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A multi-modal, asymmetric, weighted, and
signed description of anatomical
connectivity

Jacob Tanner1,2, Joshua Faskowitz3, Andreia Sofia Teixeira4, Caio Seguin 3,
Ludovico Coletta5, Alessandro Gozzi 6, Bratislav Mišić 7 &
Richard F. Betzel 1,2,3,8

The macroscale connectome is the network of physical, white-matter tracts
between brain areas. The connections are generally weighted and their values
interpreted as measures of communication efficacy. In most applications,
weights are either assigned based on imaging features–e.g. diffusion
parameters–or inferred using statistical models. In reality, the ground-truth
weights are unknown, motivating the exploration of alternative edge weight-
ing schemes. Here, we explore a multi-modal, regression-based model that
endows reconstructed fiber tracts with directed and signed weights. We find
that the model fits observed data well, outperforming a suite of null models.
The estimated weights are subject-specific and highly reliable, even when fit
using relatively few training samples, and the networksmaintain a number of
desirable features. In summary, we offer a simple framework for weighting
connectome data, demonstrating both its ease of implementation while
benchmarking its utility for typical connectome analyses, including graph
theoretic modeling and brain-behavior associations.

The connectome is an example of an “anatomical” or “structural”
network, in that the edges all represent physical, material pathways1–4.
In anatomical networks, connections are usually associated with
weights. In human tractography data, these weights are frequently
assigned based on diffusion parameters – e.g. fractional anisotropy,
mean diffusivity, or streamline counts – and are interpreted as mea-
sures of white-matter fiber integrity.

The connectome is of great interest to a number of scientific
communities. Cognitiveprocesses are supported by distributed, brain-
wide networks5,6 and many neuropsychiatric disorders are thought to
be disorders of dysconnectivity7,8. Mapping connectomes and under-
standing their organizing and operational principles9–13 is also a key
aim of network neuroscience14 – the nascent discipline that focuses on

modeling and analyzing brain data (micrographs, MR images, elec-
trophysiological recordings) as networks.

How to assign weights to connectome edges represents an
ongoing challenge in network neuroscience. Most studies define
edge weights based on microstructural properties and tracto-
graphical parameters of the reconstructed fibers–e.g. streamline
count (normalized or raw), fractional anisotropy, and mean diffu-
sivity, among others15–18. Although this approach has proven emi-
nently fruitful, it nonetheless has limitations. For instance,
tractography algorithms can not infer directionality, and most
weighting schemes are, therefore, bidirectional and incapable of
resolving differences in weights of incoming vs outgoing
connections.
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More saliently, weights derived from microstructural properties
or diffusion parameters do not incorporate information about brain
function. That is, they are derived exclusively from structural and
diffusion imaging data, overlooking features derived from functional
imagingdata–e.g. blood-oxygen-level-dependent signal obtained from
functional MRI–that could be used to inform the valence and magni-
tude of connection weights. Although many studies have sought to
relate independently constructed structural and functional networks
with one another19–23, few have examined strategies for incorporating
multiple imaging modalities to jointly construct a single network that
embodies the most useful aspects of each.

Here, we present amulti-modal, explanatorymodel for estimating
the weights of structural connections. In the spirit of diffusion-/trac-
tography-basedmodels, ours preserves thebrain’s sparsewhite-matter
architecture. However, rather than assign structural weights based on
diffusion/imaging parameters, we assign weights based on the para-
meters of multi-linear regression models. These models are fit inde-
pendently for each region, i, and predict that region’s future activity
based on the weighted histories of its connected neighbors. This
allows us to fit asymmetric and signed edge weights for networks of
hundreds of nodes in a matter of seconds.

Our manuscript aims to explore this model and its network prop-
erties, positioning it as an intermediate method, situated between
tractography-based weighting schemes and correlation networks
derived from functional imaging data. To this end, we find that the
model predicts fMRI BOLD activity at a rate greater than chance even
when using a relatively small amount of data (approximately 1% of
samples). We show that these models exhibit subject specificity and the
inferred edge weights are aligned, broadly, with known functional sys-
tems, despite the fact that edge weights exhibit imperfect alignments
with interregional correlations (see Fig. S1). Further, we show that this
network exhibits bilaterally symmetric, hemisphere-spanning commu-
nities and a shortest path structure that involvesmost edges (in contrast
with streamline-weighted networks that use only 15% edges in its
shortest paths backbone). Taking advantage of the directed nature of
links, we find evidence of robust asymmetries in connectionweights and
regions’ connectivity profiles (incoming vs outgoing connections).
Finally, in two applications we show that the inferred edge weights
systematically reconfigure during movie-watching and across the
human lifespan. Collectively, these observations suggest that this model
is a practical alternative to existing edge-weighting schemes, and
effectively endows anatomical connections with functional properties,
thereby opening up avenues for future exploration and applications.

Results

Fitting and benchmarking asymmetric, weighted,
and signed structural connectivity
Brain regions are linked to one another via white-matter fiber tracts. The
topology and edge weights of this network constrain interareal com-
munication and shape patterns of spontaneous activity.Most studies set
the weights of structural connections equal to microstructural proper-
ties estimated from diffusion weighted images and tractography–e.g.
fractional anisotropy or streamline derivatives. However, the ground
truth connection weights are unknown, motivating the exploration and
benchmarking of alternative weighting schemes.

Here, we use a model-based framework for assigning weights to
existing structural connections. Briefly, we follow existing modeling
work24–27 and assume that at time t the state of region i (level of fMRI
BOLD activity) is a function of its neighbors’ states at time t − 1 plus an
offset (bias). That is:

yiðtÞ=
X

j2Γi ,j≠i
W jiyjðt � 1Þ+ ci, ð1Þ

where Γi is the set of region i’s connected neighbors. We use linear
regression and ordinary least squares to estimate the parameters Wji

and ci separately for each node i (Fig. 1a, b). Thus, the resulting matrix
W 2 Rn×n, is sparse and preserves exactly the binary structure of
white-matter connectivity (Fig. 1c). However, the weights, which
represent regression coefficients, can take on either positive or
negative valence, whereas weights are typically positive only for
connectomes inferred from dMRI and tractography. We note also that
this network is directed–i.e. in general, Wij≠Wji.

In this section, we report the results of the fittedmodel on resting-
state fMRI data from human subjects. That is, we describe basic fea-
tures of this asymmetric, weighted, and signed connectome and con-
trast them with a connectome in which weights are defined using a
commonly used metric–i.e. streamline density (streamline count
divided by geometric mean of regional volumes)10,28.

We fit the model at the group level using pooled time series data
from 95 participants from the Human Connectome Project29

(HCP100UR, five subjects excluded due to incomplete data or quality
issues) and a group-averaged binary SCmatrix30. We found that, at the
group level, the model performed well (correlation between observed
and predicted activity from individual scans, r = 0.76 ±0.03; mean
squared error, MSE =0.43 ± 0.05; Fig. 1d, e). We also found that the
model weights stabilize with relatively few samples. Specifically, we
randomly sub-sampled an equal number of frames from each partici-
pant and scan and used those frames to estimate the connection
(regression) weights.We repeated this process 100 timeswhile varying
thenumberof samples from2, 4, 8, 16, 32, 64, 128, 256, 512, to 1099.We
found that evenwith approximately 6% of the total number of samples
(64 samples per scan), the estimated weights achieved a correlation
with the full-sample weights of r =0.993; Fig. 1f).

Brain activity dynamics and its correlation structure are deeply
individualized31,32. A good model of brain activity, therefore, must
also exhibit subject specificity. To assess whether model perfor-
mance was, indeed, subject-specific, we estimated weights using
three of every subject’s four resting state scans, and used those
weights to predict the activity of the held-out scan (as well as the
activity of all other scans and subjects; Fig. 1g). We found that the
error (mean squared error) was lower for the held-out scans than for
the scans of any other subjects (two-sample t-test; p < 10−15; Fig. 1h).
Here, as in subsequent single-subject/-scan analyses, we fit edge
weights using the same group-representative connectivity mask. This
ensures that any differences between individuals are not driven by
differences in the underlying anatomical connectivity, but driven
jointly by differences in edge weights and resting brain dynamics. In
a supplementary analysis, we also show that the weights of models
with subject-specific fMRI as well as subject-specific structural con-
nectivity are more similar within subjects, than between subjects
(Fig. S20a, b; two-sample t-test; p < 10−15). Importantly, we also found
that the subject-specific model weights were highly similar to the
group-estimated model weights (Fig. S20c; mean similarity r = 0.66;
one-sample t-test; p < 10−15).

Next, we assessed whether the observed results, namely the
model error, was consistent with chance. Accordingly, we compared
the observed model fitness against null distributions obtained under
five distinct null models33(see “Materials and methods” section for
details related to these nullmodels). In general, we found that the error
(MSE) was significantly lower using the intact data than in any of the
null models (two-sample t-test, p < 10−15; Fig. 1i).

Finally, we examined some of the basic properties of the weights
fit at the group level. We found that both positive and negative con-
nection weights decay monotonically with distance (Fig. 1j). However,
for any given distance bin there was a range of edge weight values.
Examining the most extreme (z-scored weight of z > 3 relative to the
other edges in the same bin), we find they are dominated by intra-
hemispheric connections (≈71%). Although fewer in number, the
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remaining 29% of connections still exceeds the baseline rate of inter-
hemispheric connections (19.5%).

Next, we tested how positive and negative connections were dis-
tributed with respect to canonical brain systems34. We found that,
within systems, connections tended to be strong and positive whereas
negatively-weighted connections showed no clear preference for fall-
ing either within or between systems. Indeed, when we examine the
weights of individual connections, rather than systemaverages, we still
find that within-system weights tend to be stronger and more positive
compared to between-system weights (two-sample t-test, p < 10−15;
Fig. 1l) and that, in general, the mean positive connection is greater
than the absolute mean negative (two-sample t-test, p < 10−15; Fig. 1m).

In the supplementary material we perform several additional
tests. These include assessing model performance at different lags
(Fig. S2), assessing the relative contributions of long vs short con-
nections (Fig. S3), comparing the estimated edge weights with other
measures of functional and structural connectivity (Fig. S1), assessing
regional fitness (Fig. S4), assessing the impact of global signal

regression on results (Fig. S5), confirming that the distance depen-
dence of edge weights is preserved when we use curvilinear fiber
length rather than Euclidean distance (Fig. S6), fitting edge weights
with regularization (Fig. S7), and comparing the relative performance
of the asymmetric, weighted, and signed matrix vs the fiber density
matrix as structural constraints for dynamic, neural mass mod-
els (Fig. S8).

