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This paper uses computational methods to simultaneously investigate the epistemological
effects of misinformation on communities of rational agents, while also contributing to the
philosophical debate on 'higher-order’ evidence (i.e. evidence that bears on the quality and/or
import of one's evidence). Modelling communities as networks of individuals, each with a
degree of belief in a given target proposition, it simulates the introduction of unreliable mis-
and disinformants, and records the epistemological consequences for these communities.
First, using small, artificial networks, it compares the effects, when agents who are aware of
the prevalence of mis- or disinformation in their communities, either deny the import of this
higher-order evidence, or attempt to accommodate it by distrusting the information in their
environment. Second, deploying simulations on a large(r) real-world network, it observes the
impact of increasing levels of misinformation on trusting agents, as well as of more minimal,
but structurally targeted, unreliability. Comparing the two information processing strategies
in an artificial context, it finds that there is a (familiar) trade-off between accuracy (in arriving
at a correct consensus) and efficiency (in doing so in a timely manner). And in a more
realistic setting, community confidence in the truth is seen to be depressed in the presence of
even minimal levels of misinformation.
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Introduction

he informational environment has changed dramatically

during the first quarter of the 21st century. Most notably,

following the (historically recent) advent of the Internet,
we now get our information - including about ‘current affairs’ or
‘news’ - online, often through various social media platforms (cf.
Cairncross (2019)). Concerns have been raised in this context
about the presence of misinformation (including ‘fake news’) - in
some cases due to concerted disinformation campaigns - and its
potential ill effects. Such false/inaccurate information may have
an impact on people’s attitudes and behaviours - for example, in
relation to the climate emergency, democracy, health, or security
issues - and various strategies have therefore been proposed for
addressing the problem. In particular, it has been suggested that
we need to improve communication strategies (for science and
news media), policies and practices (for tech platforms), oversight
and/or regulation (by charities and government), and information
literacy (for the general public).

At the same time, there has been discussion in the philoso-
phical literature of so-called ‘higher-order evidence’ (HOE) and
how best to respond to it (see e.g. Christensen (2010); Feldman
(2005); Fitelson (2012); Kelly (2005); Skipper & Steglich-Petersen
(2019)). In particular, otherwise rational agents are sometimes
presented with information that is not concerned directly with
the issue they are considering, or investigating (it is not ‘first-
order evidence’ in this sense), but which instead bears on the
’evidential relations’ ((Christensen, 2010), p.186) at play in the
circumstances they find themselves in - e.g. by bearing on the
quality of the information at their disposal, or the appropriateness
of certain ways of responding to it (it is, or appears to be, evidence
of a ‘higher-order’)." For example, an agent who needs to rely on
information from a sensor to reason towards a decision may be
given (defeasible) evidence that the sensor is broken or that their
reasoning is impaired. Two broad approaches to thinking about
such circumstances have been articulated (see Horowitz (2022)):
some theorists seek to deny the import of the purported evidence,
and have argued that the agent should simply ignore it; while
others have suggested that it must be accommodated, raising the
question of how this can best be done.

In the present paper, we look to shed light on both the problem
of misinformation and its effects, and the debate surrounding
higher-order evidence, by bringing them into closer contact with
one another.” The result, we think, is mutually illuminating; for,
on the one hand, bringing our method for studying mis-
information to bear on the debate on higher order evidence, we
reveal how thorny the issues there are - resolving them will
require a non-trivial decision on what makes for a better epis-
temic outcome; while, on the other hand, in considering the
effects of adopting different strategies from that debate in coping
with the problem of misinformation, we can appreciate just how
pernicious a problem it is - as we shall see, both strategies yield
worse outcomes (by at least one metric) in the presence of mis-
information. But not all of the news of which we are the bearers is
bad: we also observe that there are features of the informational
environment in a real world setting that might be exploited to
begin to address epistemological concerns and societal challenges
- provided we adopt a community (i.e. network, or graph) level
perspective.

In what follows, we begin with some cases, before abstracting
the general character of the problem they present, and sketching
its relevance. We then explain our computational methodology,
including the ways in which we operationalize both the key
notion of misinformation (and the related concept of disin-
formation) and a pair of strategies for processing higher-order
evidence. In the third section, we analyse and interpret the
findings from our investigations of some small, artificial
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communities exposed to misinformation, revealing a trade-off
between the information-processing strategies explored. Then in
the fourth section we present some observations regarding the
effects of misinformation within a real world setting, before
finally concluding.

Case 1: One restaurant town. Imagine: you live in a town with
just one restaurant. Not only that, the restaurant is not that good:
only (exactly) half of the dishes it prepares are tasty. But there is
good news: a second restaurant is opening! This new restaurant
promises to be (slightly) better... though it could be (slightly)
worse. Which restaurant should you go to?

You and the other townsfolk go to the new restaurant if, from
your perspective, it is likely to be better than the old one - in
which case you get further evidence about the proportion of the
meals it serves that are tasty. And you share reports about the
dishes, good and bad, with one another.

But now imagine: an oracle reveals that only a certain fraction
of the inhabitants of the town are reliable when issuing their
reports - though, sadly, they do not say which. How should you
respond to the restaurant’s various reviews?

Case 2: Drug trial (and error). Imagine: you are a doctor, and a
new drug has recently become available for the treatment of a
certain disease (from which patients either recover fully, or die).
This seems like good news, since the previous drug has a recovery
rate of just 50%. The new drug may be better - though there is a
risk it is worse. Which drug should you administer?

You and your colleagues in the medical community decide to
administer the new drug, if you suspect it is better than the old
one - though not otherwise, as it is important to give patients the
best available treatment. You all report on the outcomes regularly
(e.g. at medical conferences).

But now imagine: an oracle tells you (and others in the
community) that not all of your colleagues report their findings
accurately. They even tell you what percentage of the doctors in
your community are reliable reporters - but they do not name
names of those who can and cannot be trusted. What should you
do when confronted with the reports you receive?

