
small 2-dimensional NGF simplicial complex is renormalized using L×

(0,1) (top) and L×
(1,2) (bottom). c. In the left panel, C(0,1)

together with the number of vertices of the complex after one step of L×
(0,1)-renormalization as a function of τ . In the right

panel, C(1,2) together with the number of vertices of the complex after one step of L×
(1,2)-renormalization as a function of τ . d.

Evolution of the entropic susceptibility C(1,2) over the first step of the two types of renormalization considered. The starting

NGF simplicial complex has 2000 vertices and is reduced to 854 vertices by the flow of L×
(0,1) (τ

∗ = 0.06) and to 1318 by L×
(1,2)

(τ∗ = 0.6).

tion of the pseudofractal complex (Figure 2c). Crucially,
we also find that the highest values of P are consistently
obtained for P(1,2) and P(2,1), which correspond to the
cross-order Laplacian naturally associated with the com-
plex’s growth (addition of triangles along edges). Con-
sistently, we also find that the values of P(2,0), P(1,0) and
P(0,2) have low values which remain approximately con-
stant, while P(0,1) slowly increases, indicating the pres-
ence of a growing plateau (which was invisible in Fig-
ure 2b, where we show results for the realization with
six steps). Finally, we observe that the observed behav-
ior is also consistent with previous results [14] on the
spectrum of L×

(0,1) of pseudofractal simplicial complexes,

which has power-law behavior for small eigenvalues when
the number of vertices is large, i.e. a plateau in the en-
tropic susceptibility (see Methods of [47]). However, the
scale-invariant behavior is much more easily and quickly
detectable when considering the entropic susceptibility of
Laplacians associated with the complex’s intrinsic growth
process (between edges and triangles), even when the
number of vertices is still small.

We confirm this observation by applying the renormal-
ization scheme (Section IV) to a pseudofractal simplicial
complex of dimension 2 and visualizing its evolution at

each step. We find that the renormalization based on
L×
(1,2) preserves the structure of the simplicial complex,

perfectly reversing its iterative construction process (Fig-
ure 2d, right). In contrast, a renormalization flow based
on L×

(0,1) destroys the pseudofractal structure and rapidly

collapses the central vertices, resulting in a “star-shaped”
simplicial complex with no apparent relation with the
original one (Figure 2d, left). In the Supplementary In-
formation (Section 5), we thoroughly explore the renor-
malization of the pseudofractal simplicial complex under
different Laplacians and values of τ .
b. Network Geometry with flavor. Up to now,

we found the presence of higher-order scale-invariance
only for pseudofractal simplicial complexes. While being
a relevant consistency check, this result is not particu-
larly striking due to the homogeneity of their structure
and their evident hierarchical nature. We show here that
analogous results can be found in the case of heteroge-
neous simplicial complexes, similar to what was previ-
ously observed in random scale-free networks and ran-
dom trees [10]. To this end, a natural candidate is the
family of simplicial complexes given by the Network Ge-
ometry with flavor (NGF) model [65, 66]. Indeed, the
NGF model in dimension d can generate both hyperbolic
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manifolds and scale-free growing simplicial complexes by
progressively attaching d-simplices to (d−1)-simplices in
a stochastic manner (see Section 6A of the Supplemen-
tary Information for details on the model).

This attachment process is governed by three possible
flavors s ∈ {−1, 0, 1}, each resulting in distinct struc-
tural properties. Additionally, the model incorporates a
parameter β acting as an inverse temperature, influenc-
ing the randomness in the process.

Notably, certain higher-order degrees, depending on
flavor and dimension, exhibit power-law distributions,
indicating a scale-free structural organization. Specifi-
cally, deg(k,d) (Equation (4)) follows a power-law when
k ≤ d−3 for s = −1, when k ≤ d−2 for s = 0, and for all
k ≤ d−1 for s = 1 (see Section 6B of the Supplementary
Information for details).

Given their scale-free nature at all levels, our focus is
on NGF simplicial complexes with flavor s = 1. We ex-
amine their entropic susceptibility curves to discern scale-
invariance. To manage computational complexity, we cal-
culate curves only for relations predicted to be scale-free,
alongside the vertex-edge (0, 1) relation for comparison.

The situation differs from the pseudofractal case, as
shown in Figure 3a. Although the simplicial complex fol-
lows a similar construction process, its randomness does
not allow for a clear separation of the hierarchical scales.
Unlike the oscillating plateau observed in Figure 2a, the
curves of C(d,d−1) exhibit a small peak, which grows with
higher dimensions, indicating the presence of a distinct
microscopic scale. This is because the (d−1, d)-adjacency
graph (of both d-dimensional NGFs and pseudofractals)
is composed by (d + 1)-cliques arranged in a tree-like
structure, as d-simplices have d + 1 (d − 1)-faces. The
first peak thus corresponds to the microscale associated
with these cliques (see Section 4 of the Supplementary
Information for a visualization of this fact). Afterward,
a scale-invariant regime ensues, illustrated by the near-
perfect plateau of C(d−1,d). However, despite being asso-
ciated with power-law degree distributions, other curves
lack plateaus, showcasing non-trivial structural organiza-
tion at specific scales.