In addition, we performed several analyses to assess how our
model is effected by changes to the underlying structural network. We
found that as existing structural connections are replaced with non-
existing connections (with equal distance) performance of the model
degrades (Fig. S16). Furthermore, we found that, in general, changes to
the underlying structural network – for example by changing para-
meters in the estimation of group consensus structural connectivity –

result in changes to the weights of the model. More specifically, the
similarity of model weights is positively related to the similarity of the
structural network (Figs. S18 andS19).). Finally, although theweights of
these models do change with changes to the underlying structural

Fig. 1 | Fitting and characterizing weighted, signed, and asymmetric structural
connectivity. a Here, we used linear model to estimate regression (edge) weights.
For a given region i, we identified its structurally connected neighbors and used
their past activity to predict node i's future activity. This procedure results in a
series of regression weights; one weight is associated with each neighbor. b Those
weightswere thenentered into thebinary structural connectivity “mask''.When this
procedure was repeated for all i∈ [1,…, n] it generates a weighted, signed, and
asymmetric matrix whose nonzero entries are masked by structural connections
(see panel c). d Two-dimensional histogram showing observed and predicted
activity, pooled across all participants and scans. Colors indicate number of sam-
ples in any bin. e Examples of observed and predicted activity for five select regions
in a single subject and scan. f Similarity of regression weights (edge weights) as a
function of amount of data. Note that units on x-axis are expressed as fraction of
time points in scan, where the total number of frameswas 1099. gWeights fit using
scans from subject s are better at predicting activity in held-out scans from s than
other subjects, s0. In this figure, the blocks along the diagonal are 4 × 4 and repre-
sent the four resting-stateHCP scans.hDistributions of errors inmodelfit, grouped

bywhether themodel isbeingused topredict activity in a scanof adifferent subject
(N = 142880), the held-out scan from the same subject (N = 1140), or one of the
scans used in fitting the weights (N = 380). i Comparison of model errors using the
observed network with a minimally wired network, one in which rows/columns
were randomly reordered, and another in which time series were circularly shifted
(independently across regions, scans, and subjects). j Relationship of regression
weights and Euclidean distance.We also identified edges whose regressionweights
weremuch stronger than expected (those above the dashed line). kDistribution of
regression weights across canonical brain systems (Cont = Control, DMN = default
mode network, DAN = dorsal attention network, Lim = limbic, Sal/VAN = salience,
SMN = somatomotor, TP = temporoparietal, Vis = visual). l Comparison of within-
(N = 4654) and between-system (N = 24,370) regression weights. All box plots,
shown in red and overlaid on data points in e and f, depict the interquartile range
(IQR) and the median value of the distribution. Whiskers extend to the nearest
points ± 1.5 × IQR above and below the 25th and 75th percentiles. Asterisks indicate
a significant difference between box plots.m Comparison of positive and negative
weights.
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network, the lower bound on weight similarity is still reasonably high
(between r = 0.7 and r =0.85; see Figs. S19e and S18).

In summary, we show that this simple regression framework reli-
ably estimates structural connection weights and requires relatively
few observations to do so. The inferred weights are subject-specific
and result inmodel fitness that exceeds chance. The strongest weights
are positive and concentrated within putative brain systems. Collec-
tively, these results set the stage for further explorations of the
asymmetric, weighted, and signed network and the implications of the
newly defined edge weights for network analyses.

Modular organization of the asymmetric, weigh-
ted, and signed connectome
One of the hallmarks of biological neural networks is that they are
organized into densely connected sub-networks called “modules” or
“communities”12. Although there is a shared correspondence between
anatomical modules–defined from streamline-derived structural
connectivity–and functional modules, the alignment is inexact35,36. Here,
we examine the modular structure of anatomical connectivity with the
newly derived asymmetric, weighted, and signed connectome and
compare its organization with the modular structure derived from a
connectome in which edges are weighted based on streamline density.

To detect communities we optimized a signed variant of the
modularity quality function37 using the Louvain algorithm38. The out-
put of the algorithm is sensitive to initial conditions andwas optimized
1000 times for each of the two weighting schemes. In both cases we
fixed the structural resolution parameter to γ = 1. We aggregated and
compared these results by computing coassignmentmatrices for each
connectome, tallying the frequency with which node pairs were
assigned to the same module across all 1000 repetitions (Fig. 2a, b).
For the sake of visualization, we also calculated consensus commu-
nities for each matrix (Fig. 2c, d). We then calculated the difference
between the two co-assignment matrices (Fig. 2e). We found that

communities in the asymmetric, weighted, and signed matrix exhib-
ited reduced laterality39 and tended to span the cerebral hemispheres
whereas communities detected using the fiber density matrix tended
to be more lateralized (t-test p < 10−15; Fig. 2g). We note that these
observations were anticipated, given that fMRI BOLD activity was
involved in the estimation of structural connection weights and FC
exhibits strong homotopic connectivity between left and right cere-
bral hemispheres.

Next, we asked whether the community structure of the asym-
metric, weighted, and signedmatrix was better alignedwith functional
connectivity (correlation structure of resting fMRIBOLDdata) than the
fiber density matrix and its system-level architecture. To address this
question, we imposed canonical brain systems (coarse- and fine-scale
intrinsic connectivity networks defined in34; Fig. 2f) on eachmatrix and
calculated the inducedmodularity (Q*). We found that the asymmetric
matrix exhibited greater modularity than the fiber density matrix (t-
test,p < 10−15; Fig. 2h).We also calculated the adjustedRand index (ARI)
between detected partitions and fine- and coarse-scale systems. ARI is
a measure of partition similarity; larger values indicate that two par-
titions aremore similar. For both the fine and coarse systempartitions,
we found that the ARI was greater when compared to partitions
detected using the asymmetric and signed matrices than partitions
detected using the fiber density matrices (two-sample t-tests; max-
imum p < 10−15; Fig. 2i).

In addition, we conducted a number of supplemental analyses to
explore the modular structure of these networks in more detail, pro-
viding evidence that they exhibit hierarchical community structure
(Fig. S9),and that the modules from our model were more strongly
enriched for “brain map”40 annotations describing properties ranging
from density of receptors to the relative expansion of brain areas
across development and evolution (Fig. S12). In addition, we introduce
a new “geographic” null model for use with modularity maximization
(Figs. S11 and S10).

Fig. 2 | Comparing modular structure of structural networks.Modules are
cohesive subnetworks – nodes that make more connections to other members of
the samemodule than to other modules. Here, we compare the modular structure
of network with original weights and the same network with weighted, directed,
and signed edges. Here, we examine modules estimated with a fixed resolution
parameter (γ = 1) but explore the multiscale modular structure in the supplement.
Co-assignment probability matrices for the inferred edge weight (a) and the fiber
density matrices (b). c, d Consensus communities for both versions of weights.
e Element-wise difference inmodule co-assignment. f Systemco-assignmentmatrix
for reference. Black entries refer to pairs of brain regions that are assigned to the

same system in both coarse and fine-scale system divisions. Gray entries are co-
assigned to the same system for the coarse division, only. Comparison of laterality
(g) and modularity (h) of detected modules (N = 1000 for each box plot).
i Alignment of modules with respect to coarse and fine-scale system partitions.
Eachpoint in panelsg–i represents a partition fromoneof 1000 runs of the Louvain
algorithm for optimizing modularity. Box plots, shown in red and overlaid on data
points in e and f, depict the interquartile range (IQR) and the median value of the
distribution. Whiskers extend to the nearest points ± 1.5 × IQR above and below the
25th and 75th percentiles. Asterisks indicate a significant difference between box
plots (N = 1000 for each box plot).
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Finally, we also repeated several of the analyses from this and the
previous section using mouse anatomical connectivity data made
available by the Allen Brain Institute1 and fMRI data acquired from a
cohort of N = 18 anaesthetized mice (see Fig. S13 and “Materials and
methods” section for more details).

Graph theoretic properties of the asymmetric,
weighted, and signed connectome
In the previous section, we explored the modular architecture of the
newly derived asymmetric, weighted, and signed matrix, comparing it
with analogous measures made on the fiber density matrix. Modular
structure, however, is but one example of a network metric – it
assesses a network’s organization at the “meso-scale”. However, other
measures can be meaningfully applied to probe global (whole-net-
work) and local (regional) properties. In this section, we investigate a
subset of those measures.

First, we compared shortest-paths structure. Shortest paths in
weighted networks refer to the least-costly route from a source node, s,
to a target node, t. Typically, the length or cost of a shortest path is
interpreted as ameasure of communication capacity23; networks where
the average shortest path is low (or the average reciprocal shortest
path is large) are considered better-suited for communication.

To detect shortest paths we first mapped weights to costs. In the
fiber density matrix, this mapping was accomplished by taking the
reciprocal of an edge’s weight (cost = 1

weight) before applying a shortest
paths algorithm. In the directed and signed network, however, we per-
formed an additional step to rectify edge weights as the shortest paths
algorithm is not compliant with negative edges. Briefly, we subtracted
min(βij) and added ε to every edge, wheremin(βij) =−0.43 is the smallest
(most negative) weight among all edges weights and ε=0.0027 was the
weight of the weakest edge in the fiber density network. This transfor-
mation ensures that all existing white-matter edges have weights that
are nonzero and positive. Following this transformation, we used the
reciprocal transform to map weights to cost.

The shortest paths matrices for both networks are shown in
Fig. 3a, b. Strikingly, the number of steps in the least-costly paths was
much greater for the fiber density matrix than for the asymmetric,
weighted, and signed network (Fig. 3e, f). This likely is a consequence
of the heavy-tailed fiber density distribution; because a small number
of connections exhibit orders of magnitude stronger weights than the
others, the cost of including those edges in shortest path is excep-
tionally small. From the perspective of the shortest paths algorithm, it
is optimal to direct paths through these ultra low-cost edges, possibly
even at the expense of direct connections13,41. Further evidence for this
claim comes from the shortest paths usage; in the fiber density matrix,
the fraction of edges that are used in at least one shortest path is only
14.2% (Fig. 3c,d), whereas in the asymmetric, weighted, and signed
networks, 97.5% of all edges get used at least once (Fig. 3).