Case 3: New coins for old. Imagine: you are a gambler. In par-
ticular, you - and everyone else in your community - likes to toss
coins; and you (all) have a predilection for heads. Hitherto, all the
coins available for tossing have been scrupulously fair, with a 50-
50 chance of landing heads or tails. But now, some new coins
have been minted, and an employee at the mint has told you
(correctly) that they are biased, and by how much... though not
in which direction. Which coins should you toss, old or new?

You and your fellow gamblers all toss the new coins if and only
if you find it more likely than not that they will produce more
heads overall than the old ones. You all report regularly on the
outcomes of your coin tosses.

But now imagine: an oracle informs you that only some of your
fellow gamblers report the results of their coin tosses accurately;
and they even tell you what fraction of the gamblers do so -
though they do not tell you which are trustworthy and which are
not. How should you respond to the information provided in the
reports you receive?

The problem revisited. All of these concrete problems share a
structure. In the abstract, the basic problem is (or can be mod-
eled) as follows: rational agents have two actions available to
them, A and B. A is known to yield a positive outcome half of the
time (i.e. with probability 0.5), while B yields a positive outcome
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with probability 0.5 + epsilon - though for all the agents know, it
may do so with probability 0.5 - epsilon instead. Each agent has a
credence in the hypothesis that B is better than A (i.e. has a
probability greater than 0.5 of yielding a positive outcome), and if
that credence is above 0.5 they take action B for all of their trial
actions; otherwise they take action A. Agents issue reports to one
another about the outcomes of their trials. As rational agents,
they update their beliefs in light of the evidence at their disposal.
But it is known that only a certain fraction of the agents in the
community are reliable in their reports. What should the agents
in such a community do? Should they ignore the higher-order
evidence at their disposal? Or should they seek to accommodate it
somehow?

We address this issue by way of computer simulations of
such communities of agents - as described in the next section.
But it is worth briefly noting why, despite its somewhat artificial
character, we think investigating this problem can be illuminat-
ing. First, it renders certain aspects of the philosophical debate
surrounding higher-order evidence computationally tractable.
In particular, we are able, in what follows, to operationalize two
strategies for coping with higher-order evidence, and thereby
bring new methods to bear on the discussion of that topic in
illuminating ways.> Second, when it comes to the problem of
misinformation, we think it is helpful to abstract from some of
the complexities of human psychology. The idealizations made
in our models allow us to reveal how just how problematic the
degradation of our informational environment can prove, even
in communities of agents that are fully rational (on at least one
widely accepted way of thinking about what this involves*). Our
results may therefore constrain the space of plausible solutions
to the pressing practical problem this otherwise theoretical
issue poses.

Models and methods

We begin our simulations by artificially generating, or else
importing, a graph representation of our (hypothetical, or
respectively real) community. Each agent in the community is
represented by a node in this graph, with edges, or connections
between nodes, representing channels of communication through
which reports are issued. Simulations are initialized by assigning
(uniformly at random) to each node a credence (between 0 and 1)
in the hypothesis that (coin, restaurant, or drug) B is better than
A (so that the probability of its yielding a positive outcome - such
as the coin landing heads, the dish being tasty, or the patient
recovering - is 0.5 + epsilon).” At each successive step in the
simulation, agents whose credence that B is better is greater than
0.5 perform action B, conducting a fixed number of trials.

In the basic model, based on the mathematical work of Bala
and Goyal (1998) - and building on the simulation technique of
Zollman (2007) - agents observe the results of their trials and
report the number of successes to their network neighbours
(those to whom they are connected by an edge). They then
update their beliefs using Bayes’ rule, conditionalizing on the
evidence they generate as well as that which they receive from
their neighbours.’ This process then repeats, until either all
nodes have a credence greater than 0.99, or all have a credence
below 0.5 (so that none takes action B, and no new evidence is
generated) - or an upper limit on the number of simulation steps
is reached.

O’Connor & Weatherall (2018) generalized this approach to
allow updating to proceed on the basis of Jeffrey’s rule, rather
than Bayes’.” On their approach, agents display a tendency to
homophily: in particular, they are more trusting of others whose
beliefs are similar to their own. This idea is operationalized
through a formula which sets the final probability assigned by an

agent to the evidence received from each neighbour as a function
of the distance between the beliefs of that agent and that neigh-
bour (i.e. the absolute value of the difference between the cre-
dences of the two agents involved in the interaction).® Elsewhere
(Ball et al. (forthcoming)) we have explored the performance of
simulations based on this model - but it is important to note that
the models we are interested in here are different in character
than those that have been investigated previously. While our
models allow evidence to be discounted using Jeffrey’s rule, the
basis on which this occurs is different: rather than being due to
homophily, as it is for O’Connor and Weatherall, any discounting
of evidence in our models is due to an attempt to accommodate
higher-order evidence about the reliability of the messages, or
first-order evidence, available.

Two kinds of unreliable agents. In our (‘testimonials’) models,
some agents are unreliable. Our simulations accordingly have a
‘reliability’ parameter, which determines the probability that any
given node will reliably report their findings to their neighbours.
When reliability is set to 1.0, the result is equivalent to the ori-
ginal Bala-Goyal models. But when reliability falls below 1.0, we
need to decide how our unreliable agents will behave. Here we
explore two different reporting behaviours which unreliable
agents might engage in.

On one model, the unreliable agents can be thought of as
misinformants, who do not intend to deceive. Perhaps they are
incompetent: although they toss the new (biased) coin B, they
report their observations of the results of simultaneous tosses of
(fair) coin A by mistake; or they have terrible memories, and what
they report for each trial is unrelated to what actually occurred on
that occasion, instead being ‘remembered’ at random. Or maybe
their reports are ‘bullshit’ (Frankfurt, 2005): having no regard for
the truth, their issuers simply make up the result of each trial
(using a process resembling that of a fair coin toss). In any such
case, the (first-order) ‘evidence’ they provide will be neutral
overall,” with the successes reported being drawn from a binomial
distribution with a probability of 0.5 for each trial; it will therefore
neither favour, nor tend to disconfirm, the hypothesis that B is
better.

On a second model, by contrast, the unreliable agents can be
thought of as disinformants, who seek to deceive and mislead. For
each trial, they report heads if the outcome was tails, delicious if
the dish was awful, or recovery if the outcome was death - and
vice versa. They lie about that trial - knowing that their reports
will, in aggregate, tend to disconfirm the correct hypothesis. Their
reports are drawn from the distribution that results from a chancy
process with probability 0.5 - epsilon.