In Figure 3b, we visually demonstrate that a renormal-
ization based on a higher-order relation (L×

(1,2)) better

preserves the structure of a 2-dimensional NGF simplicial
complex than the standard vertex-edge Laplacian renor-
malization. Notably, Figure 3c shows that the L×

(0,1)-

renormalization drastically reduces the number of ver-
tices, collapsing them into a single super-vertex at the
first peak of C(0,1). Conversely, L×

(1,2)-renormalization

compresses the simplicial complex more gradually, re-
vealing a clear transition point just before the first peak.
This distinction is further emphasized by tracking the
evolution of the entropic susceptibility after one step of
the renormalization flow in Figure 3d, where the plateau
of C(1,2) is preserved by L×

(1,2) but destroyed by L×
(0,1).

c. Higher-order scale-invariance in real data.
The framework we established can be fruitfully employed
to scrutinize the structure of real-world networks. We

can leverage scale-invariance parameters to provide ef-
fective higher-order signatures describing their hierarchi-
cal nature in a multifaceted way. We take 6 different
real network datasets (see Section 7 of the Supplemen-
tary Information for details) and consider their associ-
ated clique complexes, i.e. build simplicial complexes by
filling their cliques up to the 2nd order. For each, we
compute all the C(k,m) and the associated P(k,m) and
build a null model by doing the same on their adja-
cency graphs randomized with a configuration model. As
shown in Figure 4a, we obtain an effective signature of
the network encoding the amount of scale-invariance in
each of its higher-order relations. We find a zoo of dif-
ferent behaviors, like the E-road network [67] and the
network science Co-authorship network [68], which are
strongly scale-invariant in the standard sense, i.e. in the
relation between vertices and edges (high values of P(0,1)

and P(1,0)). Others, like the Facebook network [69] show
negligible values of scale-invariance in every order. In-
terestingly, despite the inherent pairwise nature of the
networks, we find a marked presence of high-order scale-
invariance in some of them, like the University Rovira i
Virgili Email network [70], the C.Elegans metabolic net-
work [71–73] and the fictional A Song of Ice and Fire
social network [74]. This higher-order mark, notice, is
obtained without any assumptions on the actual higher-
order interactions present, if any, in the networks but is
based only on nodes, edges, and the cliques they form.
This observation validates our claim that some aspects
of the hierarchical scale-invariant structure of a higher-
order network may be hidden from the node-centric point
of view but can be evident when looking at how simplices
(in this case, cliques) are related to one another.
Finally, we use scale-invariance parameters as coordi-

nates to embed a larger set of real-world second-order
clique complexes in R6 (for details, see Supplementary
Information Section 7C). The first two principal compo-
nents of the resulting point cloud, we see in Figure 4b,
show high heterogeneity in the amount of higher-order
scale-invariance present in each dataset. Surprisingly, de-
spite the coarseness of this measure, we see that networks
of similar nature tend to be closer to each other, as shown
by the colored regions, highlighting the presence of spe-
cific higher-order signatures associated with each type of
data.

VI. DISCUSSION

By directly extending the Laplacian renormalization
group framework to higher-order interactions, we devel-
oped a method to investigate the structure of higher-
order networks via a robust renormalization procedure
based on the connectivity structure of higher-order rela-
tions, as encoded in the proposed cross-order Laplacian.
We showed that the renormalization scheme can revert
exactly the construction of simplicial structures that are
self-similar by construction (the pseudofractal) and de-
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FIG. 4. Higher-order scale-invariance in real data. a. scale-invariance parameters P(k,m) computed for k ̸= m ∈ {0, 1, 2},
for six different second-order clique complexes obtained from real-world network datasets. The gray line and the associated
region represent the mean and 95% CI for the values of P(k,m) associated with the (k,m)-adjacency graphs randomized with
the configuration model over 10 repetitions. b. The first two PCA components of a set of 34 real clique complexes of different
types. The color of each point represents the associated network’s type, while the size is proportional to the value of the
network’s highest SIP. The colored regions highlight clusters of nearby points that belong to the same class of networks: social
origin (I), infrastructural (II), biological origin (III).

tect the correct order of the dominating growth mecha-
nism in scale-invariant complexes with induced heteroge-
neous lower order structures (the NGF model). Armed
with these results on controlled synthetic systems, we
leveraged the entropic susceptibilities obtained in our
scheme to build scale-invariance profiles for a set of real-
world systems, revealing both different unexpected kinds
of characteristic scales and scale-invariance at various or-
ders and commonality of such profiles across systems be-
longing to the same domain.

