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Deeper but smaller: Higher-order interactions increase 
linear stability but shrink basins
Yuanzhao Zhang1*, Per Sebastian Skardal2, Federico Battiston3,  
Giovanni Petri4,5,6, Maxime Lucas6*

A key challenge of nonlinear dynamics and network science is to understand how higher-order interactions influ-
ence collective dynamics. Although many studies have approached this question through linear stability analysis, 
less is known about how higher-order interactions shape the global organization of different states. Here, we shed 
light on this issue by analyzing the rich patterns supported by identical Kuramoto oscillators on hypergraphs. We 
show that higher-order interactions can have opposite effects on linear stability and basin stability: They stabilize 
twisted states (including full synchrony) by improving their linear stability, but also make them hard to find by 
markedly reducing their basin size. Our results highlight the importance of understanding higher-order interac-
tions from both local and global perspectives.

INTRODUCTION
Higher-order interactions are couplings that connect more than 
two units simultaneously and in a nonlinear way so that it cannot 
be decomposed into a linear combination of pairwise interac-
tions (1–6). Such nonpairwise interactions are crucial in shaping 
complex dynamical processes such as contagion and cooperation 
in social networks (7–13), information processing in the brain 
(14–18), and synchronization in coupled oscillators (19–23). Un-
derstanding how they influence collective dynamics is thus es-
sential. A variety of studies have approached this challenge from 
a linear stability perspective, which characterizes how states such 
as synchronization and consensus respond to small perturba-
tions (24–35). However, little attention has been paid to basin 
stability (36), a global measure based on the size of basins of at-
traction, which dictates the system’s response to large perturba-
tions (37–41).

Here, we provide a more complete picture of how higher-order 
interactions influence dynamical patterns, in terms of both linear 
and basin stability. We show that higher-order interactions can 
have opposite effects: They can increase the number of ordered 
states by making them linearly stable; at the same time, higher-
order interactions also markedly shrink their attraction basins, 
effectively hiding them from detection. As a result, states such as 
full synchrony may be stable but unreachable from random initial 
conditions.

To demonstrate this point, we consider n identical phase oscilla-
tors coupled through both pairwise and triadic interactions

Equation 1 is a generalization of the Kuramoto model (42), which 
can be derived exactly from the phase reduction of weakly coupled, 
nearly identical limit-cycle oscillators (23). In this sense, the Kuramoto 
dynamics represent a canonical model for a broad class of real-
world systems exhibiting periodic oscillations. For example, Kuramoto 
dynamics with higher-order interactions have been used to analyze 
the collective dynamics of nanoelectromechanical oscillators ob-
served in experiments (20). Here, θi ∈ S1 represents the phase of 
oscillator i and ω is their common frequency. The adjacency tensors 
determine which oscillators interact: Aij = 1 if nodes i and j have a 
pairwise connection, and zero otherwise. Similarly, Bijk = 1 if and 
only if nodes i, j, and k are coupled through a triadic interaction. The 
coupling strengths are given by σ and σΔ, respectively, and are nor-
malized by k(�)

i
 , the 𝓁th order degree of node i.

The case of pairwise coupling (σΔ = 0) has been studied in detail 
from both linear and basin stability perspectives. While full syn-
chrony θi(t) = θj(t) ∀ i, j, t is always an attractor of Eq. 1, additional 
attractors can emerge when networks are not too dense (43–46). For 
ring networks, these attractors are twisted states and they emerge for 
link density below 0.68 (47). In a q-twisted state θ(q), the phases 
make q full twists around the ring and satisfy θ(q)

k
= 2πkq∕n + C , 

where q is the winding number (c.f. Fig. 1A). In particular, the fully 
synchronized state corresponds to q = 0. For rings with nearest-
neighbor couplings, the number of attractors grows linearly with n, 
since twisted states with up to n/4 twists are stable (48, 49). A fruit-
ful line of research aims to characterize the basins of the coexisting 
twisted states, which has revealed interesting scaling relations be-
tween basin size and winding number (47, 50, 51) as well as tentacle-
like structures in the basins (51–53).

RESULTS
Linear stability analysis
Here, we focus on an analytically tractable case of Eq. 1 equipped 
with a simple ring structure
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where r is the coupling range. For the triadic coupling, we require 
i ≠ j ≠ k, so that each triangle involves three distinct nodes. No-
tice that we have set ω = 0 by going into a rotating frame. Also 
note that we can always set σ = 1 by rescaling time, which we 
adopt in simulations throughout the paper. For demonstration 
purposes, all numerical results below are presented for Eq. 2 with 
n = 83 and r = 2, unless otherwise stated. The key findings remain 
qualitatively unchanged for other choices of the parameters. The 
choice of n = 83 simply follows the convention from earlier pa-
pers (50, 51) and r = 2 is the smallest coupling range that allows 
nontrivial simplicial complexes (a popular class of hypergraphs 
that are heavily studied in the literature), which we investigate 
later in the paper.