The signed nature of the network means that we can also examine
and compare properties of positive and negative edges to one another.
That is, we can construct two versions of the samenetwork: one inwhich
nodes are linked via positive connections only and anotherwith negative
connections. Interestingly, we find that the positive network exhibits
greater local clustering (paired sample t-test, p< 10−15; Fig. 3i). That is,
positive connections tend to form dense triangles and cliques around
nodes at a greater rate than negative connections. Additionally, we find
that nodes’ positive weighted degrees (total weight of all incident
positive connections) exceeds that of their negative strength (Fig. 3j).

In summary, we calculate a series of network statistics and show
that their values differ, sometimes dramatically, depending on whe-
ther we weight edges using our regression-based framework or using
more traditional diffusion/imaging parameters. In some specific cases,
we find that statistics calculated on the asymmetric, weighted, and
signed network are better aligned with our intuition about network
function than statistics calculated based on fiber density. Collectively,
these results underscore the impact of user decisions on network
properties and our interpretation of network organization and
function.

Fig. 3 | Network statistics for signed, weighted, and asymmetric matrix. a Path
length (number of steps) between all pairs of nodes derived from the fiber density
matrix (Cij =

1
Wij

). b Path length for new matrix (Cij =
1

Wij + 1 + ε
). c Edge usage matrix

for fiber density network. d Edge usage matrix for new matrix. Panels
e–g characteristic path length, and network efficiency, and percentage of edges
used in shortest paths between matrices. Panel h depicts the breakdown of edge
usage by decile–e.g. top decile accounts for 33% of edges used on shortest paths.
Panels i and j compare local clustering and strength (weighted degree) between the

two matrices. We grouped edges into percentiles (deciles; lowest deciles include
negative weights) based on their weights and calculated how frequently edges in
each decile are involved in shortest paths. Box plots, shown in red and overlaid on
data points in e and f, depict the interquartile range (IQR) and the median value of
the distribution. Whiskers extend to the nearest points ± 1.5 × IQR above and below
the 25th and 75th percentiles. Asterisks indicate a significant difference between
box plots (n = 400 for each box plot).
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Asymmetries in connection weights
Due to technological limitations, structural connection weights
estimated in vivo using diffusion imaging and tractography methods
lack directionality–i.e. Wij =Wji. Here, however, the regression fra-
mework we use allows for asymmetries, such that the weights
of incoming and outgoing connections can deviate from one
another. In this section, we describe a select set of asymmetries in
greater detail.

We measured asymmetry using a simple statistical test. Specifi-
cally, we identified pairs of regions whose weights were consistently
asymmetric across 95 Human Connectome Project participants. This
involved fitting weights independently for each subject and edge, and
for every pair of nodes i and j, identifying connections where the dis-
tribution of asymmetry values,Wij −Wji, excluded zero (false discovery
rate fixed at q =0.05 resulting in padj =0.015; Fig. 4a, b)42. We found
that, of 29024 possible connections, 8850 (approximately 30%)
exhibited significant asymmetries in terms of their incoming vs out-
going weights.

Next, we asked whether edges whose weights were significantly
asymmetric were preferentially concentrated within or between
specific brain systems (Fig. 4c, d). To assess whether this was the
case, we created a “mask” of edges that exhibited statistically sig-
nificant asymmetries and aggregated (summed) these connections
within and between every pair of systems. We performed this pro-
cedure first using the signed difference in edge weights and again
using the absolute difference. These summed values were compared
against a null distribution generated via a geometry-preserving null
model43. We found that a number of system pairs exhibited
greater than expected asymmetries, including connections that
fall within control, default, and visual networks (ContC, DMNa,
DMNc, central visual), as well as connections that fall between sys-
tems (ContC-DMNa, DMNa-DMNb, temporo-parietal and both ContC
and DMNa, central visual and SMNb, and peripheral visual
with DANb).

As a secondmeasure of asymmetry, we compared the weights of
nodes’ incoming and outgoing connection profiles – the extent to
which its activity is predicted by vs predicts the activity of its
neighbors. To do this, we calculated the linear product-moment
correlation between vectors associated with row and column i in the
asymmetric, weighted, and signed connectivity matrix (Fig. 4e). This
procedure resulted in a single similarity score (correlation) for each
brain region. In general, we found that in-out similarity was region-
specific and varied between putative brain systems (Fig. 4f), with
regions in sensorimotor systems exhibiting greater in/out similarity
(Fig. 4g). Indeed, when we grouped systems based on unimodal
(visual + somatomotor) and heteromodal (all other systems) labels,
we found that unimodal systems exhibited greater similarity (two-
sample t-test, p < 10−15; Fig. 4h).

In an additional analysis, we also identified node pairs, i and j,
where sign(Wij) ≠ sign(Wji) (Fig. S14). We performed this analysis at the
level of individual subjects and calculated the proportion of edgeswith
an asymmetry of sign that fall either within or between brain systems
(Fig. S14a). We repeated this analysis for every individual and found
that between-system edges were more likely to exhibit an asymmetry
of sign than within-system edges (two-sample t-test, p < 10−15;
Fig. S14b).

Finally, we performed an additional analysis to probe the impor-
tance of the asymmetries in our model for model performance. We
found that forcing the weights of our trained model to be symmetric
degraded model performance for both group-based assessments in
mice (Fig. S17b) and humans (Fig. S17c) as well as individual based
models (Fig. S17d, g–i). Additionally, we found that the regions whose
predictions were most effected by forcing symmetry in connection
weights were heteromodal regions(Fig. S17e).

Collectively, these results suggest that local asymmetries are well
circumscribed by canonically defined brain systems. Additionally, our
results suggest that asymmetry in regional incoming and outgoing
connection weights run along a unimodal-heteromodal axis.

Fig. 4 | Asymmetries of influence betweenbrain regions as assessed by inferred
structuralweights. a Significant asymmetries, and (b) absolute value of significant
asymmetries were reorganized into system by system matrices (c) and (d)
respectively. Note the increased absolute asymmetries within functionally defined
systems in panel d. As illustrated in the schematic in panel e next we measured in/
out similarity as the correlation between incoming and outgoing weights per
region. fHere we showan example of in/out similarity plotted to the brains surface.
g Finally, we plot the per-system distribution of in/out similarity values across

subjects. Boxplots on the right divide these systems into unimodal and hetero-
modal regions to show that there ismore in/out similarity in unimodal systems. Box
plots, shown in red and overlaid on data points in e and f, depict the interquartile
range (IQR) and the median value of the distribution. Whiskers extend to the
nearest points ± 1.5 × IQR above and below the 25th and 75th percentiles. Asterisks
indicate a significant difference between box plots (Box plots
N = 24, 25, 12, 34, 32, 13, 27, 25, 24, 34, 17, 39, 31, 16, 24, 23, 283, 117).
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Weights are modulated by state
In most connectome studies, weights are defined based on streamline
or tractographic properties. These measures are typically assumed to
be invariant over short timescales. However, the asymmetric, weigh-
ted, and signed connectome uses functional imaging data, which does
fluctuate in response to stimulation, to assign weights to structural
connections. A natural question to ask is whether these weights are
state-dependent and, if so, whether we can detect changes in con-
nections’ weights as a function of in-scanner task and whether those
changes can be localized to specific tracts or brain systems.

To address these questions, we used resting-state and movie-
watching data from the Human Connectome Project’s 7T dataset,
focusing on a subset of 117 participants whose data passed quality
checks and for whom all four scans were available. Using the same SC
binarymask,wefit edgeweights at the group level, pooling data across
all subjects and scans to generate two asymmetric, weighted, and
signed matrices: one based on resting-state and the other based on
movie-watching data (Fig. 5a, b). In parallel, we also fit models at the
level of individual subjects, pooling scans from the same subject to
generate estimates of resting-state andmovie-watching edgesweights.
In both cases, we found comparable performance (mean squared
error) between both rest and movie data, with movies exhibiting
slightly better performance than resting state (paired sample t-test;
subject-level, p < 10−15; group-level p = 1.2 × 10−12; Fig. 5f–h).

First, we calculated the difference between edge weights for each
subject and averaged the differences across subjects (Fig. 5c, d). At
each edge, we performed a paired-sample t-test on the differenced
edge weight distributions. We found that, out of m = 29,204 total
edges, 2463 exhibited significant state-dependent differences (multi-
ple comparisons controlled for by fixing false discovery rate at q = 0.01
and adjusting the critical p-value, padj = 8.5 × 10−4). Although these
edges were distributed across the entire brain, they were significantly
concentrated within a small subset of systems (Fig. 5e; dashed black
borders around system blocks). Specifically, we found significant

system-level effects within central and peripheral visual networks,
from edges in the central visual network to the peripheral visual net-
work (but not vice versa, and from the dorsal attention network
(DANa) to the central visual network (spin test, false discovery rate
fixed at q =0.01, padj = 1.6 × 10−4).

Projected into anatomical space, we find that, as expected, the
connections that differ from rest to movie-watching tend to involve
regions in visual networks (Fig. 5i). Interestingly, there are approxi-
mately as many connections whose weights increase from rest to
movies as there are those that decrease, an effect that holds both
within the visual networks (241 increases vs 218 decreases) but also
across the entire brain (1292 increases vs 1171 decreases).

Differences in the weighted, signed, and directed
connectome across the human lifespan
To this point, we have estimated the weights of asymmetric, weighted,
and signed structural connections, described properties of the
resulting network, exposed asymmetries in connections’ weights, and
demonstrated that the weights are systematically modulated by task
(rest vs movie). In this section, we investigate individual differences in
connections’ weights and associate them with differences across the
human lifespan (7-85 years).

To do so, weused data from theNathan Kline Institute’s enhanced
Rockland Sample44, which included both diffusion weighted and
functional MRI data for N = 542 participants. In-scanner head move-
ment is known to vary systematically with age. To address motion-
related concerns, we adopted the same conservative procedure as
reported in45 for motion censoring. Specifically, for each of the
remaining subjects, we dropped frames in which motion exceeded a
pre-defined threshold (FD > 0.15mm). We also dropped time points
that were within two frames of any supra-threshold frame or failed for
a contiguous sequence of five frames or more. Following this proce-
dure, we excluded any participant for whom the fraction of retained
frames was fewer than 50% of their total number of frames.