From a technical point of view, the cross-order Lapla-
cians bear both similarities and differences with previ-
ously defined higher-order Laplacians, notably the Hodge
(or combinatorial) Laplacian [22] Lk, and the multi-
order Laplacian L(mul) [39]. In fact, both the k-order
Hodge Laplacian and cross-order Laplacians L×

(k,m) (for

any m) are defined on the simplices of order k, and thus
are nk × nk matrices, where nk is the number of k-
simplices. However, the Hodge Laplacian is limited to
adjacencies defined by boundary and coboundary rela-
tions, and thus, with m = k±1, while the cross-order can
capture arbitrary adjacencies through any m-simplices.
Conversely, the multi-order Laplacian L(mul) is defined
as the weighted sum of Laplacians defined on nodes and
adjacent via simplices of anym order. It can be rewritten

in our notation as L(mul) =
∑M

m=1 ωmL×
(0,m), where the

ωm are an arbitrary weighting scheme and M the max-
imal order considered. Similarly, we note that, while in
this work we focused on renormalization based on spe-
cific pairs (k,m), important future work should under-

stand the effect of extending the cross-order renormal-
ization scheme to a multicross-order scheme, which could
be achieved by considering combinations of simplices of
dimension higher or lower than a certain threshold on
the interaction order (e.g., L

(mul×)
k =

∑
m∈{m} ωmL×

(k,m)

over a set {m}). Also, while this work focused on sim-
plicial complexes for convenience and clearness of expo-
sition, any combinatorial structure [51] built with a set
of ranked sets is amenable to our scheme.

Finally, our results provide a new lens to address ques-
tions on the origin of different higher-order invariant
structures in various domains [75, 76], and on their effects
on dynamical processes taking place on them [25, 28], as
well as to the limits they might pose on the predictability
and reconstruction of complex systems [77].
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2

I. RELATION WITH THE HODGE LAPLACIAN MATRICES

The combinatorial Hodge Laplacian matrix [1], first introduced by Eckmann [2], is the combinatorial analogue of
the Hodge Laplacian acting on p-forms of differential geometry. It is a np × np matrix which describes a particular
relation between p-simplices which depends on (p − 1) and (p + 1)-simplices. To build it, we first need to assign
an orientation to each simplex σ = {v0, . . . , vk} ∈ ∆, i.e. an ordering of its vertices σ = [v0, . . . , vk]. When the
simplices are oriented, it is possible to define a notion of coherence and incoherence of orientation between (p + 1)
and (p − 1)-adjacent p-simplices (see [3] for details). We write σ ∼ η when σ, η are coherently oriented and σ ≁ η
when they are incoherently oriented. The Hodge-Laplacian is then defined as

(Lp)ij =





kp,p+1(σi) + p+ 1 if i = j

1 if i ̸= j, a(p,p−1)(σi, σj) ̸= 0, a(p,p+1)(σi, σj) = 0 and σi ∼ σj

−1 if i ̸= j, a(p,p−1)(σi, σj) ̸= 0, a(p,p+1)(σi, σj) = 0 and σi ≁ σj

, (1)

where kp,p+1(σi) is the number of (p+ 1)-simplices which contain σi and a(p,p±1) is the adjacency number as defined
in the main text. The pattern of non-zero elements of Equation (1) makes it clear how Lp describes relations among
p-simplices which are adjacent from below but are not adjacent from above. When two p-simplices σ, η satisfy this
condition, they are said to be parallel neighbors [4] and we write σ ∥ η.
Moreover, there are other notable differences between this matrix and the standard graph Laplacian. First, the

oriented nature of the simplices is such that the extra-diagonal elements can be both−1 and +1, instead of being all−1.
Second, the rows in general do not sum to zero. This last property comes from the fact that the vector 1 = (1, . . . , 1)⊤

does not belong in general to kerLp, which instead contains the so-called harmonic vectors corresponding to the p-th
homology classes of ∆.

These two properties make it so that diffusion through the Hodge-Laplacian is not a standard “intuitive” diffusion
process. The fact that 1 /∈ kerLp, for instance, means that the total information present in the p-simplices is not
conserved in time, as, under the dynamics ẋ(τ) = −Lpx(τ)

d

dt

∑

i

xi(τ) =
d

dt
1
⊤x(τ) = 1

⊤ẋ(τ) = 1
⊤Lpx(τ) ̸= 0.