Because of the rotational symmetry, twisted states are equilibria 
of Eq. 2. We first show that triadic interactions can stabilize twisted 
states far beyond what is possible with pairwise coupling. To analyze 
the linear stability of any fixed-point solution θ* of Eq. 1 (which in-
cludes Eq. 2 as a special case), we can write down the Jacobian J(θ*) = 
J(1)(θ*) + J(2)(θ*), where

for i ≠ j and J (�)ii
= −

∑n

j=1
J
(�)

ij

j≠ i

 . For the rotationally symmetric topol-

ogy considered in Eq. 2, the Jacobian is a symmetric circulant ma-
trix of the form

We know that the normalized eigenvectors of a circulant matrix 
are the Fourier modes and the eigenvalues of J are given by

where Js = Jn−s for ⌊n∕2⌋ < s < n (54). This implies that λp are all real. 
Moreover, λ0 is always equal to 0, and it represents the mode for 
which all oscillators are perturbed by the same amount. For any 
q-twisted state, θ(q), Js is given by

For example, for r = 2,

Plugging the formula for Js into Eq. 5, we can analytically obtain the 
spectrum of the Jacobian for any q-twisted state and any cou-
pling range r.

In Fig. 1 (B and C), we show the linear stability of twisted states, 
measured by the largest Lyapunov exponent transverse to the syn-
chronization manifold, λmax = max {λ1, λ2, …, λn−1}, as a function of 
the winding number q. First, note that we show n values of q be-
cause, by definition, there are only n distinct twisted states: q → q + 
n simply adds 2π to all phases, leaving them unchanged. We con-
sider −

⌊

n

2

⌋

≤ q ≤

⌊

n

2

⌋

 ; because twisted states with winding numbers 
−q and n-q are the same, one could equivalently consider the inter-
val 0 ≤ q ≤ n. Second, note that the plot is symmetric with respect to 
q = 0. This follows from the fact that twisted states with winding 
numbers q and −q are the same up to the reversal symmetry θ →−θ.

Because of this symmetry, below we only need to describe states 
with positive q. At σΔ = 0, the stability curve has three peaks, and 
λmax becomes positive for q > 11. Thus, pairwise coupling in Eq. 2 
cannot support stable twisted states with more than 11 twists (for 
n = 83 and r = 2). For systems with strong triadic couplings, two of 
the peaks are flattened. As a result, a lot more twisted states become 
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Fig. 1. Higher-order interactions improve the linear stability of twisted states. (A) Example twisted states with different winding numbers, for n = 20. Full synchrony 
corresponds to q = 0. (B) Linear stability (measured by the largest transverse Lyapunov exponent λmax) of q-twisted states, for a range of triadic coupling strengths σΔ. 
(C) Zoom-in view around λmax = 0 showing which twisted states are stable (λmax < 0). More twisted states become stable as σΔ is increased. (D) Fraction of twisted states 
that are stable as a function of σΔ, for n = 83 and n = 830.
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stable. For example, all twisted states up to 33 twists are stable for 
σΔ = 4. For intermediate σΔ, because λmax is a nonmonotonic func-
tion of q, winding numbers on disjoint intervals can become stabi-
lized. For instance, at σΔ = 1, twisted states are stable for q ≤ 14, 
become unstable for 14 < q < 23, then become stable again for 23 ≤ 
q ≤ 30 (see Fig. 1C for details). Another interesting phenomenon to 
note is that the gradient of λmax becomes much steeper upon cross-
ing the x axis from below. This is caused by the switch of the domi-
nant eigenvector, which we further elaborate in fig. S1.

Figure 1D shows the fraction of stable twisted states Pstable as a 
function of σΔ, which further emphasizes the dramatic number of 
twisted states stabilized by triadic interactions. We see that Pstable is 
monotonically increasing with σΔ, and that one can easily go from 
less than 30% of stable twisted states to over 80% stable by adding 
triadic interactions. We also show the same curve for a larger system 
with n = 830, which is basically a smoother version of n = 83 (since 
there are a lot more twisted states for n = 830). Our results echo the 
recent findings in (55), which showed that higher-order interactions 
can stabilize twisted states in graphons.