Fig. 5 | Comparing matrices fit to resting-state and movie-watching data. We
analyzed 7T data from 117 participants in the Human Connectome Project. Using
the same binary mask as in the previous sections, we fit edge weights for both
conditions at the group level (pooling time series data across all subjects/scans)
and individual level (pooling data from the same subjects). Weights for (a) group-
level movie-watching state matrix and (b) group-level resting-state matrix. Panels
c and d show the difference in edge weights (movie minus rest); rows and columns
in panel c are ordered identically to panels a and b, whereas in panel d rows and
columns are reordered by brain systems. e The average weight across existing
connections between every pair of systems. Here, weights were squared prior to

averaging. Panels f and g depict two-dimensional histograms of observed and
predicted activity. h Model fitness when fit to pooled, group-level data (left) and
individual data (right). Box plots, shown in red and overlaid on data points in e and
f, depict the interquartile range (IQR) and the median value of the distribution.
Whiskers extend to the nearest points ± 1.5 × IQR above and below the 25th and
75th percentiles. Asterisks indicate a significant difference between box plots
(Group: N = 468, Individual: N = 117). i Edges whose difference between movie and
rest are significantly greater or less than zero plotted in anatomical space.
j Differences in functional connectivity (FC) between movie and rest for both the
observed data (left) and the predicted (right).
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Collectively, these procedures left N = 474 participants with high-
quality (low-motion) data for further analysis.

For each subject, we used the regression-based framework to fit
weights to every structural connection, generating subject-specific
asymmetric, weighted, and signed matrices. Note that, here, we
restricted every subject to have the same binary set of consensus
edges estimated from subjects aged 18-35 years; only edges’ weights
varied across individuals. Prior to calculating age-related differences,
we regressed out of each edge the following variables: sex (binary
variable), gray matter volume, mean framewise displacement of all
“low-motion” frames, and number of frames dropped due to motion
contamination. Finally, using the residuals from this procedure, we
calculated their linear product-moment correlation with subjects’
biological ages resulting in a (sparse)matrix of age-related correlations
(Fig. 6a). For the sake of visualization, we show subsets of edges that
pass uncorrected statistical tests (Fig. 6g–i).

Previous studies have found that age-related differences in func-
tional connectivity respect putative system boundaries46–48. Accord-
ingly, we performed statistical tests at the level of systems34.
Specifically, we calculated the mean correlation of all edges that fell
between/within every pair of systems. We then compared these
observed values with null distributions generated using “spin tests”
(1000 repetitions). System pairs for whom the observed correlation
exceeded that of the null were considered statistically significant (false
discovery rate fixed at q =0.05; padj =0.0088). In line with previous
work, we found that age-related decreases in connection weight ten-
ded to concentrate within brain systems, whereas between-system
weightswere, generally, centeredarounda valueof zero (two-sample t-
test, p = 7.65 × 10−13; Fig. 6b–f). More specifically, we found that con-
nections within the somatomotor network significantly decreased
their weight with age while connections from the default mode to the
control network increased (Fig. 6b; this was at the coarse scale).
Repeating this analysis at a finer scale allowed us to better localize
those effects. In particular, we found significant increases in connec-
tion weight from default mode B to control B, as well as an increase in
connection weights from dorsal attention network A to the central
visual module – an effect that had been previously obscured at the
coarse scale. We also detected significant decreases in connection
weight with age, concentrated within somatomotor network B, as well
as previously undetected decreases within dorsal attention network A,

salience/ventral attention network A, and from the temporo-parietal
network to default mode C.

Altogether, these findings recapitulate well-known age effects
that had been previously reported using functional connectivity data.
However, our approach grounds these effects in anatomical con-
nectivity, forming amulti-modal bridge between studies of anatomical
and functional age-related differences and opening up avenues for
future applied studies.

Discussion
The correct weighting of structural connections is not known. Most
strategies for assigning edge weights do so based on microstructural
or tractographic parameters. Though commonly used, the values of
these parameters are, in general, misaligned with the interpretation
that weights reflect the usage of inter-regional anatomical connec-
tions. This and other limitations–e.g. inability to detect directed
connectivity–motivate the exploration of alternative weighting
schemes, includingmulti-modal syntheses of structural, diffusion, and
functional imaging features.

We note that our approach shares some features with
existing frameworks–e.g. effective connectivity and dynamic causal
models49–54–in that it returns directed connections. However, our
weighting scheme is not generative–i.e. it cannot be used to generate
new synthetic time series data. Additionally, our approach is not
seeking to solve the inverse problem–i.e. inferring structure from
function. Rather, it is explanatory and represents ameans ofweighting
already reconstructed fiber tracts. It is therefore distinct from extant
approaches in network neuroscience, and presents opportunities for
multiple follow-up studies and applications in other neuroscientific
disciplines.

Over the past two decades, network neuroscience has led
to a number of discoveries about the organization of brain networks.
These include small-worlds9, hubs10 and rich clubs11, modules and
communities12, and cost-efficient wiring55. These canonical findings
have been observed not only in human brain networks reconstructed
at the macroscale, but have been reported across phylogeny and at all
spatial scales56.

Despite this preponderance of converging evidence, the specifics
of these findings often depend critically on whether or not to weight
edges and the precise measure used. Consider the prototypical “small

Fig. 6 | Age-relateddifferences in inferred structuralweights aremore common
within functional brain systems. a Edge level correlations with age. b, cMatrices
of significant results for the coarse- and fine-scale system spin tests, respectively
(Cont = Control, DMN = default mode network, DAN = dorsal attention network,
Lim = limbic, Sal/VAN = salience, SMN = somatomotor, TP = temporoparietal, Vis =
visual).d, e Boxplots comparing the z-scores from the spin-test nullmodel with the
real values. One boxplot displays within system z-score values, and the other dis-
plays between system z-score values. Box plots, shown in red and overlaid on data
points in e and f, depict the interquartile range (IQR) and the median value of the

distribution. Whiskers extend to the nearest points ± 1.5 × IQR above and below the
25th and 75th percentiles. Asterisks indicate a significant difference between box
plots (two-sample t-test; panel d: within N = 7, between N = 42; panel e: within
N = 16, between N = 240). f Within-system z-scores from the fine-scale system spin
test mapped onto cortical parcels. Panels g–i show individual edges that exhibit
age-related correlations (p <0.05; uncorrected). Blue and red edges correspond to
edges whose weights decrease or increase with age, respectively. Panels g–i are
presented for the sake of visualization only.
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world” model of the brain, where long-distance edges are thought to
represent shortcuts that allow signals to propagate long distances in
relatively few hops. Although both weighted and binary networks
exhibit small-world properties–relatively short path length and strong
local clustering–when edges are weighted based on streamline den-
sity, the strong distance-dependence of streamlines ensures that vir-
tually no long-distance connections are included in the network’s
shortest path structure13.

The example cited above represents just one instance where a
processing decision (whether and how to weight structural connec-
tions) leads to different interpretations of brain network function, vis a
vis role of long-distance connections in interareal communication.
Interestingly, we make a similar observation here; when edges are
weighted with regression coefficients and their signs rectified, we
recover a shortest path structure in whichmost edges contribute to at
least one shortest path and modules that are now better aligned with
functional brain systems57. Our work even presents challenges for how
we define connectomes58. When we refer to the connectome, we often
imagine an enumerable and finite set of neural elements and
connections59,60. Here, however, edge weights are context dependent,
impermanent, and vary with task/cognitive state. Essentially, the
structural edges inherit features usually reserved for functional con-
nections, placing our approach slightly at odds with the perspective
that structural connections arefixed over short timescales (duration of
typical scan session).

More importantly, the secrets of the connectome are far from
unlocked. Existing data and methods have not unambiguously map-
ped structure to function, for example, whether graph-theoretic
measures can unveil functional properties of a brain (and which
properties, specifically) is not clearly elucidated, and, although many
studies have identified statistical associations between network
properties and clinical, cognitive, behavioral, and developmental
markers, the mechanisms that underlie those associations are largely
unknown. Collectively, this motivates further neuroscientific explora-
tion, both of new data/connectivity modalities61 and experimental
paradigms, as well as methodological frameworks.

The edge-weighting scheme that we explore here can be used to
help understandoneof the central questions of network neuroscience:
how does the brain’s anatomical connectivity constrain its function?
Past studies have established a link between structural and functional
connectivity35. Empirical findings have shown that insults to structural
connections cause acute loss or reorganization of functional
connectivity62. Even in intact brains, structural connection weights are
correlated with their functional analogs and pairs of brain regions that
are connected directly or via few processing steps have proportionally
stronger FC10. In parallel, in silico dynamical systemsmodels have used
anatomical connectivity to constrain simulated brain activity63,64,
generating synthetic fMRI data whose correlation structure can be
compared with empirical FC or analytic estimates of interregional
communication capacity23,65.

Here, rather than compare SC to FC, we incorporate functional
information directly into the estimates of edge weights66–69. This pro-
cess generates a singular network object whose fitness (a metric that,
itself, can be interpreted as a measure of structure-function coupling)
can be estimated globally as the total error between observed and
predicted activity20 or parsed into local (regional) error terms, analo-
gous to recent approaches for linking anatomical and functional con-
nectivity weights45,70. We note, however, that this approach is also
distinct from most studies that report structure-function correspon-
dence, in that we seek a set of parameters that maximizes that corre-
spondence, whereas most studies report a correlation between
functional data (FC or activity) and structural networks and their
derivatives71.

Throughout the study, we compare properties of the asymmetric,
weighted, and signed network with a network in which edge weights

represent fiber densities – a more traditional measure of structural
connectivity. In general (and unsurprisingly), the properties of these
networks are often dissimilar. That is, how we choose to weight a
network’s edges can change its graph-theoretic profile and impacthow
we might interpret its function. Although we remain agnostic as to
which weighting scheme is superior, we note that the asymmetric
network both outperforms the fiber density network on a number of
applications, and has properties that are better aligned with intuition.

For instance,wefind that themodular structure of the asymmetric
network tends to be less lateralized–i.e. modules are more likely to
contain nodes from both hemispheres–than the fiber density network.
This observation suggests that the reweighting of the network helps
circumvent one of the peculiarities (or limitations) of community-
detection methods applied to structural brain networks. Namely,
because fiber densities and weights derived from tract-tracing
experiments tend to be heavy-tailed and distance-dependent13,28 and
because long-distance interhemispheric tracts are notoriously chal-
lenging to reconstruct from diffusion imaging data72,73, communities
tend to be spatially contiguous and exhibit poor correspondence with
systems/communities derived from functional recordings35.