Other behaviours are of course possible on the part of
unreliable agents:10 but here we focus (for convenience) on these
two simple approaches.

Two information processing strategies. How should epistemi-
cally rational agents respond to the higher-order evidence that a
certain fraction of the members of their community are unreli-
able? As we have seen, the philosophical debate suggests two
broad strategies.

A first is to simply ignore the higher-order evidence:'' that is,
agents might behave exactly as they would if they were unaware
of the unreliability, fully trusting the evidence supplied by all
agents; we might regard such trusting agents as ‘gullible’ - though,
of course, as we have described the situation, they are knowingly
so. Why might this seem a plausible approach (in the present
context)? A number of authors (e.g. Burge (1993); Coady (1992);
Reid (1983) have held that hearers are prima facie justified in
believing what speakers tell them. This suggests that the
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Table 1 Descriptive statistics for all simulations.

Model Misinfo Reliability Count Mean Std Min 25% 50% 75% 90% Max
Bala-Goyal None 1 500 425 376 93 234 323 489 657 3476
Gullible Binomial 0.75 500 637 872 96 266 405 642 1073 9509
Gullible Binomial 0.5 500 181 1824 88 402 639 198 2385 17823
Gullible Binomial 0.25 500 1950 2531 135 547 151 2304 4462 20000
Aligned Binomial 0.75 500 631 1090 94 303 454 672 1041 17054
Aligned Binomial 0.5 500 1313 3114 150 437 630 1009 1512 20000
Aligned Binomial 0.25 500 3385 5450 235 905 1433 2253 9739 20000
Gullible NegEps 0.75 500 1095 1560 97 387 662 n42 2193 17765
Gullible NegEps 0.5 500 3184 4107 123 826 1605 3752 701 20000
Gullible NegEps 0.25 500 3195 3775 97 970 1830 3919 7402 20000
Aligned NegEps 0.75 500 542 627 19 292 420 613 930 10484
Aligned NegEps 0.5 500 816 8010 129 441 639 866 1382 8319
Aligned NegEps 0.25 500 1954 2321 381 863 1284 2086 3396 20000

information conveyed to them by testimony, and not the mere
fact of the testimony itself, is evidence for them.'> Moreover, the
appropriate response to evidence, in a probabilistic setting, is to
conditionalize on it using Bayes’ rule. And the hearer has no
specific reason to doubt that any given speaker in particular is
reliable - so, on the face of it, that seems the appropriate response
in the case of each piece of testimony received."

An alternative strategy - one which attempts to accommodate
the available higher-order evidence - is to discount the available
(first-order) ’evidence’ on the grounds that it cannot be fully
trusted. In particular, agents do not know which evidence to
accept as (fully) trustworthy, and which to reject as inaccurate
and misleading: but they do know the level of reliability in the
network. One heuristic, then, is to simply align the level of
confidence they place in any given piece of evidence with the
known level of reliability. This provides a method of operatio-
nalizing Jeffrey’s rule in a manner that reflects the higher-order
evidence possessed by the agents.'*

On this approach, the information received is processed in a
manner that dampens its effect on our other attitudes - and in
particular, on our credence concerning the hypothesis that is the
target of our inquiry, because we have (a general) reason to doubt
that it bears on that hypothesis in the manner that we would
otherwise be inclined too think it does. In this respect, the current
strategy is not unlike that of being cautious in drawing logical
consequences from given premises in circumstances in which it is
known that there is a non-trivial chance that doing so will lead
one astray (cf. Christensen (2010)).

Clearly, each of these strategies coincides with that pursued in
Bala Goyal models when reliability in the network is 100% (or
1.0). But as the reliability retreats from this ideal of perfect
truthfulness, the two strategies diverge: and their merits can be
assessed, at least in part, by how they perform (in terms of truth-
conduciveness) under various circumstances. This is what we
attempt below.

Our simulations. We carried out simulations on complete net-
works of size 64, setting epsilon to 0.001, and the number of trials
conducted at each simulation step to 64."°> We ran 500 simula-
tions of this kind for each collection of further parameters, as
follows. First, we ran Bala Goyal model simulations, with no mis-
or disinformation present, and agents updating their credences by
conditionalizing on the available evidence using Bayes’ rule. (As
noted above, these simulations are equivalent to employment of
either of our other models with a reliability setting of 1.0.) We
then also ran simulations in which agents remained ‘gullible’,
with each type of unreliable nodes: binomial misinformants; and
negative epsilon disinformants. And similarly, we ran simulations
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in which agents ‘aligned’ the posterior probability of the (first-
order) evidence they encountered to the reliability level in the
network, in the presence of unreliable nodes of each of the two
types described. We did this in each case setting reliability to
three quarters (0.75), half (0.5), and one quarter (0.25). We let
simulations run until a consensus emerged, whether true (B is
better) or false (A is better), or a maximum of 20,000 steps was
reached."®

We also ran simulations on a larger, real-world network: but
we begin by discussing the above simulations on artificially
generated complete networks.

Analysis and interpretation

To begin to understand the effectiveness of the two strategies for
coping with mis- and disinformation in light of the available
higher-order evidence about informer reliability, and the bearing
of this on the higher-order evidence debate, we begin with some
descriptive statistics concerning our simulations on small, artifi-
cial networks. Table 1 shows, for each of the batches of simula-
tions described above (with the simulation parameters given
there), the model (including misinformation type and strategy,
where applicable), the level of reliability in the network, the
number of simulations run with those parameters (count), the
mean number of steps taken in those sims, the standard deviation
(std) in the number of steps taken, the minimum and maximum
numbers of steps, and the number of steps at various percentiles
(25, 50, 75, and 90).