Basin stability analysis
Next, we switch to the basin stability perspective. Figure  2 shows 
how the relative basin size p of the twisted states changes with the 
triadic coupling strength σΔ. We compute the basin size relative to 
the full state space (which is compact) by simulating the dynamics 
starting from 105 random initial conditions and counting the pro-
portion of those that converge to a given state. For σΔ = 0, twisted 
states (including full synchrony) are the only stable states and thus 
take up the entire state space (56) (see section S1 for details). States 
with fewer twists (smaller q) have a larger basin size. In particular, 
full synchrony attracts the most initial conditions. Now, for small 
σΔ, triadic interactions are affecting twisted states unequally: The 
basins for small q shrink, whereas those for large q expand. As σΔ is 
further increased, the basins for the nontwisted states appear and 
quickly become dominant, whereas the basins of the twisted states 

all shrink and become comparable in size. Note that among the 
twisted states, full synchrony does not have the largest basin any-
more; the twisted state with the largest basin has more twists as σΔ is 
increased.

Figure  3 further illustrates the opposite effects of higher-order 
interactions on linear stability and basin stability by visualizing the 
morphology of basins as σΔ is increased. Specifically, we examine a 
random two-dimensional (2D) slice of the state space, spanned by 
θ0 + α1P1 + α2P2, αi ∈ (−π, π]. Here, P1 and P2 are n-dimensional 
binary orientation vectors in which ⌊n∕2⌋ randomly selected com-
ponents are 1 and the rest of the components are 0. We set the origin 
to be the twisted state with q = 12, θ0 = θ(12), which we know from 
Fig. 1 is unstable when σΔ = 0. Thus, we can only see basins for 
q between −3 and 7 in Fig. 3A. Adding triadic interactions stabilizes 
q = 12, so we see its basin emerge in Fig. 3B when σΔ is set to 1. For 
larger σΔ shown in Fig. 3 (C and D), the reduction in basin stability 
for twisted states becomes apparent. Despite their substantially 
improved linear stability, the basins for twisted states (as a group) 
rapidly shrink as more and more points get absorbed into the basin 
for nontwisted states (colored black), making twisted states hard to 
reach from random initial conditions.

The natural next question is: What are those nontwisted states 
created by higher-order interactions? Figure 4 shows that they con-
sist of chimera states with increasingly large disordered domains as 
triadic couplings become stronger. Here, Porder measures the portion 
of oscillators that are ordered. Twisted states correspond to Porder = 
1 and disordered states correspond to Porder ≈ 0, whereas chimera 
states have Porder between 0 and 1. For final states reached from ran-
dom initial conditions, the average Porder decreases gradually from 1 
to 0 as σΔ is increased.

We classify oscillators as (dis)ordered by calculating the local or-
der parameters

for j = 1, …, n. We classify oscillator j as disordered if ∣Oj∣ < 0.85. 
The value of 0.85 is large enough to ensure Porder ≃ 0 for large σΔ, 
which matches visual inspection of the states. Although this analysis 
is phenomenological in nature, the twisted states would have ∣Oj∣ ≈ 
1 if the winding numbers and coupling ranges are small, which are 
satisfied for the systems in Fig. 4.

The insets show typical attractors for different values of σΔ. Despite 
the fact that more and more twisted states become linearly stable for 
larger σΔ, they are increasingly unlikely to be observed from ran-
dom initial conditions. Instead, the state space is dominated by the 
basins for chimera states (intermediate σΔ) or disordered states 
(large σΔ). This is consistent with recent results showing that higher-
order interactions promote chimera states in simplicial complexes 
(57). Similar states have also been observed recently in a continuous-
space system (58). We note that the exact appearance of chimeras 
or disordered states can vary for different coupling ranges or cou-
pling structures. However, the order-chimera-disorder transition 
described here is a robust phenomenon.

We also note that here, the disorder is only in space, not in time; 
the patterns either remain frozen over time (fixed points) or rotate 
uniformly with a constant speed (periodic orbits). In particular, 
all oscillators are phase locked. This is in contrast to traditional 
chimeras, for which the disordered oscillators are not frequency 

Oj =
1

2r + 1

j+r
∑

k=j−r

eiθk (6)

Fig. 2. Higher-order interactions decrease the basin stability of twisted states. 
We show p, the relative basin size, as a function of the triadic coupling strength 
σΔ. We estimated p by simulations starting from 105 random initial conditions. Each 
line represents a q-twisted state, except the red line, which represents attractors 
that are not twisted states. The relative basin size of nontwisted states quickly 
approaches 1 as σΔ is increased. We only show q ≥ 0 due to the symmetry between 
q and −q.
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synchronized and their relative phases change over time. In fig. S2, 
we show the statistics of the effective frequency for different initial 
conditions and under different coupling strengths σΔ. For small 
σΔ, the effective frequency is always 0, but nonzero frequency can 
emerge for σΔ ≥ 2. This is consistent with recent results showing that 
twisted states can undergo Hopf bifurcations as σΔ is increased 
(59), which also consider the effect of higher-order interactions on 
Kuramoto oscillators but differ from our systems in crucial details.