The Hodge Laplacian and the graph-like cross-order Laplacian defined in the main text, however, can be related
in the following way. In Ref. [4], Forman introduces a combinatorial version of the well-known Weitzenböck identity
of Riemannian geometry, which states that the Hodge Laplacian can be decomposed as the sum of the Bochner (or
rough) Laplacian and a term depending only on curvature. In our discrete setting this amounts to

Lp = LB
p + Fp, (2)

where LB
p is the p-th Bochner Laplacian, a positive semidefinite matrix defined as

(LB
p )ij =

{∑
l ̸=i |Lp|il if i = j

(Lp)ij if i ̸= j
, (3)

and Fp, named Forman curvature, is a diagonal matrix containing the combinatorial curvatures of the p-simplices.
This particular decomposition is such that Fp can be thought of as a “correction” to the fact that the absolute values
of the row elements of Lp do not sum to 0. We now have that the diagonal elements of the Bochner Laplacian
correspond to the number of non-zero elements in each row, i.e. the number of parallel neighbors

(LB
p )ii = | {σj ∈ ∆p | σi ∥ σj} | (4)

which, given that in a simplicial complex simplices adjacent from above are also adjacent from below, can in turn be
related to the higher-order degrees defined in the main text:

(LB
p )ii = deg(p,p−1)(σi)− deg(p,p+1)(σi). (5)

This tells us that we can write the p-th Bochner Laplacian as the difference of two cross-order Laplacians multiplied
element-wise with a “residual” matrix Rp which includes the effects of orientations:

LB
p = (L×

(p,p−1) − L×
(p,p+1))⊙R = L∥

p ⊙Rp, (6)
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where (Rp)ij = −1 if σi ∥ σj and σi ∼ σj and 1 otherwise. Moreover, it is possible to interpret L×
(p,p−1) − L×

(p,p+1) as

the Laplacian of a new adjacency graph, which we name parallel adjacency graph, where nodes represent p-simplices

and edges connect parallel neighbors, hence the notation L
∥
p.

Finally, putting together Equation (2) with Equation (6), we find

Lp = L∥
p ⊙Rp + Fp, (7)

which suggests that we may interpret diffusion with the Hodge Laplacian, neglecting the contribution of orientation,
as a reaction-diffusion process where diffusion takes place among parallel p-simplices and reaction, responsible for the
production and destruction of information, is given by the Forman curvature.

II. SCALE-INVARIANCE AND SPECTRAL DIMENSION

To better understand the meaning of the definition of scale-invariance employed in this work, we can look from two
different angles. First, we notice,

C(τ) = C∗ ⇐⇒ dC(τ)

d log τ
= 0 ⇐⇒ d2S(τ)

d(log τ)
2 = 0 ∀τ ∈ I

which means that scale-invariance is associated to a range of times where the rate of change of the entropy (in
logarithmic scale) is constant, i.e. S(τ) does not accelerate nor decelerate. From another point of view, it is interesting
to look at the relation between the entropic susceptibility and the spectral dimension of the adjacency graphs of the
simplicial complex. The spectral dimension [5–7] intuitively measures the dimensionality “perceived” by a diffusion
process taking place on a manifold or, in our case, a graph. We define the spectral dimension Ds(τ) as the derivative
w.r.t. the logarithmic diffusion time of the logarithm of the return probability Z(τ)

Ds(τ) = −2
d logZ(τ)

d log τ
. (8)

Here τ has to be thought of as a scale instead of a time parameter, meaning that Ds(τ) measures dimensionality
at scale τ . On d-dimensional flat manifolds Ds(τ) = d for all τ , while on d-dimensional (periodic) lattices Ds(τ)
shows a large plateau whose value corresponds exactly to d [7]. In general, when Z(τ) ∝ τ−2d in a scale interval
I = [τmin, τmax], Ds(τ) has a plateau equal to d. This implies that, at these specific temporal resolutions, the spectral
dimension observed through the diffusion process remains consistent. Such behavior suggests the existence of an
inherent dimensionality within the space at these particular scales.

One can see that there is a strong relation between the entropic susceptibility

C(τ) = − dS

d log τ

and the spectral dimension, i.e.