Additionally, we take advantage of recent advances in neu-
roinformatics to compare communities with brain maps–i.e. the
regional or vertex-wide expression of genetic, transcriptomic, evolu-
tionary, and developmental markers. We find that communities
obtained from the asymmetric network tend to be significantly enri-
ched for many of these markers to an extent above and beyond the
communities obtained from the fiber density matrix. These observa-
tions suggest that the multi-modal network generated by endowing
structural connections with functionally relevant information tightens
the link between network organization and brain-based markers.

Two of the unique features of the networks we construct here are
that edge weights are signed and directed. How do we interpret these
features? Are there possible neurophysiogical explanations?

At their core, the edge weights estimated here are statistical con-
structs. Specifically, they represent howwell the past activity of node i’s
connected neighbors explains i’s future activity. For a given node i, its
in-weights must also be interpreted as a group; they are estimated
simultaneously, with neighbors of i competing for the pool of unex-
plained variance. In a simple two node system, a negative weight from
node i to j indicates that when the activity of i increases, the activity of j
tends to decrease proportionally at the next time point. As you increase
the number of connected nodes, negative weights should be inter-
preted in the context of the neighbors of the node whose activity they
are predicting. Similarly, asymmetric weights arise from modeling
future activity from the perspective of different nodes, such that node i
has greater influence over node j’s model than the reverse. This inter-
pretation in which the connection, Wj→i, represents how much the
history of j explains the current state of i is broadly in line with extant
modeling frameworks for estimating effective connectivity74.

Although it is tempting to ascribe “excitatory” and “inhibitory”
labels to positive and negative edge weights, this terminology is typi-
cally reserved for cell-to-cell projections. In general, the neurochem-
ical (e.g. glutamate/excitatory and GABA/inhibitory) contributions to
the diffusion MRI and fMRI BOLD signal are not easily parsed75. How-
ever, we can speculate about possible underlying mechanisms that
support signed edges in large-scale networks. One possible explana-
tion involves feed-forward or feedback inhibition76, whereby excita-
tory inter-regional connections cause inhibition in their target region
either by directly exciting local inhibitory interneurons, or by exciting
local interneurons indirectly through connecting pyramidal cells.
Indeed, recent studies have suggested that the balance of glutamate/
GABAunderlies the antagonistic (anti-correlated) activity of large-scale
brain systems77.

Similarly, although it is tempting to ascribe a causal story to the
asymmetricweights of ourmodel such thatone regionhasmore causal
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influence over another region, causality is notoriously difficult to
assess, especially in complex systems like the brain78,79. Manymethods
have been developed in attempt to disambiguate causal asymmetries
in brains including direct electrical stimulation of brain regions80 and
effective connectivity and dynamic causal models49–54. Still, the diffi-
culty involved in characterizing causality in complex systemswarrants
a multi-pronged approach. With the asymmetric, weighted and signed
connectome, we hope to provide an additional, easily calculated
metric by which to assess asymmetric relationships between brain
regions. With multiple metrics we might be able to better triangulate
on the reality of causal asymmetries in these systems.

Indeed, in a supplementary analysis we found that the asymmetric
weights estimated using our model are uncorrelated with weights
estimated from tract-tracing data (which offers an anatomical per-
spective on asymmetric connectivity)1. These observations suggest
that incorporating functional information may yield largely com-
plementary information about brain connectivity to traditional edge
weight metrics. In support of this, a number of our findings suggest
that theweights in ourmodel are not randomlydistributed throughout
the brain, but reflect known organizational axes of brain networks. For
instance, asymmetric edges with different signs (+/−) tend to fall
between large-scale brain systems rather thanwithin and the similarity
of in-strength and out-strength is lowest in heteromodal poles, sug-
gesting that asymmetry might be a hallmark of polyfunctionality.

Irrespective of their underlying origins, the signed and asym-
metric edges in the networks constructed here exhibit non-random
organization in terms of their distribution across canonical brain sys-
tems and relationship to other network/geometric measures–e.g.
clustering coefficient and fiber length. These features, of course, have
implications for traditional network analyses and may spur methodo-
logical innovation within the field of network neuroscience. For
instance, interregional communication models rely on shortest paths
and diffusion dynamics to estimate communication efficacy23,81. How-
ever, these measures are not well-defined for networks with signed
edges. Here, we circumvent this issue by offsetting edge weights,
forcing negative connections to have small (but positive) values.
However, there are likely many alternative strategies that embrace the
signed nature of edges that could be explored in future studies82.

This study has a number of limitations. Most notably, the primary
results rely on the use of diffusion-weighted MRI and tractography for
reconstructing white-matter tracts. Although these methods are still
used widely, they have well-documented drawbacks and biases that
call into questions the verisimilitude of structural connectivity
networks83,84. We partially mitigate these concerns by replicating our
findings using tract-tracing data made available through the Allen
Brain Institute1. Unlike tractography, in which anatomical connections
are inferred non-invasively, antero-/retrograde tract-tracing is con-
sidered the gold standard mapping large-scale connectivity85. We
expect that advances in imaging, tractography algorithms86,87, and
better alignment of multi-scale datasets will narrow the gap between
tract-tracing and tractography in future studies88.

Another possible limitation of the current study is its focus on
neocortex only. Doing so necessarily ignores contributions from sub-
cortical and cerebellar regions when modeling node-level time series.
Adding additional regions is not computationally prohibitive and in
principle could be addressed easily.

Our study also presents a number of opportunities for future
studies. Among the most obvious is the empirical validation of edge
weights estimated here. Datasets in which stimulation is paired with
brain-wide recordings make it feasible to estimate directed influence
between brain stimulus-target pairs of regions89,90. These estimates
could be compared directly to the connection weights inferred here.
Relatedly, our results should be compared against those obtained
using other methods for inferring asymmetric and effective
connectivity42,91.

Our preliminary findings using movie-watching data suggest that
our weighting scheme may be suitable for detecting state-specific
changes in structural connection weights. Future studies should
explore the sensitivity of this approach for other state-based com-
parisons. We note that, unlike unthresholded functional connectivity,
which, when used in a brain-wide association or case-control study
results in N(N − 1)/2 comparisons, our approach results in much fewer
connections92. Statistical tests only need to be performed for existing
structural connections, possibly increasing the statistical power of
these types of studies93.

Methods
In this section, we describe all four datasets that we analyzed. Briefly,
they include three human MRI datasets: two from the Human Con-
nectome Project and another from the Nathan Kline Institute. In
addition, we also analyzed tract-tracing and functional MRI data
from mice.

Datasets: Human Connectome Project 3T resting-state and
diffusion-weighted MRI
The Human Connectome Project (HCP) 3T dataset29 consists of struc-
turalmagnetic resonance imaging (T1w), functionalmagnetic resonance
imaging (fMRI), and diffusion magnetic resonance imaging (dMRI)
young adult subjects, some of which are twins. Here we use a subset of
the available subjects. These subjectswere selected as they comprise the
“100 Unrelated Subjects” released by the Connectome Coordination
Facility. After excluding data based on completeness and quality control
(4 exclusions based on excessive framewise displacement during scan-
ning; 1 exclusion due to software failure), the final subset included
95 subjects (56% female, mean age= 29.29 ± 3.66, age range= 22–36).
The study was approved by the Washington University Institutional
Review Board and informed consent was obtained from all subjects.

A comprehensive description of the imaging parameters and
imageprepocessing canbe found in ref. 94. Imageswere collectedon a
3T Siemens Connectome Skyra with a 32-channel head coil. Subjects
underwent two T1-weighted structural scans, which were averaged for
each subject (TR = 2400ms, TE = 2.14ms, flip angle = 8∘, 0.7mm iso-
tropic voxel resolution). Subjects underwent four resting-state fMRI
scans over a two-day span. The fMRI data was acquiredwith a gradient-
echo planar imaging sequence (TR = 720ms, TE = 33.1ms, flip
angle = 52∘, 2mm isotropic voxel resolution, multiband factor = 8).
Each resting-state run duration was 14:33 min, with eyes open and
instructions to fixate on a cross. Subjects underwent 14 task fMRI scans
over a two-day span. The fMRI data was collected with the same
sequence parameters as the resting-state fMRI. The fMRI runs con-
sisted of workingmemory (5:01min, 405 frames), gambling (3:12, 253),
motor (3:34, 284), language (3:57, 316), social cognition (3:27, 274),
relational processing (2:56, 232), and emotional processing (2:16, 176)
tasks. Finally, subjects underwent two diffusionMRI scans, which were
acquired with a spin-echo planar imaging sequence (TR = 5520ms,
TE = 89.5ms, flip angle = 78∘, 1.25mm isotropic voxel resolution, b-
vales = 1000, 2000, 3000 s/mm2, 90 diffusion weighed volumes for
each shell, 18 b = 0 volumes). These two scans were taken with oppo-
site phase encoding directions and averaged.