Other coupling structures
The above results for r = 2 remain qualitatively unchanged for other 
coupling ranges r. Figure  5 shows the opposite behavior of linear 
and basin stability for a wide range of r. For r = 1, 50% of the twisted 
states are stable under purely pairwise coupling. As σΔ is increased, 
all twisted states quickly become stabilized. As the coupling structure 
becomes more nonlocal (larger r), fewer twisted states are stable at 
σΔ = 0. By introducing triadic couplings, one can always have at 

least twice as many stable twisted states. For r ≥ 3, we also observed 
the appearance of two-cluster states, that is, with oscillators split 
(potentially unequally) into two π-separated clusters [described, 
e.g., in (60–62)], as shown in figs. S3 and S4.

Aside from the generalization of Kuramoto models introduced 
in Eq.  2, there are several other natural ways to introduce triadic 
interactions. For example, we can turn the (pairwise) ring network 
into a simplicial (flag) complex by filling all pairwise triangles. This 
implies that Bijk = 1 if and only if i ≠ j ≠ k, and all three pairs are 
within distance r: ∣(i − j) mod n∣ ≤ r, ∣(i − k) mod n∣ ≤ r, and ∣(j − k) 
mod n∣ ≤ r. In other words, Bijk = AijAikAjk. In comparison, the 
topologies considered in Eq. 2 do not require ∣(j − k) mod n∣ ≤ r for 
Bijk = 1. This can be expressed equivalently as Bijk = AijAik. As shown 
in fig. S5, the main results presented above for ring hypergraphs re-
main valid for simplicial complexes.

Last, we demonstrate that a similar phenomenon persists in more 
irregular structures using random hypergraphs. A random hyper-
graph is built similarly to an Erdős-Rényi random graph: We add a 
hyperedge between any two nodes with probability p1 and between 
any three nodes with probability p2. We set pd = 20/nd, for d = 1,2. 
For random hypergraphs, the only twisted state that can be an at-
tractor is full synchrony (q = 0). Similar to what we found above for 
more regular structures, in random hypergraphs triadic interactions 
make full synchrony linearly more stable (24, 33) but its basin of at-
traction shrinks dramatically in favor of two-cluster states, for σΔ up 
to around 1.5, and then more disordered states for stronger triadic 
coupling strengths (Fig. 6).

DISCUSSION
Here, we showed that higher-order interactions can make basins 
deeper but smaller; attractors become linearly more stable but at the 
same time are harder to find due to their basins shrinking markedly. 
We demonstrated this phenomenon for Kuramoto dynamics with a 
wide range of coupling structures (ring hypergraphs with different 
coupling ranges, ring simplicial complexes, and random hyper-
graphs). We were able to characterize the linear stability of all twisted 
states analytically under these coupling structures. For basin stabil-
ity, our systematic numerical simulations revealed interesting global 
features of the dynamics as σΔ is increased. In particular, the basins 
of twisted states become deeper but smaller due to the proliferation 
of new attracting states. We further characterized these new states 

Fig. 4. Chimeras bridge the transition from order to disorder as triadic interac-
tions become stronger. As we increase σΔ, there is a smooth transition from order 
(twisted states) to chimeras, and then to disorder. We monitor the transition by com-
puting the portion of ordered oscillators Porder in the final state, averaged over 1000 
simulations from random initial conditions for each σΔ. The error bars represent SDs 
and the insets show typical attractors reached from random initial conditions.

A B C D

Fig. 3. Higher-order interactions stabilize twisted states but shrink their basins. Two-dimensional (2D) slices of the state space (centered around the twisted state 
with q = 12) showing how basins change as σΔ is increased. The basins of the twisted states are colored according to their winding number q, and the basins of all other 
states are colored black. (A) For σΔ = 0, the twisted state with q = 12 is unstable, and all points converge to a twisted state with a lower winding number. (B) For σΔ = 1, all 
attractors are still twisted states. Moreover, q = 12 becomes stable, which creates the cyan basin at the center. (C and D) For stronger triadic interactions (σΔ = 2 and 3), 
the q = 12 basin expands, but nontwisted states also start to appear and quickly become dominant. Although the basin for q = 12 looks substantial on the 2D slices, due 
to the high-dimensional nature of the state space, it would be almost impossible to reach from random initial conditions.
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introduced by higher-order interactions that compete with twisted 
states, which manifest as two-cluster, chimera, or disordered states 
depending on the ratio between σ and σΔ.