C(τ) = −1

2

dDs(τ)

d log τ
+

1

2
Ds(τ). (9)

From Equation (9), we thus find that scale-invariance is equivalent to

C(τ) = C∗ ⇐⇒ Ds(τ) = aτ + 2C∗ (10)

i.e. the spectral dimension varies linearly w.r.t. the scale. This result tells us that informational scale-invariance
corresponds not only to spaces with a well-defined intrinsic dimensionality (a = 0), but also the case in which the
dimension varies linearly with the scale (a ̸= 0). This last situation, as we can see by taking the definition of spectral
dimension (8) and integrating Equation (10), corresponds to

Z(τ) ∝ e−
a
2 ττ−C∗

, (11)

i.e. changing the scale results in the space becoming increasingly “larger” so that the return probability decreases
exponentially fast.
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III. DETAILS ON THE RENORMALIZATION METHOD

Here we explain in detail our higher-order renormalization algorithm when applied to a general hypergraph ∆. The
main steps can be outlined in the following way:

1. first, choose a diffusion order k and an interaction order m, resulting in the cross-order Laplacian matrix L×
(k,m);

2. choose a diffusion time τ∗ > 0 corresponding to the scale at which to “zoom out”;

3. compute a partition of the k-simplices from the values of ρ(k,m)(τ
∗) such that simplices in the same set are

strongly linked by the diffusion process at time τ ;

4. coarse-grain ∆ by merging its vertices according to the partition, in order to obtain a new, smaller hypergraph
∆′.

In detail, staying faithful to the real-space Laplacian renormalization scheme, we say that k-simplices σ and η are
to be merged if the information which has flowed from σ to η is greater than the information which has stayed in σ
or η. In practice, we build an auxiliary matrix ζ with

ζij =

{
1 if ρij ≥ min(ρii,ρjj)

0 otherwise
(12)

which can be thought as the adjacency matrix of a metagraph G̃ where the nodes represent the k-simplices and the
edges connect those to be identified w.r.t. the diffusion process. A partition of the k-simplices is then obtained simply
by taking the connected components of G̃.

As prescribed by step 4, we need a coarse grain of ∆ which is informed by the partition obtained in step 3.
When the diffusion takes place between the vertices of a network, the process is quite simple [8]. It is enough

to glue together vertices belonging to the same set into super-vertices, and place a super-edge {A,B} between two
super-vertices A and B if there are two vertices a ∈ A and b ∈ B in the original network such that {a, b} ∈ ∆1. This
is readily generalized to the case of a higher-order network ∆ renormalized with a Laplacian of the form (0,m). In
fact, we can induce an l-th order super-simplex {A0, . . . , Al} between super-vertices A0, . . . , Al if there are vertices
a0 ∈ A0, . . . , al ∈ Al such that {a0, . . . , al} ∈ ∆.

If we want to renormalize the higher-order network w.r.t. a process taking place on general k-simplices, more care
is needed, as it is not clear how to naturally collapse simplices belonging to the same set in the partition. It is
important to highlight that we cannot just coarse grain the adjacency graph w.r.t. the partition, as that will result
in a smaller graph where most of the relational information contained in the hypergraph has been lost. To approach
the problem, we propose the following method which, taking inspiration from Ref. [9], aims to reduce the problem to
a node coarse-graining one.

Let us suppose that each k-simplex η has been assigned a label Λ(η) specifying which set of the partition it belongs
to. First, each k-simplex passes its label down to its vertices, or, from the other point of view, each vertex inherits the
labels from all the k-simplices to which it belongs. Thus, we associate to each vertex v a set, called signature Σ(v),

Σ(v) = {Λ(η) | η ∈ ∆k, v ∈ η} , (13)

which contains all the labels inherited. The coarse graining is then performed simply by identifying vertices possessing
the same signature and then inducing higher-order simplices as explained above. If Σ(v) = ∅, meaning that i is not
contained in any k-simplex, then we give it its own signature, so that it will be left unchanged by the transformation.

In other terms, we think of the signature as a labelling of the vertices of the hypergraph, i.e. a surjective map
f : ∆0 → S from the set of vertices to the set of signatures S. As it is explained in Ref. [3] for simplicial complexes,
starting from this labelling, we can build another hypergraph ∆′ whose vertices are the signatures, and whose simplices
consist of the maps of the simplices of ∆ through f , i.e.

∆′ = {{f(v0), . . . , f(vk)} | {v0, . . . , vk} ∈ ∆k, k ∈ N} . (14)
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IV. SIMPLICIAL PARTITION AS A FUNCTION OF TIME

In Figure S1, we visually display the behavior of steps 2,3 of the renormalization method described in the Section III,
applied on a 3-dimensional NGF simplicial complex ∆ of 220 vertices with β = 0.1. In the top part of the figure, we
show the entropic susceptibility C(2,3) associated to the diffusion process where information is situated on triangles
(2-simplices) and flows through tetrahedra (3-simplices). As discussed in the main text, this simplicial complex is
(2, 3)-scale-invariant, as we see in the large plateau which spans multiple orders of magnitude of τ . We pick 4 different
diffusion times τ∗ ∈ {0.6, 5, 100, 6000}, where the first one corresponds to the first peak in C(2,3) and the last one
falls beyond the plateau. In the second row, we see the simplicial complex ∆ with its triangles (2-simplices) colored
according to the partition obtained at different times τ∗. In the third row, we see the associated (2, 3)-adjacency
graph with its nodes again colored according to the partition at each time.