A quick look reveals, for instance, that (i) in general, these
distributions have a long right tail, with some simulations
requiring far more steps in order to complete than e.g. the
median, or even than the 90th percentile simulation, and indeed
(ii) some simulations ran for the full 20,000 steps allocated
without converging on a consensus opinion. Equally, though, we
can see that (iii) Bala-Goyal simulations were on average the
fastest, with the lowest mean and median (i.e. 50th percentile)
number of steps. Indeed (iv) the presence of mis- and disin-
formation considerably delays epistemic decision making in our
simulated communities: for instance, while 9 out of 10 simula-
tions converged one way or the other (either to A or to B) by
657 steps when agents were fully reliable and fully trusting, much
smaller fractions of simulations completed after this many steps
in the presence of mis- or disinformation (e.g. less than a quarter
in negative epsilon disinformation simulations with
reliability 0.25).

Tables 2 and 3 give the same descriptive statistics, but now
restricting attention to those simulations that converged to the
incorrect (A) and correct (B) opinions respectively. Here we see
that, as expected, no simulation ran for the full 20,000 steps
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Table 2 Descriptive statistics for simulations converging to A.

Model Misinfo Reliability Count Mean Std Min 25% 50% 75% 90% Max
Bala-Goyal None 1 M 808 417 328 506 706 949 1456 1597
Gullible Binomial 0.75 14 2465 3226 203 627 898 1925 7838 9509
Gullible Binomial 0.5 69 2103 2179 142 679 1474 2457 4379 11600
Gullible Binomial 0.25 149 2707 2903 137 1028 1710 3209 5772 19601
Aligned Binomial 0.75 13 4050 5510 330 931 1951 3985 12991 17054
Aligned Binomial 0.5 n 39323 4521 397 m 1430 5166 11094 13243
Aligned Binomial 0.25 14 7997 6276 605 2881 6673 13762 15790 18279
Gullible NegEps 0.75 64 2489 3161 204 970 1755 2469 4465 17765
Gullible NegEps 0.5 293 3140 313 154 1m0 2062 4010 6803 19380
Gullible NegEps 0.25 483 2959 3146 97 983 1807 3829 6781 19776
Aligned NegEps 0.75 12 2371 2953 351 885 1271 1922 5612 10484
Aligned NegEps 0.5 8 1309 925 726 794 892 1389 2154 3472
Aligned NegEps 0.25 31 6950 4564 753 3804 5394 9447 140Mm 15880
Table 3 Descriptive statistics for simulations converging to B.
Model Misinfo Reliability Count Mean Std Min 25% 50% 75% 90% Max
Bala-Goyal None 1 489 416 371 93 232 321 476 641 3476
Gullible Binomial 0.75 486 585 636 96 262 399 619 1051 4949
Gullible Binomial 0.5 431 1033 1718 88 366 597 1070 1945 17823
Gullible Binomial 0.25 349 1523 1816 135 470 847 1786 3326 16368
Aligned Binomial 0.75 487 540 387 94 300 450 655 956 3818
Aligned Binomial 0.5 477 782 700 150 428 610 942 1378 9099
Aligned Binomial 0.25 443 1627 1320 235 862 1315 1890 2778 13510
Gullible NegEps 0.75 436 890 1009 97 364 610 987 1718 Nn796
Gullible NegEps 0.5 194 2123 2962 123 527 m8 2045 5158 19098
Gullible NegEps 0.25 9 889 948 205 454 459 522 2350 2832
Aligned NegEps 0.75 488 497 349 1n9 289 415 594 865 4798
Aligned NegEps 0.5 492 808 806 129 437 633 863 1376 8319
Aligned NegEps 0.25 467 1545 1096 381 833 1238 1915 2768 9241
(since here we are restricting attention to those simulations that A A T S R T ) T R e T
stopped because of having converged, either to A or to B). We to B
can also see that Bala-Goyal simulations are again (on average) *
the fastest (having the lowest mean and median), both amongst . o .
simulations converging to A and amongst simulations conver- | Model Misinfo _ Reliability Count Bs As Proportion
ging to B. Bala-Goyal None 1 500 489 M 97.8%
We can also compare the steps for simulations converging to A GU”!ble B!nom!al 0.75 500 486 14 972%
vs B within a given batch of simulations (i.e. collection of Gullible Binomial 0.5 500 431 69 86'22/"
simulations run with the same parameter settings), checking for Glf”'ble B!nom!al 025 500 349149 70.0%
L. . . . . Aligned Binomial 0.75 500 487 13 97.4%
significance with a Mann-Whitney U-test. We did this, and found Alianed S o
. . .. igne Binomial 0.5 500 477 1N 97.7%
that the B-converged simulations were s1gn1ﬁcantly (p <-0.05) Aligned Binomial 025 500 443 14 96.9%
fasterl7(on average) than the A-converged simulations in all Gullible NegEps  0.75 500 436 64 87.2%
cases. Gullible NegEps 0.5 500 194 293 39.8%
Gullible NegEps  0.25 500 9 483 1.8%
Aligned NegEps  0.75 500 488 12 97.6%
Accuracy and proportions. When attempting to determine the | Aligned Negkps 0.5 500 492 8 98.4%
effects of the presence, type, and level of mis- and disinformation, | Aligned Negkps  0.25 500 467 31 93.8%

and of the adoption of different strategies for coping with it in
light of higher-order evidence about it, one question we can ask
is: how accurate is the simulated community of inquirers? And
one way of measuring this is by asking: when the community
arrives at an answer, in what proportion of cases is that answer
correct?'®

Thus, in the Bala Goyal model simulations that we ran, we
found that all 500 ran to completion (i.e. converged one way or
the other), with the community converging (incorrectly) to A in
11 cases, and to (the correct verdict) B in 489 cases. In short, these
communities with no unreliable agents (and so no misinforma-
tion) got the correct answer 97.8% of the time (when they got an
answer at all).

Table 4 shows, for each batch of (500) simulations that we ran,
the number that converged to B and the number that converged
to A, as well as the proportion of those that converged which
converged to B. (Some simulations ran for 20,000 steps without
all nodes having credence above 0.99 or all nodes having credence
less than 0.5, so that the number A + B is not always equal to
500.)