Structural, functional, and diffusion images were minimally pre-
processed according to the description provided in94, as implemented
and shared by the Connectome Coordination Facility. Briefly, T1w
images were aligned to MNI space before undergoing FreeSurfer’s
(version 5.3) cortical reconstruction workflow, as part of the HCP
Pipeline’s PreFreeSurfer, FreeSurfer, and PostFreeSurfer steps. Func-
tional images were corrected for gradient distortion, susceptibility
distortion, and motion, and then aligned to the corresponding T1w
with one spline interpolation step. This volume was further corrected
for intensity bias and normalized to amean of 10000. This volumewas
then projected to the 2mm 32k_fs_LR mesh, excluding outliers, and

Article https://doi.org/10.1038/s41467-024-50248-6

Nature Communications |         (2024) 15:5865 10



aligned to a common space using a multi-modal surface registration95.
The resultant CIFTI file for each HCP subject used in this study fol-
lowed the file naming pattern: *_Atlas_-
MSMAll_hp2000_clean.dtseries.nii. These steps are performed
as part of the HCP Pipeline’s fMRIVolume and fMRISurface steps. Each
minimally preprocessed fMRI was linearly detrended, band-pass fil-
tered (0.008-0.008 Hz), confound regressed and standardized using
Nilearn’s signal.clean function, which removes confounds ortho-
gonally to the temporal filters. The confound regression strategy
included six motion estimates, mean signal from a white matter, cer-
ebrospinal fluid, and whole brain mask, derivatives of these previous
nine regressors, and squares of these 18 terms. Spike regressors were
not applied. Following these preprocessing operations, the mean sig-
nal was taken at each time frame for each node, as defined by the
Schaefer 200 parcellation34 in 32k_fs_LR space. Diffusion images were
normalized to themeanb0 image, corrected for EPI, eddy current, and
gradient non-linearity distortions, and motion, and aligned to subject
anatomical space using a boundary-based registration as part of the
HCP pipeline’s Diffusion Preprocessing step. In addition to HCP’s
minimal preprocessing, diffusion images were corrected for intensity
non-uniformity with N4BiasFieldCorrection96. The Dipy toolbox
(version 1.1)97 was used to fit a multi-shell multi-tissue constrained
spherical deconvolution98 to the data with a spherical harmonics order
of 8, using tissue maps estimated with FSL’s fast99. Tractography was
performed usingDipy’s Local Trackingmodule97. Multiple instances
of probabilistic tractography were run per subject100, varying the step
size and maximum turning angle of the algorithm. Tractography was
run at step sizes of 0.25mm, 0.4mm, 0.5mm, 0.6mm, and 0.75mm
with the maximum turning angle set to 20∘. Additionally, tractography
was run atmaximum turning angles of 10∘, 16∘, 24∘, and 30∘with the step
size set to 0.5mm. For each instance of tractography, streamlineswere
randomly seeded three timeswithin each voxel of awhitemattermask,
retained if longer than 10mm and with valid endpoints, following
Dipy’s implementation of anatomically constrained tractography101,
and errant streamlines were filtered based on the cluster confidence
index102. For each tractography instance, streamline count between
regions-of-interest were normalized by dividing the count between
regions by the geometric average volume of the regions. Since trac-
tography was run nine times per subject, edge values were collapsed
across runs. To do this, the weighted mean was taken with weights
based on the proportion of total streamlines at that edge. This
operation biases edge weights towards larger values, which reflect
tractography instances better parameterized to estimate the geometry
of each connection.

Datasets: Human Connectome Project 7T resting-state and
movie-watching data
The Human Connectome Project (HCP) 7T dataset29 consists of
structural magnetic resonance imaging (T1w), resting-state functional
magnetic resonance imaging (rsfMRI) data,movie-watching functional
magnetic resonance imaging (mwfMRI) from 184 adult subjects. These
subjects are a subset of a larger cohort of approximately 1200 subjects
additionally scanned at 3T. Subjects’ 7T fMRI data were collected
during four scan sessions over the course of two or three days at the
Center for Magnetic Resonance Research at the University of Minne-
sota. Subjects’ 3T T1w data collected at Washington University in St.
Louis. The study was approved by the Washington University Institu-
tional Review Board and informed consent was obtained from all
subjects.

We analyzedMRI data collected fromNs = 129 subjects (77 female,
52male), after excluding subjectswith poorquality data.Our exclusion
criteria was as follows: where each spike is defined as relative frame-
wise displacement of at least 0.25mm,weexcluded subjects who fulfill
at least 1 of the following criteria: greater than 15%of time points spike,
average framewise displacement greater than 0.2mm; contains any

spikes larger than 5mm. Following this filter, subjects who contained
all four scans were retained. At the time of their first scan, the average
subject age was 29.36 ± 3.36 years, with a range from 22 to 36. 70 of
these subjects were monozygotic twins, 57 were non-monozygotic
twins, and 2 were not twins.

A comprehensive description of the imaging parameters and
image preprocessing can be found in94 and in HCP’s online doc-
umentation (https://www.humanconnectome.org/study/hcp-young-
adult/document/1200-subjects-data-release). T1w were collected on a
3T Siemens Connectome Skyra scanner with a 32-channel head coil.
Subjects underwent two T1-weighted structural scans, which were
averaged for each subject (TR = 2400ms, TE = 2.14ms, flip angle = 8∘,
0.7mm isotropic voxel resolution). fMRI were collected on a 7T Sie-
mens Magnetom scanner with a 32-channel head coil. All 7T fMRI data
was acquired with a gradient-echo planar imaging sequence (TR =
1000ms, TE = 22.2ms, flip angle = 45∘, 1.6mm isotropic voxel resolu-
tion, multi-band factor = 5, image acceleration factor = 2, partial Four-
ier sample = 7/8, echo spacing =0.64ms, bandwidth = 1924 Hz/Px).
Four resting-state data runs were collected, each lasting 15 minutes
(frames = 900), with eyes open and instructions to fixate on a cross.
Four movie-watching data runs were collected, each lasting approxi-
mately 15 minutes (frames = 921, 918, 915, 901), with subjects passively
viewing visual and audio presentations of movie scenes. Movies con-
sisted of both freely available independent films covered by Creative
Commons licensing and Hollywood movies prepared for analysis103.
For both resting state and movie-watching data, two runs were
acquired with posterior-to-anterior phase encoding direction and two
runs were acquired with anterior-to-posterior phase encoding
direction.

Structural and functional images were minimally preprocessed
according to the descriptionprovided in94, as implemented and shared
by the Connectome Coordination Facility. Briefly, T1w images were
aligned to MNI space before undergoing FreeSurfer’s (version 5.3)
cortical reconstruction workflow, as part of the HCP Pipeline’s Pre-
FreeSurfer, FreeSurfer, and PostFreeSurfer steps. 7T fMRI images were
downloaded after correction and reprocessing announced by the HCP
consortium in April, 2018. fMRI images were corrected for gradient
distortion, susceptibility distortion, and motion, and then aligned to
the corresponding T1wwith one spline interpolation step. This volume
was further corrected for intensity bias and normalized to a mean of
10000. This volume was then projected to the 2mm 32k_fs_LR mesh,
excluding outliers, and aligned to a common space using a multi-
modal surface registration95. The resultant CIFTI file for each HCP
subject used in this study followed the file naming pattern:
*_Atlas_MSMAll_hp2000_clean.dtseries.nii. These steps are
performed as part of the HCP Pipeline’s fMRIVolume and fMRISurface
steps. Resting state and moving watching fMRI images were nuisance
regressed in the samemanner. Eachminimally preprocessed fMRI was
linearly detrended, band-pass filtered (0.008–0.25 Hz), confound
regressed and standardized using Nilearn’s signal.clean function,
which removes confounds orthogonally to the temporal filters. The
confound regression strategy included six motion estimates, mean
signal from a white matter, cerebrospinal fluid, and whole brain mask,
derivatives of these previous nine regressors, and squares of these 18
terms. Spike regressors were not applied. Following these preproces-
sing operations, themean signal was taken at each time frame for each
node, as defined by the Schaefer 400 parcellation34 in 32k_fs_LR space.

Datasets: Nathan Kline Institute, Enhanced Rockland Sample 3T
resting-state, and diffusion-weighted MRI
The Nathan Kline Institute Rockland Sample (NKI) dataset consisted of
structural magnetic resonance imaging, resting-state functional mag-
netic resonance imaging data, as well as diffusion magnetic resonance
imaging data from 811 subjects (downloaded December 2016 from the
INDI S3 Bucket) of a community sample of participants across the
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lifespan44. After excluding subjects based on data and metadata com-
pleteness and quality control, the final subset utilized included
542 subjects (56% female, age range = 7–84). The study was approved
by the Nathan Kline Institute Institutional Review Board andMontclair
State University Institutional Review Board and informed consent was
obtained from all subjects. A comprehensive description of the ima-
ging parameters can be found online at the NKI website.

Briefly, images were collected on a Siemens Magneton Trio with a
12-channel head coil. Subjects underwent one T1-weighted structural
scan (TR = 1900ms, TE = 2.52ms, flip angle = 9∘, 1mm isotropic voxel
resolution). Subjects underwent three differently parameterized rest-
ing state scans, but only one acquisition is used in the present study.
The fMRI data was acquired with a gradient-echo planar imaging
sequence (TR = 645ms, TE = 30ms, flip angle = 60∘, 3mm isotropic
voxel resolution, multiband factor = 4). This resting state run
lasted approximately 9:41 seconds, with eyes open and instructions to
fixate on a cross. Subjects underwent one diffusion MRI scan (TR =
2400ms, TE= 85ms, flip angle = 90∘, 2mm isotropic voxel resolution,
128 diffusion weighted volumes, b-value = 1500 s/mm2, 9 b = 0
volumes).

The NKI was downloaded in December of 2016 from the INDI S3
Bucket. At the time of download, the dataset consisted of 957 T1w
(811 subjects), 914 DWI (771 subjects), and 718 fMRI ("acquisition645”;
634 subjects) images. T1w and DWI images, and tractography results
were first filtered based on visual inspection. T1w images were filtered
based on artifact, such as ringing or ghosting (43 images) and for
FreeSurfer reconstruction failure (105 images) as assesses with the
ENIGMAQC tools, leaving 809 T1w images (699 subjects). DWI images
were filtered based on corrupt data (13 images) and artifact on fitted
fractional anisotropy maps (18 images), leaving 883 images (747 sub-
jects). Tractography was run on 781 images (677 subjects) that had
both quality controlled T1w and DWI images. Tractography results
were filtered based on artifact, which include failure to resolve callosal,
cingulum, and/or corticospinal streamlines or errors resulting in
visually sparse streamline densities, resulting in 764 tractography runs
(661 subjects). T1w, DWI, and fMRI images were then filtered using
computed imagequalitymetrics104–106. T1w imageswereexcluded if the
scan was marked as an outlier (1.5x the inter-quartile range in the
adverse direction) in three or more of following quality metric dis-
tributions: coefficient of joint variation, contrast-to-noise ratio, signal-
to-noise ratio, Dietrich’s SNR, FBER, and EFC. DWI images were
excluded if the percent of signal outliers, determined by eddy_qc, was
greater than 15%. Furthermore, DWI were excluded if the scan was
marked as an outlier (1.5x the inter-quartile range in the adverse
direction) in two or more of following quality metric distributions:
temporal signal-to-noise ratio, mean voxel intensity outlier count, or
max voxel intensity outlier count. fMRI images were excluded if
greater than 15% of time frames exceeded 0.5mm framewise dis-
placement. Furthermore, fMRI images were excluded the scan was
marked as an outlier (1.5x the inter-quartile range in the adverse
direction) in 3 or more of the following quality metric distributions:
DVARS standard deviation, DVARS voxel-wise standard deviation,
temporal signal-to-noise ratio, framewise displacement mean, AFNI’s
outlier ratio, and AFNI’s quality index. This image quality metric fil-
tering excluded zero T1w images, 16 DWI images, and 21 fMRI images.
Following this visual and image quality metric filtering, 809 T1w ima-
ges (699 subjects), 728 DWI images (619 subjects), and 697 fMRI
images (633 subjects). The intersection of subjects with at least one
valid T1w, DWI, and fMRI images totaled 567 subjects. Finally, age
metadata was available for 542 of these subjects.