As we can see, the (2, 3)-adjacency graph of a 3-dimensional NGF is composed of cliques of 4 nodes (corresponding
to the 4 faces in a single tetrahedron) connected together through single nodes in a tree-like fashion. The first peak in
the entropic susceptibility indeed corresponds to the micro-scale associated to the integration of information in these
fundamental cliques. In fact, when τ∗ = 0.6, the partition of the nodes of G(2,3) tends to assign the same label to
nodes in the same clique. As the diffusion time increases, the number of sets in the partition decreases and each set
identifies bigger and bigger branches. When τ∗ reaches 6000, we see in the rightmost panel, we reach full information
integration and all nodes (2-simplices) belong to a single set.

FIG. S1. Simplices partition as a function of diffusion time.



6

V. RENORMALIZATION OF THE PSEUDOFRACTAL SIMPLICIAL COMPLEX

As discussed in the main text, in some simplicial complexes the constraints imposed by a higher-order coarse graining
scheme are essential to have a meaningful reduction of their structure. In Figures S2 and S3, we see the 2-dimensional
pseudofractal simplicial complexes renormalized with all cross-order Laplacians L×

(k,m) (k,m ∈ {0, 1, 2} , k ̸= m),

each with 10 different diffusion times τ . The renormalization with L×
(1,2) is the only one capable of disentangling the

characteristic scales and transform the pseudofractal in a pseudofractal of the same type (τ = 2.22 and τ ≥ 5.56 in
the figure).
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FIG. S2. Renormalization of the 2-dimensional pseudofractal simplicial complex using cross-order Laplacians L×
(0,1), L

×
(0,2) and

L×
(1,0).
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FIG. S3. Renormalization of the 2-dimensional pseudofractal simplicial complex using cross-order Laplacians L×
(1,2), L

×
(2,0) and

L×
(2,1).
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VI. RENORMALIZATION OF NETWORK GEOMETRY WITH FLAVOR

A. Model

The NGF model [10] in dimension d is able to generate both hyperbolic manifolds and scale-free growing simplicial
complexes, by progressively attaching d-simplices to (d − 1)-simplices in a stochastic manner biased by the flavor s.
The three possible ways in which the growth process is realized, named flavors, are the following:

• s = −1, which allows for at most 2 d-simplices attached to any (d − 1)-simplex, resulting in d-dimensional
simplicial manifolds;

• s = 1, which glues d-simplices to (d− 1)-simplices by preferential attachment;

• s = 0, which presents intermediate properties between the two.

Let us briefly describe the growth process of the model.
At time t = 1 the NGF simplicial complex ∆(1) is made by a single d-simplex. At each time step t > 1 a new

d-simplex is created and attached to one of the (d− 1)-simplices present in ∆(t), chosen with probability

Π[s]
σ =

1

Z [s](t)
e−βϵσ (1 + snσ), (15)

for each (d− 1)-simplex σ, where

• β is the inverse temperature, which controls the amount of randomness in the process;

• ϵσ is the energy of the simplex σ, defined as the sum of the energies of its vertices, which in turn are sampled
from a distribution g(ϵ);

• nσ is the number of d-simplices which contain σ minus one;

• Z [s](t) is the normalization constant.

From this it is easy to see that, when s = −1, all the (d − 1)-simplices which are contained in exactly 2 d-simplices
will have probability 0 to have another simplex attached to them. This results in ∆(t) being a simplicial manifold
(with boundary) for every t ≥ 1.

B. Higher-order degrees

In Ref. [10], it is proven that in a d-dimensional NGF simplicial complex with flavor s = 1, the generalized higher-
order degrees associated to m-simplices are power-law distributed (when m ≤ d − 1). In that work, however, the
definition of higher-order degree differs from the one we employ i.e.

deg(k,m)(σ) =
∑

η∈∆k

a(k,m)(σ, η). (16)

In particular, the higher-order degree km,d(σ) of the m-simplex σ ∈ is defined as the number of d-simplices which
contain σ, i.e.

km,d(σ) = | {η ∈ ∆d : σ ⊂ η} |. (17)

In this section, we prove that the degrees defined in these two ways are proportional, with a proportionality constant
dependent only on m and d. This means that when km,d is power-law distributed, then the same holds for deg(m,d).