We tested whether the proportions differed significantly from
that in the basic Bala-Goyal model using the chi-squared test. We
found that when the aligned strategy was used in the presence of
binomial misinformation, there was no significant difference in
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the proportion of the simulations that converged which arrived at
the correct answer than in the basic case of the Bala-Goyal model;
and in the presence of negative epsilon disinformation, there was
only a significant difference (p = 0.00, chi = 9.05) when reliability
in the network was at its lowest (0.25). Even then, the community
arrived at the correct answer B in 93.8% of cases, compared with
97.8% when all agents were both reliable and fully trusting. It
seems the aligned strategy copes well when it comes to accuracy
in the long run."”

By contrast, when we look at the performance of the gullible
strategy on this measure of accuracy, we see quite a different
picture. In particular, there was a significant difference (p <0.05)
in all cases except when the reliability in the network was 0.75
and the unreliable agents produced binomial misinformation; and
in those (other) cases, the proportion of the simulations in which
the community achieved the correct consensus was less in the
presence of mis- or disinformation than in the basic (Bala-Goyal)
simulations. Indeed, in the presence of negative epsilon disin-
formation, the community’s ability to discern the truth collapsed
completely when reliability was low, with just 1.8% of simulations
converging to B when reliability was 0.25.

Thus, we can already conclude that: (Al) in the long run, the
aligned strategy of accommodating the higher-order evidence of
unreliability did not fare significantly differently, in terms of
accuracy, than when the informational environment was pristine
(with no unreliability in the network) - except in the most
extreme of cases; and (A2) the gullible strategy of denying the
import of the available higher-order evidence fared worse in all
but the most mild of misinformative environments than in the
absence of mis- and disinformation. And indeed, a direct
comparison of the two strategies for coping with unreliability in
the light of the higher-order evidence available shows that (3) the
gullible strategy fared significantly (p<0.05) worse, by this
(proportion) metric (of accuracy), in all cases except that of
binomial misinformation with reliability 0.75, where the differ-
ence (97.2% accurate for gullible vs 97.4% for aligned) was not
significant. Figure 1 visualizes the underlying data (from Table 4),
allowing us to confirm all of this at a glance.

Efficiency and steps. Accuracy in the long run, however, is not
the only measure we can use to assess the effects of mis- and
disinformation on opinion formation in a community of rational
agents, or the relative effectiveness of the two strategies for
responding to higher-order evidence in their presence. One thing
that also matters when trying to work out what to think is how
long it takes to arrive at the truth (and so, whether we arrive at
the truth in a timely manner). Thus we can ask: in those cases in
which the community converges to B, how many steps does it

take to do so? This provides a measure of the efficiency of the
information processing strategy employed within the community
under various informational conditions. And when we look to
this metric, we see a somewhat different picture.

More specifically, using the Mann-Whitney U-test for
significance, we find the following.*® (E1) When information
consumers are gullible, the presence of (binomial) misinformants
significantly increases the number of steps required to converge
to the truth; and the more misinformants there are, the more
steps it takes on average. The presence of (negative epsilon)
disinformants likewise increases the number of steps needed to
converge to the truth. (E2) When information consumers are
sceptical, and align their level of trust with the level of reliability
in the networks, again, the presence of binomial misinformants
significantly increases the number of steps required to converge
to the truth; and the more misinformants there are, the more
steps on average it takes. The same holds for the presence of
(negative epsilon) disinformants. (E3) We can also report that, in
the presence of binomial misinformants, where there was a
significant difference in the number of steps to converge to the
truth between the gullible and aligned strategies, the (cautious/
sceptical) aligned strategy was (on average) slower (i.e. had a
larger mean). This was also true in the presence of (negative
epsilon) disinformation - except for one anomaly (reliability 0.5).
Figures 2 and 3 visualize these efficiency findings, alongside
comparable data for simulations converging to A, for binomial
misinformation and negative epsilon disinformation respectively.

In sum, then, the presence of mis- and disinformation
significantly increases the number of simulation steps it takes
for our communities of agents to arrive at the truth (no matter
what information processing strategy they adopt); but when we
compare strategies, we see that the aligned strategy (which
accommodates higher-order evidence) is typically (with one
exception) slower, or less efficient, in arriving at the truth than the
gullible strategy (which denies the import of higher-order
evidence).

Simulations on a large, real-world network

Thus far, we have been discussing simulations run on small (size
64), artificially generated (complete) networks of agents. But our
code allows us to import graph representations of real-world
networks.”’ We ran a number of simulations on one such net-
work, the EU Email Core network (Leskovec & Mcauley (2012)).
This is a network based on emails sent within an EU research
institution, with 1005 nodes in total (see Fig. 4). The network is
directed (with 24,929 edges), and information (i.e. first-order
evidence) in our simulations flows in the same direction that
emails were sent in the original network.

Complete Network - Size: 64 Trials: 64 Epsilon: 0.001

reliability = 0.25
500 + .

400 b

300 b

Count

200 + B

100 b

reliability = 0.5

reliability = 0.75

op
Gullible Binomial
mmm Aligned Binomial
Gullible Negative Epsilon
mmm Aligned Negative Epsilon

Action

Action

Action

Fig. 1 Numbers of simulations (out of 500) converging to action A and to B for each information processing strategy at each network reliability level.
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Fig. 2 Steps to converge to A and to B in binomial misinformation simulations, with both gullible and aligned strategies. (Note the log scale on the y-axis).
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Fig. 3 Steps to converge to A and to B in negative epsilon disinformation simulations, with both gullible and aligned strategies. (Note the log scale on the y-

axis).

Since simulations on such (relatively) large networks take
considerable time to reach a consensus opinion, we ran just 10
simulations for each parameter configuration of interest, and
capped the number of steps at 25,000. As a result, our data cannot
be analyzed using the methods above: in particular, we cannot
measure accuracy in terms of proportions of simulations con-
verging to the truth; and we cannot measure efficiency in terms of
the number of steps required to do so. But we can observe how
the average (i.e. mean) credence in the network evolves over time
- which we do here. In particular, we explore the effects on this
metric of (a) rising general levels of (binomial) misinformation
when agents in the network pursue the gullible (or trusting)
strategy, and (b) structurally targeted (binomial) mis- and
(negative epsilon) disinformation on such communities.