Deeper but smaller basins induced by higher-order interactions 
can confer functional advantages to some biological systems. For 
instance, for the brain to function optimally (63), the attractors 
should have high linear stability so the brain can quickly return to 
the current state when subject to small perturbations or noise. At 
the same time, we also want the brain to be nimble and able to tran-
sition among different states efficiently (e.g., during computation 
and information processing), which can be achieved by having 
small basins.

Why do the basins of twisted states shrink as higher-order cou-
plings are introduced? First, we note that, unlike their pairwise 
counterparts, Kuramoto systems with nonpairwise interactions are 
generally not gradient systems (59). This provides the freedom for 
Eqs.  1 and 2 to undergo Hopf bifurcations as σΔ is increased. 
Böttche et  al. (64) showed recently that anticorrelation between 
linear stability and basin stability often emerges for dynamical 
systems that undergo consecutive Hopf bifurcations, offering a 

potential mechanism for higher-order interactions to shrink ba-
sins. More generally, in a compact phase space, as more attractors 
are created, the average basin size would decrease. In our case, the 
new states that emerge are more disordered than twisted states and 
they hold enormous entropic advantages (there are many more 
possible disordered configurations than ordered ones). Even two-
cluster states, which appear ordered on the surface, have many 
more configurations than twisted states; the oscillators can be di-
vided between the two clusters in 2n different ways (61).

Does extensive multistability emerge naturally from generic 
higher-order interactions regardless of details about the dynamics 
and couplings? Such phenomena have been observed under many 
different settings (57, 61, 65, 66). For Eq. 1 with all-to-all coupling, it 
was shown previously that the coupling function sin(θj + θk − 2θi) 
introduces a higher-order harmonic and nonlinear dependence on 
the order parameter in the mean-field description, which create 
additional nonlinearity and extensive multistability in the self-
consistent equations for the order parameters (67, 68). The same is 
true for a different coupling function, sin(2θj − θk − θi): Using the 
Ott-Antonsen ansatz (69), it was found that higher-order interac-
tions give rise to added nonlinearity in the reduced equations that 
describe the macroscopic system dynamics (70). Moreover, when 
deviating from all-to-all coupling (such as the local couplings con-
sidered here), we expect the nontrivial coupling structure could in-
troduce additional nonlinearity into the macroscopic equations, 
further increasing multistability.

It is possible that deeper but smaller basins may not be the exclu-
sive results of higher-order interactions. Can other forms of nonlin-
ear coupling functions create similar effects? If so, what are the 
properties required of those nonlinearities? For example, another 
way to add nonlinearity to the Kuramoto model is through higher-
harmonic coupling functions such as sin(2θj − 2θi) (62, 71). In our 
preliminary tests, however, we found that they do not stabilize more 
twisted states. The systematic exploration of the link between non-
linearity and stability (both local and global) is an important and 
open question, which we leave for future works.

In conclusion, the prevalence of anticorrelation between linear sta-
bility and basin stability warrants a more nuanced and comprehensive 
approach when considering collective dynamics on hypergraphs and 
simplicial complexes. Understanding the global organization of at-
tractors and saddles in the presence of nonpairwise couplings is 
crucial to the prediction and control of complex systems such as eco-
logical communities and neuronal populations. We hope that this 
work will stimulate future endeavors to understand the effects of 
higher-order interactions from both local and global perspectives.

A B C

Fig. 5. Higher-order interactions increase linear stability while decreasing basin stability for hypergraph rings with different coupling ranges. (A) Fraction of 
twisted states that are stable as a function of σΔ, calculated with n = 830. (B) Same data as in (A), but shown as the ratio between the number of stable twisted states at 
nonzero σΔ and σΔ = 0. (C) Relative basin size of all twisted states combined as a function of σΔ. For any given r, twisted states become more difficult to find as the triadic 
couplings become stronger. The basin sizes are estimated by simulating n = 83 oscillators from 103 random initial conditions.

Fig. 6. Synchronization becomes linearly more stable but harder to reach in 
random hypergraphs. We show (A) the relative basin size of full synchrony (zero-
twisted), two-cluster, and other (nontwisted) states, and (B) the maximum trans-
verse Lyapunov exponent for full synchrony. Results show the average over 20 
random hypergraph realizations with n = 83 nodes (with 100 initial conditions 
each). The shaded areas indicate one SD.
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