Proposition 1 If m < d and σ ∈ ∆m, then

deg(m,d)(σ) =

[(
d+ 1

m+ 1

)
− 1

]
km,d(σ). (18)
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Proof 1 It holds that

deg(m,d)(σ) =
∑

τ∈∆m

a(m,d)(τ, σ) =
∑

τ∈∆m,τ ̸=σ

| {η ∈ ∆d : σ ∪ τ ⊆ η} | =
∑

τ∈∆m,τ ̸=σ

∑

η∈∆d

b(σ; η)b(τ ; η)

where we define b(σ; η) = 1 if σ ⊂ η and 0 otherwise. It follows that

deg(m,d)(σ) =
∑

τ∈∆m,τ ̸=σ

∑

η∈∆d

b(σ; η)b(τ ; η) =
∑

η∈∆d

b(σ; η)
∑

τ∈∆m,τ ̸=σ

b(τ ; η) =
∑

η∈∆d,σ⊂η

| {τ ∈ ∆m : τ ̸= σ, τ ⊂ η} |.

Given that ∆ is a simplicial complex, every face of a d-simplex is a simplex in the simplicial complex. In particular,
a d-simplex has exactly

(
d+1
m+1

)
faces of order m and thus

| {τ ∈ ∆m : τ ̸= σ, τ ⊂ η} | =
(
d+ 1

m+ 1

)
− 1. (19)

We can thus conclude the proof by noticing that

deg(m,d)(σ) =

[(
d+ 1

m+ 1

)
− 1

] ∑

η∈∆d,σ⊂η

1 =

[(
d+ 1

m+ 1

)
− 1

]
km,d(σ).
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VII. RENORMALIZATION OF REAL SIMPLICIAL COMPLEXES

A. Entropic susceptibilities after renormalization

As discussed in the main text, we first considered 6 second-order clique complexes obtained from real world dataset
taken from the KONECT project [11]. We renormalize each one of them using the cross-order Laplacian associated
to the highest scale-invariance parameter together with L×

(0,1) as a reference, choosing the smallest time τ∗ such that

the number of nodes is reduced by at least 40%. In Figure S4 the entropic susceptibility associated to the highest SIP
is shown, before and after renormalization. We highlight that the metabolic network of the C. Elegans is the only
scale-invariant one in which we can observe that the renormalization with L×

(0,1) better preserves the plateau than

L×
(2,0), despite the SIP being lower.
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10 1

100

101

102

Starting complex N= 1133 

L(0,1)-renorm * = 0.17,  N= 651 

L(0,2)-renorm * = 0.07,  N= 650 

L(2,0)-renorm * = 0.05,  N= 654 

10 4 10 3 10 2 10 1 100 101 10210 2

10 1

100

101

102

Starting complex N= 796 

L(0,1)-renorm * = 0.08,  N= 437 

L(2,0)-renorm * = 0.01,  N= 458 

10 4 10 3 10 2 10 1 100 101 10210 1

100

101

Starting complex N= 453 

L(0,1)-renorm * = 0.07,  N= 233 

L(2,0)-renorm * = 0.01,  N= 238 
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L(0,1)-renorm * = 0.02,  N= 1426 

L(1,0)-renorm * = 0.02,  N= 1683 
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L(0,1)-renorm * = 1.5, N= 595 

L(1,0)-renorm * = 1.6, N= 603 
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L(0,1)-renorm * = 0.37,  N= 210 
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L(2,0)-renorm * = 0.19,  N= 219 

FIG. S4. Entropic susceptibility curves – associated to the highest SIP – of the real data clique-complexes before and after
renormalization with different cross-order Laplacians.

B. Comparison with the Bayesian hypergraph reconstruction method

Up to now we built simplicial complexes from networks by considering their associated clique complexes ∆c, i.e.
by filling all of their cliques. One may argue, however, that not all cliques of nodes correspond to actual higher-order
interactions. Our SIP measures then effectively refer to relations between cliques and not higher-order interactions.

To check the dependence of our results with respect to this assumption, we considered simplicial complexes ∆R

obtained from the networks with the Bayesian hypergraph reconstruction method of Ref. [12]. Note that with this
probabilistic method, we do not fill all the cliques of the network, but only the ones for which there is sufficient
statistical. We thus obtain a subcomplex of the clique complex ∆R ⊆ ∆C . In Figure S5a we show the scale-invariance
parameters of ∆R for each dataset (in color), comparing them with the ones obtained on the clique complexes ∆C

(in gray). Using this more refined reconstruction method, the parameters seem to have smaller values than with the
clique complex. In particular, we see that the high values of higher-order SIP in ∆C drop to negligible values in ∆R,
meaning that the scale-invariance of the structural organization of cliques is lost.
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FIG. S5. a. Scale-invariance parameters for the 2nd order simplicial complexes obtained with the hypergraph reconstruction
method (in color) and the clique complexes (in gray). b. A more detailed version of the Figure 6 in the main text. The
projections of the 34 datasets onto the first two PCA components is shown, together with their name. The color of each point
represents the type of the associated network, while the size is proportional to the value of its highest SIP.