First, then, as indicated, we consider the effect of (binomial)
misinformation in the network with agents pursuing the gullible
strategy. When reliability in such a network is set to 1.0 - so that
100% of agents are reliable - the resulting model is equivalent to
that of Bala and Goyal. This sets a kind of benchmark - and as we
can see in Fig. 5, the average credence in each of the 10 simula-
tions proceeds quickly upwards in this case, beginning at
(approximately) 0.5, reaching 0.8 well within 5000 steps, and 0.9
at around 10,000 steps. (These and the claims that follow can also
be corroborated through an examination of Table 5.°%) As we

introduce more and more unreliable agents, however - so that
reliability reduces to 0.75, to 0.5, to 0.25 - we see that average
credence in the network increases more slowly.”® For instance,
with reliability at 0.75, the average credence only reaches
(roughly) 0.9 after more than 15,000 steps; and it does not
typically reach this level within 25,000 steps at lower reliability
levels. With reliability at 0.5, the average credence reaches 0.8
only well after 10,000 steps; and with reliability at 0.25 it typically
does not do so within the first 25,000 steps. In short, the presence
of misinformation reduces the community’s confidence in the
truth for a considerable period of time.**

Second, we turn to briefly explore one further aspect of the EU
Email Core network - namely, its structure. As indicated above,
the artificial networks we have used in our small scale simulations
have been complete networks: every agent is connected to every
other. But real-world networks are not typically complete - and
the EU Email Core network is no exception (not everyone who
sent an email sent one to everyone else who did). Accordingly,
some agents (or nodes) in the network are more connected - and
in this sense, more centrally located within the network - than
others. There are various metrics of the centrality of a node: here
we focus on (out) degree centrality; this is simply the (out) degree
of the node (i.e. number of edges originating from it), divided by
the (out) degree it would have in the complete network of the
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Fig. 4 The EU Email Core network.
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Fig. 5 The average credence in the EU Email Core network with Bbnomial
misinformation under the gullible strategy. (The Bala-Goyal model is
represented here as involving the gullible information processing strategy in
a network with reliability 1.0).

same size (i.e. the maximum possible out degree for a node in a
network of that size). Figure 6 shows the distribution of (out)
degree centrality within the network.””

Using this measure, we ran simulations in which we selected
the 10 most central nodes in the network and made them
unreliable. In 10 of our simulations, these unreliable nodes

Reliability Statistic 0.6 0.7 0.8 0.9

1 Min 300 1000 2400 8400
1 Med 550 1250 3200 10200
1 Max 1000 1900 3600 11700
0.75 Min 500 1000 3000 11300
0.75 Med 900 2000 5000 18450
0.75 Max 2400 3600 6100 24300
0.5 Min 500 2700 6500 23100
0.5 Med 1350 3800 11300 <NA>
0.5 Max 3900 10000 19300 <NA>
0.25 Min 1100 4400 17900 <NA>
0.25 Med 2200 6700 <NA> <NA>
0.25 Max 12000 <NA> <NA> <NA>

acted as (binomial) misinformants, while in 10 others, they
acted as (negative epsilon) disinformants. In all cases, agents
used the gullible information processing strategy (the aligned
strategy would hardly discount the evidence at all, with less
than 1% of agents unreliable). The results - in terms of average
(mean) credences over time - are depicted in Fig. 7, with Bala-
Goyal simulation results also shown as a baseline for
comparison.

As can be seen, average credence increased more slowly in the
simulations in which mis- or disinformants were present than in
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Fig. 6 Out degree centrality distribution in the EU Email Core network.
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Fig. 7 Average credences in the EU Email Core network with just 10
unreliable central nodes. The cases of binomial misinformation and
negative epsilon disinformation are depicted alongside the base case of the
Bala-Goyal model.

those in which they were not, with disinformation leading to a
greater suppression of confidence in the truth than misinforma-
tion.”® Indeed, the summary statistics for these simulations given
in Table 6 reveal that the median number of logged steps required
to reach a given (mean credence) threshold that we observed was
as much as 27% greater (0.6 threshold) than in the Bala-Goyal
model with just 10 central (binomial) misinformants in the net-
work, or 60% greater (0.7 threshold) with (negative epsilon)
disinformants occupying these central nodes. This compares with
up to 81% greater (0.9 threshold) when approximately 25 times as
many randomly distributed nodes were unreliable (binomial)
misinformants (see Table 5). That these effects are of the same
order of magnitude (while the number of unreliable nodes is not)
is in itself highly suggestive - both of the dangers associated with
structurally sensitive sources of mis- and disinformation, and of
the measures that might be taken to imErove our informational
environment by targeting such sources.”” But further research is
required in order to generalize the limited observations we have
been able to make here.

Table 6 The minimum, median, and maximum numbers of
logged steps required for the EU Email Core community of
‘gullible’ agents to reach various average credence
thresholds with just 10 degree central nodes spreading
different types of misinformation.

Misinfo Statistic 0.6 0.7 0.8 0.9

None Min 300 1000 2400 8400
None Med 550 1250 3200 10200
None Max 1000 1900 3600 11700
Binomial Min 200 900 2600 9600
Binomial Med 700 1500 3350 10950
Binomial Max 1100 2200 4200 15000
NegEps Min 200 900 2900 9700
NegEps Med 850 2000 3700 13350
NegEps Max 2300 4900 7300 18200

Concluding discussion

In this paper, we have explored the effects of introducing mis-
and disinformation into a networked community of rational
agents. We have assumed the agents are aware of, or have
(general) higher-order evidence concerning, the level of unrelia-
bility in the information (or first-order evidence) at their disposal,
and we have considered two strategies they might employ in this
case: they might adopt the (knowingly) ‘gullible’ strategy of fully
trusting the information they receive from their network neigh-
bours (thereby, in effect, denying the import of the higher-order
evidence available to them); or they might ‘align’ their level of
trust in the evidence they receive to the level of reliability in the
network (thereby accommodating the higher-order evidence at
their disposal). Our investigation has involved the analysis and
interpretation of data generated in computer simulations run on
both small (64 node) artificial networks, and a larger (1005 node)
real-world network.