T1-weighted images were submitted to FreeSurfer’s cortical
reconstruction workflow (version 6.0). The FreeSurfer results were
used to skull strip the T1w, which was subsequently aligned to MNI
space with 6 degrees of freedom. fMRI preprocessing was performed
using the fMRIPrep version 1.1.8107. The following description of fMRI

preprocessing is based on fMRIPrep’s documentation. This workflow
utilizes ANTs (2.1.0), FSL (5.0.9), AFNI (16.2.07), FreeSurfer (6.0.1),
nipype108, and nilearn109. Each T1w was corrected using
N4BiasFieldCorrection96 and skull-stripped using antsBrainEx-
traction.sh (using the OASIS template). The ANTs-derived brain
mask was refined with a custom variation of the method to reconcile
ANTs-derived and FreeSurfer-derived segmentations of the cortical
gray-matter of Mindboggle110. Brain tissue segmentation of cere-
brospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was
performed on the brain-extracted T1w using fast99. Functional data
was slice time corrected using 3dTshift from AFNI and motion cor-
rected using FSL’s mcflirt. “Fieldmap-less” distortion correction was
performed by co-registering the functional image to the same-subject
T1w with intensity inverted111 constrained with an average fieldmap
template112, implementedwith antsRegistration. This was followed
by co-registration to the corresponding T1w using boundary-based
registration113 with 9 degrees of freedom, using bbregister. Motion
correcting transformations, field distortion correcting warp, and
BOLD-to-T1w transformation warpwere concatenated and applied in a
single step using antsApplyTransforms using Lanczos interpola-
tion. Frame-wisedisplacement114 was calculated for each functional run
using the implementation of Nipype. The first four frames of the BOLD
data in the T1w space were discarded. Diffusion images were pre-
processed following the “DESIGNER” pipeline using MRTrix (3.0)115,116,
which includes denoising, Gibbs ringing and Rician bias correction,
distortion and eddy current correction117 and B1 field correction. DWI
were then aligned to their correspondingT1wand theMNI space in one
interpolation step with B-vectors rotated accordingly. Local models of
white matter orientation were estimated in a recursivemanner118 using
constrained spherical deconvolution98 with a spherical harmonics
order of 8. TractographywasperformedusingDipy’sLocalTracking
module97. Probabilistic streamline tractography was seeded five times
in each white matter voxel. Streamlines were propagated with a
0.5mm step size and a maximum turning angle set to 20∘. Streamlines
were retained if longer than 10mmandwith valid endpoints, following
Dipy’s implementation of anatomically constrained tractography101.
Streamline count between regions-of-interest were normalized by
dividing the count between regions by the geometric average volume
of the regions.

Estimating group-representative structural connectivity network.
The output of the tractography algorithm generated subject-level
estimates of streamlines for both theNKI andHCP datasets. In general,
subjects’ connectomes are variable. A fraction of this variability
reflects true individual differences, while another fraction reflects
unwanted noise, e.g. random variation. One strategy for reducing
noise is to aggregate data frommany individuals to construct a group-
representative consensus connectome. Here, we follow30 and gen-
erate distant-dependent connectomes for both the NKI and HCP
datasets. Briefly, this procedure bins edges by their length
and, within each distance bin, identifies the edges that are
most consistently present across the full set of subjects. Compared
to standard approaches, which retains the most consistent
edges irrespective of their length, consensus networks generated
using this procedure are more representative of single-subject
connectomes–i.e. has more properties in common. Note that this
distance-preserving consensus procedure is applied separately to
within- and between-hemisphere edges. Note also that for the NKI
dataset, the consensus connectome was constructed using data from
subjects aged 18-35 years. Finally, we made the decision to use the
same (but dataset-specific) group representative for all HCP and NKI
subjects. The rationale behind this decision was that it allowed us to
discount the possibility that differences in model performance–e.g.
fitness or edge weights–was driven by differences in the structural
connectivity.
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Dataset: mouse anatomical and functional connectivity
Mouse resting state fMRI data. All in vivo experiments were con-
ducted in accordance with the Italian law (DL 2006/2014, EU 63/2010,
Ministero della Sanitá, Roma) and the recommendations in the Guide
for theCare andUse of Laboratory Animals of theNational Institutes of
Health. Animal research protocols were reviewed and consented by
the animal care committee of the Italian Institute of Technology and
ItalianMinistry of Health. The rsfMRI dataset used in this work consists
of n = 19 scans in adult male C57BL/6J mice that are publicly
available119,120. Animal preparation, image data acquisition, and image
data preprocessing for rsfMRI data have been described in greater
detail elsewhere120. Briefly, rsfMRI data were acquired on a 7.0-T
scanner (Bruker BioSpin, Ettlingen) equipped with BGA-9 gradient set,
using a 72-mm birdcage transmit coil, and a four-channel solenoid coil
for signal reception. Single-shot BOLD echo planar imaging time series
were acquired using an echo planar imaging sequence with the fol-
lowing parameters: repetition time/echo time, 1000/15ms; flip angle,
30°; matrix, 100 × 100; field of view, 2 × 2 cm2; 18 coronal slices; slice
thickness, 0.50mm; 500 (n = 21) or 1500 (n = 19) volumes; and a total
rsfMRI acquisition time of 30 min.

Image preprocessing has been previously described in greater
detail elsewhere120. Briefly, timeseries were despiked, motion corrected,
skull stripped and spatially registered to an in-house EPI-based mouse
brain template. Denoising andmotion correction strategies involved the
regression of mean ventricular signal plus 6 motion parameters. The
resulting time series were band-pass filtered (0.01–0.1Hz band) and
then spatially smoothed with a Gaussian kernel of 0.5mm full width at
half maximum. After preprocessing, mean regional time-series were
extracted for 182 regions of interest (ROIs) derived from a predefined
anatomical parcellation of the Allen Brain Institute (ABI1,121).

Mouse anatomical connectivity data. The mouse anatomical con-
nectivity data used in this work were derived from a voxel-scale model
of the mouse connectome made available by the Allen Brain
Institute122,123 (https://data.mendeley.com/datasets/dxtzpvv83k/2).

Briefly, the mouse structural connectome was obtained from
imaging-enhanced green fluorescent protein (eGFP)-labeled axonal
projections derived 428 viral microinjection experiments, and regis-
tered to a common coordinate space1. Under the assumption that
structural connectivity varies smoothly across major brain divisions,
the connectivity at each voxel was modeled as a radial basis kernel-
weighted average of the projection patterns of nearby injections123.
Following the procedure outlined in122, we re-parcellated the voxel
scalemodel in the same 182 nodes used for the resting-state fMRI data,
and we adopted normalized connection density (NCD) for defining
connectome edges, as this normalization has been shown to be less
affected by regional volume than other absolute and/or relative mea-
sure of interregional connectivity124.

Fitting edge weights
Here, we use a regression-based framework for assigning weights to
existing structural connections. Our approach is simple; we assume
that at time t the state of region i (level of fMRI BOLD activity) is a
function of its neighbors’ states at time t− 1 plus an offset (bias). That is:

yiðtÞ=
X

j2Γi ,j≠i
W jiyjðt � 1Þ+ ci: ð2Þ

Here, yi(t) refers to the level of activity in region i at time t, Γi is the set
of i’s connected neighbors (their indices).We use linear regression and
ordinary least squares to estimate the parametersWji and ci separately
for each node i. Thus, the resulting matrix W 2 Rn×n, is sparse and
preserves exactly the binary structureof thewhite-matter connectivity.
However, the weights can take on both positive and negative valence.
The resulting network is also asymmetric–i.e. in general, the Wij ≠Wji.

Null models
We fit the linear model using data pooled from all participants and
scans. The model fitness was quantified as the mean squared error
(MSE)of the observed activity time series and the time series predicted
by themodel.We compared theempiricalmsE againstfivenullmodels.

• Minimally wired null model: Generates a synthetic structural
network comprised of them least costly connections, wherem is
the same number of connections as the observed network.
Because this network contains only short-range (low cost)
connections, this null model assesses how long-distance connec-
tions contribute to model fitness.

• Re-ordered null model: Randomly permutes node order, effec-
tively endowing nodes with a different number and set of neigh-
bors than they have in the original network. This model assesses
the contributions of specific neighbors to model fitness.

• "Spin” null model: Randomly permutes node order while
approximately preserving inter-regional Euclidean distances. This
model can be viewed as a constrained versions of the re-ordered
nullmodel, in that it only allowsparticular subset of permutations.

• Topological null model: In this model, each nodemakes the same
number of connections as in the original network. However, those
connections, which define nodes’ neighborhoods, are formed at
random. This model assesses whether networks with identical
degree distribution yield similar fitness values as the original
network.

• Temporal null model: For each scan, parcel time series are circu-
larly shifted by some random integer. This procedure preserves
temporally invariant properties of each time series, like their
mean and standard deviation, and approximately preserves other
properties, e.g. power spectrum. However, it destroys inter-
regional correlations. In effect, this model tests whether time
series with similar statistical properties but no correlation struc-
ture could yield comparable fitness values as the original time
series.

Modularity maximization
Here, we used modularity maximization to detect clusters (modules)
in brain network data125,126. Generically, modularity maximization
works by assigning nodes to non-overlapping clusters so that
the within-cluster weight of connections maximally exceeds that of a
null model. This intuition is formalized by the modularity quality
function:

QðγÞ=
X

ij

½Wij � γPij �δðzi, zjÞ: ð3Þ

In this equation, Wij and Pij are the observed and expected weight of
the connection between nodes i and j, zi∈ {1,…,K} is a categorical
variable that indicates the community to which node i was assigned, γ
is the structural resolution parameter, and δ(zi, zj) is the Kronecker
delta function, which evaluates to 1 when zi = zj and 0 otherwise. In
short, modularitymaximization seeks to optimize the quantityQ(γ) by
selecting the values of zi.