C. scale-invariance parameters of real datasets

As we mentioned in the main text, we then considered a larger set of datasets taken from different network archives:
KONECT [11], ICON [13] and The Network Data Repository [14]. The networks, whose details are found in Table I,
were chosen to belong to the following classes:

• Infrastructure — road networks and power grids;

• Collaboration — scientific collaboration networks;

• Social — email networks, real and fictional social networks;

• Biological — gene interaction networks and protein-protein interaction networks;

• Connectome — brain networks;

• Ecological — species food webs in different ecological environments.

For each one of them, we compute the scale-invariance parameters up to the second order, that is P(0,1), P(0,2), P(1,0),

P(1,2), P(2,0) and P(2,1) and use the resulting values as coordinates to embed it as a point in R6. The resulting point
cloud is then projected onto its first two principal components (81.2% of total variance explained) allowing us to get
Figure S5b. As we can see, networks of similar type tend to correspond to closer points. Infrastructure networks in
yellow are all on the right, the collaboration and social networks, which are necessarily similar in nature, occupy the
left side. In the bottom side, we see biological networks, connectomes and ecological food webs, which, while they
appear more mixed, they are all of biological origin.
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Name Type Repository Source

Facebook Social KONECT [15]
E-Road Infrastructure KONECT [16]
Network Science Coauthorship Collaboration KONECT [17]
Email Social KONECT [18]
C. Elegans Metabolic Biological KONECT [19–21]
A Song of Ice and Fire Social KONECT [22]
Human Protein Biological KONECT [23]
Power Grid Infrastructure KONECT [24]
Yeast Protein Biological KONECT [25–28]
Hamsterer Friendships Social KONECT [11]
German Highway System Infrastructure ICON [29]
Cat Brain Connectome ICON [30]
Rhesus Brain Connectome ICON [31]
Mouse Visual Cortex Connectome ICON [32]
C. Elegans Posterior Nervous System Connectome ICON [33]
IUI Journal Authors Collaboration ICON [34]
CoRA Citations Collaboration ICON [35]
Flensburg Fjord Food Web Ecological ICON [36]
Hessen Traffic Infrastructure ICON [37]
Minnesota Roads Infrastructure Net. Data. Rep. [38]
Yeast Interactome Biological ICON [39]
Barcelona Roads Infrastructure ICON [40]
Freshwater Stream Food Web Ecological ICON [41]
Little Rock Lake Food Web Ecological ICON [42]
P. Pacificus Neural Connectome ICON [43]
Slovenian Computer Scientists Collaboration ICON [44]
New Zealand Scientific Collaboration Collaboration ICON [45]
Computational Geometry Collaboration ICON [46]
Physician Trust Network Collaboration ICON [47]
Erdos Collaboration Collaboration ICON [48]
Facebook Food Pages Social Net. Data. Rep. [49]
Diseasome Biological Net. Data. Rep. [50]
C. Elegans Genes Biological Net. Data. Rep. [51]
Florida Ecological Ecological Net. Data. Rep. [52, 53]

TABLE I. Datasets used for Figure S5b
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[44] N. Blagus, L. Šubelj, and M. Bajec, Physica A: Statistical Mechanics and its Applications 391, 2794 (2012).
[45] S. Aref, D. Friggens, and S. Hendy, in Proceedings of the Australasian Computer Science Week Multiconference (2018) pp.

1–10.
[46] B. Jones, Computational geometry database (2002).
[47] J. Coleman, E. Katz, and H. Menzel, Sociometry 20, 253 (1957).
[48] V. Batagelj and A. Mrvar, Social Networks 22, 173 (2000).
[49] B. Rozemberczki, R. Davies, R. Sarkar, and C. Sutton, in Proceedings of the 2019 IEEE/ACM International Conference

on Advances in Social Networks Analysis and Mining 2019 (ACM, 2019) pp. 65–72.
[50] K.-I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A.-L. Barabási, Proceedings of the National Academy of

Sciences of the United States of America 104, 8685 (2007).
[51] A. Cho, J. Shin, S. Hwang, C. Kim, H. Shim, H. Kim, H. Kim, and I. Lee, Nucleic acids research 42, W76 (2014).



15

[52] R. E. Ulanowicz and D. L. DeAngelis, FY97: The Florida Bay Ecosystem , 20688 (1998).
[53] C. J. Melián and J. Bascompte, Ecology 85, 352 (2004).


	Higher-order Laplacian Renormalization
	Abstract
	Introduction
	Higher-order networks and their structure
	Statistical physics of higher-order diffusion processes
	Cross-order Laplacian renormalization scheme
	Higher-order scale-invariance
	Discussion
	Acknowledgements
	References