We have found (in our experiments on small, complete net-
works) that the presence of misinformation significantly increases
the amount of time (measured in terms of simulation steps)
required for the community to converge to the truth, no matter
which information processing strategy they pursue (though
simulations in which the aligned strategy was deployed typically
took longer than those in which the gullible strategy was used). At
the same time, when it comes to the accuracy of the community,
measured in terms of the proportion of simulations converging to
the truth, the aligned strategy did better than the gullible strategy
- especially in the presence of disinformation.

There remains much more work to be done investigating the
interactions between levels and types of misinformation on the
one hand, and ways of accommodating higher-order evidence
about it on the other. A systematic investigation of these inter-
actions within networks of different shapes (or topologies) might
be pursued, for example. And other metrics of performance might
be explored - for instance, not whether a correct consensus is
achieved within the community, and in how many steps, but
whether e.g. a two thirds majority is achieved, and how long that
takes; or whether the most central nodes have been convinced,
and in how many steps. But our initial studies have already shown
how misinformation can adversely affect public opinion even
within a community of rational agents, and that it is far from
obvious what the best way of individually responding to its pre-
sence is.

In particular, Zollman (2007) found that, when it comes to the
communicative structure of a group of agents engaged in rational
inquiry, there is a trade-off between accuracy and efficiency: more
connected (denser) networks are quicker to arrive at the truth (i.e.
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more efficient) than less connected (sparser) ones, but less likely
to do so at all (i.e. less accurate). Our results suggest that there is
another aspect to this trade-off: when confronted with higher-
order evidence of misinformation, a more cautious, ‘aligned’
information-processing strategy will be more accurate than a
more ‘gullible’ one (and so, in this sense, will produce fewer
errors), but it will be less efficient (and so be less successful in
grasping the truth within a reasonable time frame). Indeed,
William James (1896) once drew to our attention a fundamental
issue in the ethics of belief: whether to employ sceptical belief
forming practices so as to avoid error, or to be less cautious in the
hope of grasping the truth in a timely manner.*® This problem, it
seems, is still with us.

Indeed, if we are not mistaken, this fact has a broad bearing on
the epistemological debate surrounding higher-order evidence:
for it seems that, even if we resolve to assess what rationality
requires of us in broadly consequentialist terms, we will still need
to choose a dimension on which to assess the epistemic con-
sequences of the adoption of the different strategies. Should we
seek to arrive at the truth (relatively quickly), or to avoid error?
But our results also appear to shed some light on the problem of
misinformation: for, if they are indicative, no matter what
rational strategy individual agents pursue for coping with the
presence of misinformation in their environments, they and their
communities will suffer adverse epistemic consequences of one
sort or another.

Nevertheless, not all the news is bad. Turning to the large (1005
node) real-world (email communication) network we investi-
gated, we found that (when pursuing the gullible strategy) the
community took longer to increase its credence in the correct
opinion, not only as the level of misinformants distributed
(uniformly) at random within it increased, but even when just a
small number (10) of central nodes were unreliable purveyors of
mis- and disinformation. While this reinforces the concern that
degradation of the informational environment may have serious
negative social epistemological consequences, it also hints at the
possibility that structurally targeted, community level (global)
responses (of a sort that could be pursued by large tech platforms)
may prove effective in tackling that concern.

Data availability
The source code for this study is available in the GitHub
repository for the PolyGraphs project.
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Published online: 28 September 2024

Notes

1 There is some dispute over how best to think of the epistemological issues in this
general vicinity. Dorst (2019), for instance, argues in favour of reframing the
discussion: instead of distinguishing first-order and higher-order evidence, he claims,
we should instead consider how our total evidence bears on our first-order and
higher-order opinions. In introducing the discussion as we have done, we do not
intend to take sides on this controversial issue. Indeed, following Christensen (2010)
we are happy enough to identify the target phenomena through examples, as below,
and trust that they bear sufficient similarity to those under discussion elsewhere in
the literature to be of interest. What is crucial from our point of view, however, is that
the type of situation we are considering bears on the question of what it is rational for
agents to do in response to the general (higher-order’) evidence that is available to
them in the situations we model.

8]

Avnur (2020) and Levy (2023) also discuss higher-order evidence in relation to
misinformation, though they do not attempt to shed light on the higher-order
evidence debate itself, as we shall do here, instead focussing on whether agents in
echo chambers have higher-order evidence that rationalizes their beliefs. (For what it
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is worth, our models treat individual agents as rational - at least, according to a

certain conception - and so align perhaps more closely with Levy’s view here than

Avnur’s. But this modelling assumption is, first and foremost, an idealization which

allows us to explore what would happen to communities of agents that were rational

in this way, whether or not they are as a matter of fact.)

Of course, the manner in which we do so is not the only possible one - we need to

make some auxiliary assumptions in order to make progress. But we or others can

hope to refine those assumptions in due course, in part in light of the results we

obtain here with their aid.

One additional benefit of the approach taken here is that it may highlight strengths

and weaknesses of this broadly Bayesian conception of rationality. For discussion of

this cluster of views, and what is perhaps its main rival, on which belief does not

come in degrees, see e.g. Sturgeon (2020).

This is in line with the subjective Bayesian perspective that any prior probability

distribution is a rational credence, so long as it is internally coherent. In future work

we hope to explore the effects of initialization.

As a quick reminder, Bayes’ rule is as follows (where Py is the ‘final’ or ‘posterior’ and

P; the ‘initial’ or ‘prior’ probability):

Pi(elh)P;(h)
Pi(e)

Jeffrey’s rule is a generalization of Bayes’ rule (see previous note), which states that:

Pp(h) = Pi(hle) = 6}

Py(h) = P,(e)P,(hle) + P/(=e)P(h|—~e) @

Specifically, their no anti-updating rule for determining the final probability of the
evidence based on the distance d between the beliefs of the agents involved is as
follows (where m is a ‘mistrust multiplier’):

Pf(e) =1—min(1,d - m)(1 — P;(e)). 3)

Of course, real misinformants might have plenty of unconscious biases. We do not
regard the present modeling assumption of neutrality as definitional of mis- as
opposed to disinformation. But we need to begin our investigations somewhere, and
this assumption is not unmotivated. Future work may explore alternative approaches.
Weatherall et al. (2020), for example, develop models on which ‘propagandists’
practice selective reporting of the (otherwise accurate) results that are available

to them.