The modularity maximization framework is general and can test
different null hypotheses (null connectivity models) by varying the
entries of P, the matrix of expected connections and their weights.
Here, we test two different null models. The first was proposed in37 and
is designed, specifically, to work with signed connectivity matrices.
Under this model, the modularity equation is:

Q*ðγÞ= 1

k +

X

ij

½W +
ij � γP +

ij �δðzi, zjÞ �
1

k + + k�

X

ij

½W�
ij � γP�

ij �δðzi, zjÞ:
ð4Þ

Article https://doi.org/10.1038/s41467-024-50248-6

Nature Communications |         (2024) 15:5865 13

https://data.mendeley.com/datasets/dxtzpvv83k/2


Here, themodularity equation includes separate terms for the positive
andnegative connections. Thepositive term isweightedmore than the
negative term (note the scale factors before the summation). This
allows modules to be detected in networks with signed connections.
However, if this same version ofmodularitymaximization is applied to
a network with positive links only, the second term in the equation
evaluates to zero and returns the standard modularity equation. Note
that in this equation, P ±

ij =
k ±
i k ±

j

2m± .
Here, we use this quality function in twoways. In themain text, we

optimizeQ* 1000 times for both the asymmetric, weighted, and signed
network aswell as thefiber density network. These results are shown in
Fig. 2. In the supplement, we combine this quality function with a
hierarchical consensus algorithm127, in which we first vary the values of
γ over all possible ranges to obtain a representative sample of com-
munities (1,000,000 repetitions in total), and second, use these sam-
ples to construct a hierarchical dendrogram that organizes the noisy
individual samples into hierarchically related consensus communities.
The results of this analysis are shown in Fig. S9.

We also used a second version of the modularity equation that
was originally proposed for analysis of physical systems128. Briefly, the
equation reads:

Q=
X

ij

½Wij � hW iAij �δðzi, zjÞ: ð5Þ

Here, the matrix A is the binary matrix of connections that exist in the
empirical and weighted connectivity matrix.〈W〉 is themeanweight
of existing connections. In other words, this modularity equation
preserves the topology of the network, but assumes that edge
weights are assigned randomly and uniformly. The results of this
analysis are presented in Fig. S11. We note that, in principle, a reso-
lution parameter could be incorporated into this formulation of the
modularity quality function as well by replacing〈W〉with a tunable
γ parameter.

Network statistics
In addition tomodularity, we calculated several other networkmetrics.
These include efficiency, characteristic path length, signed strength,
and signed clustering coefficient. In this section we define those
measures in detail.

• Shortest paths. Both efficiency and characteristic path length are
defined based on a network’s shortest path structure. Consider
source and target nodes, s and t. The shortest path from the s to t
can be estimated easily using the Floyd-Warshall algorithm. In
weighted networks where edge weights as interpreted as
measures of affinities it requires that the user first map those
weights to measures of cost. For networks with positive connec-
tions only, a straightforward way to do this is to transform
Cij =W

�γ
ij , where the most common value for the parameter is

γ = 1. For signed networks, like the ones used here, we use the
same transformation, but only after we add an offset to each edge
so that all weights are greater than zero. Our strategy for doing so
involved first subtract the smallest (most negative) edge weight
from the network. This ensures that all edges have a weight
greater than zero, except for the single edge corresponding to the
most negative weight, which has a cost of 0. We then add to every
edge an even smaller offset–in this case the weakest edge weight
in the fiber density matrix. This guarantees that all pairs of nodes
connectedby afiber tract have nonzeroweights.Once a network’s
affinity-basedweights have been transformed to costs, algorithms
like the Floyd-Warshall algorithm find the shortest–i.e. least
costly–path between all pairs of nodes. This algorithm returns two
outputs: 1) the total cost incurredby following saidpath and 2) the
number of steps (hops) along said path. Here, we use the hop data
but not that, inprinciple, one could repeat all subsequent analyses

using the cost data, instead. Let Hst be the number of hops on the
shortest path from the source s to the target t.

• Characteristic path length. The characteristic path length of this
network is calculated as:

L=
1

nðn� 1Þ
X

i,j≠i

Hst : ð6Þ

• Efficiency. The efficiency of this network is calculated as:

E =
1

nðn� 1Þ
X

i,j≠i

1
Hst

: ð7Þ

• Clustering coefficient. The local clustering coefficient is calculated
for each node i. Intuitively, it measures the extent to which node
i’s neighbors are also connected to one another. It can be calcu-
lated easily for each node as the density of the subgraph com-
posed of those neighbors. Here, we calculate clustering
coefficients for each node in the network based on their positive
connections and negative connections, separately. The values
reported in the main text ignore the actual weight but
preserve sign.

• Strength. Node strength –orweighted degree – the totalweight of
connections incident upon node i. For an undirected network, it is
calculated as: si =∑jWij. For a directed network, we calculate
strength as the average of a nodes’ incoming and outgoing con-

nections, i.e. si =
P

j
W ij +

P
j
W ji

2 . Here, we also differentiate between
a node’s positive and negative strength. Let W+ and W− be the
networks of positive and negative connections only. For the net-
work of negative connections, we conveniently flip the sign of
each connection. Then we calculate each nodes’ signed strength

as s ±i =
P

j
W ±

ij +
P

j
W ±

ji

2 .

• Partition laterality. We calculated partition laterality following39.
For a given community c, we calculate its uncorrected laterality as
Λc =

∣Nr�Nl ∣
Nc

. Here, Nc is the number of nodes in c and Nr and Nl are
the number of those nodes in the right and left hemispheres,
respectively. When the community has a balanced number of
nodes from both hemispheres its laterality is close to zero; if it is
left- or right-dominant, then the value is close to 1. For a partition
comprised of communities c1,…, cK, we calculate the partition
laterality as Λ= 1

N ð
P

cNcΛc � hPcNcΛciÞ. Here, the term
〈∑cNcΛc〉 indicates the expected laterality under a null model in
which nodes get randomly assigned to one hemisphere or
another. Note that here we cannot use spin tests for the permu-
tation; the spin tests preserves hemisphere labels and a “spun”
partitionwould have laterality exactly equal to that of the original,
unpermuted partition.

Neural mass models
Many studies have tried to link brain structure and function35. One
popular strategy for doing so is to use an estimate of anatomical
connectivity to generate synthetic covariance matrices (either directly
or by first generating synthetic neural time series and calculating their
covariance empirically). The synthetic covariancematrices can then be
compared to the empirical FC, usually as a correlation of their edge
weights. The resulting coefficient serves as a measure of structure-
function coupling. Here, we analyzed two models for generating syn-
thetic covariance matrices or time series based on population-level
“neural mass” models (NMMs).

• Galán model. We follow work by63 for estimating the inter-areal
covariance matrix, C, based on a linearization of Wilson-Cowan
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dynamics for neuronal populations129. The elementCij∈Cdenotes
the covariance of activity in area i with that of area j. In more
detail, we let u(t) = {u1(t),…, uN(t)} be the vector of brain areas’
states (activity levels) at time t. Under thesedynamics, brain areas’
states evolve as:

uðt +ΔtÞ=AuðtÞ+ ξðtÞ, ð8Þ

where ξ(t) is uncorrelated Gaussian noise and Δt is a single time
step. Here, the generalized coupling matrix, A, is based on the
structural connectivity matrix, W, and was defined as:

A= ð1� αΔtÞI+WΔt, ð9Þ

where α is a leak variable within each brain area and I is the
identity matrix. As in63, we fixed α = 2. Conveniently129, showed
thatbrain areas’pairwise covariances (summarizedby thematrix
C 2 RN ×N) can be estimated directly from the spectral proper-
ties of A and the covariance of the noise terms ξ(t). As with
covariance matrices estimated from recorded time series of
brain activity, we interpret C as an estimate of functional con-
nectivity. See129 for more details.

• Reduced Wong-Wang mean field model. We also studied a second
biophysical model for fMRI BOLD data. Unlike the Galán
model, which calculates the covariance structure analytically given
a structural connectivity matrix, this model generates simulated
time series, first by using a reduced spiking neural network to
generate population-level time courses, and second by convolving
these data with a hemodynamic model. The spiking network
model evolves according to the following differential equations:

_Si = � Si
τS

+ rð1� SiÞHðxiÞ+ σviðtÞ

HðxiÞ=
axi � b

1� expð�dðaxi � bÞÞ
xi =wJSi +GJ

X
j
W ijSj + I

ð10Þ

In this equation, xi, H(xi), and Si are the total input current,
population firing rate, and synaptic gating for region i. The input
current, xi depends on recurrent connection strength, w, exci-
tatory input, I, and inter-regional information “flow”, which is
calculated as the sumof region i’s connected neighbors’ synaptic
gating, weighted by the global coupling constant, G, and
synaptic coupling constant, J. Following130, we set theparameters
of the input-output function,H(xi) to a = 270n/C,b = 108Hz, and
d = 0.154 s. Kinetic parameters for synaptic activity were fixed at
r = 0.641 and τs =0.1 s. The variable vi(t) is uncorrelatedGaussian-
distributed noise whose variance is scaled by σ. This model
generates neural activity at sub-millisecond timescales. Again,
following130, population level activity is input to the Balloon-
Windkessel hemodynamicmodel131, which yields simulated fMRI
BOLD time courses for every brain region.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All of the human neuroimaging datasets used here are publicly avail-
able. Data from both of the Human Connectome Project datasets can
be downloaded at: https://db.humanconnectome.org/. Information
on accessing the NKI dataset can be found at: http://fcon_1000.pro-
jects.nitrc.org/indi/enhanced/neurodata.html. All data generated and
used in the main figures of this study are provided in the

Supplementary Information/SourceDatafile. Source data are provided
with this paper.

Code availability
Code to produce an asymmetric, weighted and signed connectome
with functional and structural data, and to replicate many of our
results can be found at: https://github.com/JacobColbyTanner/
asymmetric_weighted_and_signed_connectome-main DOI for the tool-
box: https://doi.org/10.5281/zenodo.11036029.
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