Kelly (2005) advocates a view along these lines in relation to the question of what the
rationally appropriate response to peer disagreement is.

Of course, if evidence is factive (cf. Williamson (2000), this suggestion is mistaken for
those agents who are in fact unreliable. In future work we plan to investigate a
refinement of the present model that accommodates this point.

After all, should we discount what you say, simply because we know that some people
are liars?

In particular, where r is level of reliability in the network (i.e. the probability that a
given agent offers reliable testimony), we can implement Jeffrey’s rule by setting

Pile)=r. 4)

Our simulation framework contains a large number of hyperparameters, some of
which are pertinent to the simulations themselves, others to such computational
questions as what data gets stored in memory, and where. Amongst the former, some
are only pertinent once the values of others are set in particular ways. In the present
context, the key choices concern: network kind, and size; the way in which credences
are initialized; what the stopping conditions are for a simulation - all nodes with
credence above 0.99, or below 0.5, or the maximum number of simulation steps is
reached; what the size of the bias epsilon is; how many trials agents conduct when
they think it worth experimenting; what operation is performed at each step - which
includes whether there are any unreliable agents, and if so what the level of reliability
is in the network (i.e. what the probability is that each node is reliable), and what kind
of sampler (binomial or negative epsilon) is used by any unreliable agents, as well as
how the agents respond to the evidence they receive, i.e. whether they update using
Bayes’ rule, or Jeffrey’s rule operationalized by alignment. Obviously, this leads to a
vast parameter space - but thankfully, we can selectively explore it in a useful manner
by drawing on previous work (e.g. Rosenstock et al. (2017)) to identify a likely region
where interesting results may be found.

We took a consensus that B is better to have been reached if all agents had a credence
above 0.99, and a consensus that B is not better but A is if all agents had a credence
below 0.5, so that no new evidence was generated.

Note that this suggests that, amongst the simulations that reached 20,000 steps
without converging to A or B, the proportion that would have gone on to converge to
A is likely to have been higher than in the sample of those that converged in less than
20,000 steps. We do not think this to be of huge importance in relation to the analysis
we conduct below, but mention it here as interesting in its own right.

Obviously, since we are restricting attention to cases in which an answer was
obtained, in the remaining cases an error will have been made.
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It is worth noting that there may be some bias in the sample: given that there is a

(significant) difference in the number of steps required to converge to A vs B, the fact

that we have looked only at the simulations that converged one way or another within

20,000 steps may mean that the proportions in the long run would be different if no

simulations were cut short.

20 We consider a finding significant when p < 0.05.

21 We are aware that talk of ‘real-world’ networks may be regarded as overly simplified.
Those who harbour this concern can imagine scare-quotes on the phrase 'real-world’
throughout - though we note that in the present instance, email communications
were in fact sent as indicated in the network graph, so that we have an accurate (if
partial) representation of the communications in the underlying social network/
community.

22 We logged the state of the network every hundred steps in our simulations. As can be
seen, with reliability at its maximum level (1.0), the minimum number of logged steps
needed to reach the threshold average credence of 0.8 was 2400, the median was 3200,
and the maximum was 3600. To reach an average credence of 0.9, the minimum
logged number of steps needed was 8400, the median 10,200, and the maximum
11,700. Similar observations substantiate the points that follow.

23 The distributions of credences over time across the various reliability settings were
found to be (pairwise) significantly (p <0.05) different using the Kolmogorov-
Smirnov test.

24 Thus, by way of indication, we observed: (i) an increase of at least a 50% in the
number of steps taken to reach each average credence threshold when reliability
decreased from 1 to 0.75; (ii) increases of at least 2 times, and as many as 5 times,
needed to reach the 0.6 and 0.7 thresholds when comparing even lower levels of
reliability with the (full reliability) Bala-Goyal model; and (iii) the typical (median)
simulation did not reach the 0.9 threshold (within 25,000 steps) when reliability was
0.5, and did not even reach the 0.8 threshold when reliability was 0.25 - despite doing
so in just over 10,000 steps in the absence of misinformation. This last point is
perhaps of particular interest, given that these high thresholds are often considered
necessary for belief (and therefore action) - at least when it comes to individual
agents. In a case of societal interest - such as forming a belief on a matter needed to
take urgent climate action - such indefinite delays could prove catastrophic.

25 As the EU Email Core network is directed - like networks in which edges represent
channels of testimonial communication more generally - not all pairs of nodes are
connected (in a given direction) by a path. Accordingly, we cannot determine average
shortest path length, nor therefore ascertain whether this network of email
communications has the so-called ’small-world’ property Watts & Strogatz (1998).
This said, the average clustering coefficient (0.366) for the network is considerably
greater than the density (0.025). Similarly, we have not sought to determine whether
the network is ’scale free” as Barabasi and Albert (1999) understand this notion, with
its (out) degree distribution following a power-law; but as can be seen in Fig. 6, it does
have a heavy tail (i.e. many nodes with relatively low degree centrality), which has
been claimed by e.g. Holme (2019) to be the more pertinent network feature. In these
respects, then, our chosen real-world communication network is typical of social
networks more generally.

26 Again, using the Kolmogorov-Smirnov test, we found the differences between
configurations in the distributions of credences over time to be significant (p < 0.05).

27 For example, we have heard it suggested that social media companies cannot be
legally regarded as publishers of the contents posted to their sites by their users, on
the grounds that having editorial oversight of this volume of material in real time is
simply not feasible. And yet perhaps they could be regarded as publishers of the
contents posted by their most influential users, setting terms and conditions of use
accordingly. Our (admittedly very preliminary) findings suggest that if such changes
were effective in eliminating unreliability amongst the influential nodes, this might
well have large social epistemic benefits.

28 One of James’ examples involved the question of whether to propose marriage: and

he suggested that waiting indefinitely in the hope of accumulating more decisive

evidence in favour would certainly result in a missed opportunity; the plausibility of
the case is due, of course, to the time-sensitivity of the issue.
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