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Spontaneous opinion swings in the voter model with latency
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The cognitive process of opinion formation is often characterized by stubbornness or resistance of agents
to changes of opinion. To capture this feature we introduce a constant latency time in the standard voter
model of opinion dynamics: after switching opinion, an agent must keep it for a while. This seemingly simple
modification drastically changes the stochastic diffusive behavior of the original model, leading to deterministic
dynamical oscillations in the average opinion of the agents. We explain the origin of the oscillations and develop
a mathematical formulation of the dynamics that is confirmed by extensive numerical simulations. We further
characterize the rich phase space of the model and its asymptotic behavior. Our work offers insights into
understanding and modeling the phenomenon of opinion swings, often observed in diverse social contexts.
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I. INTRODUCTION

Binary-choice opinion formation models are popular in the
statistical physics community for describing the evolution of
opinions within a population of interacting agents [1–4]. As
for spin systems, in these models the opinion of an agent
can take one of two possible values and is influenced by
the opinions of other agents through simple dynamic rules,
which are iterated until a stable state (ordered or disordered)
is reached—either consensus or coexistence of different opin-
ions. The voter model [5,6] is a paradigmatic framework
where an agent changes opinion by copying a randomly cho-
sen neighbor, thus mimicking the processes of conformation
and peer influence on the individual’s mind [7,8]. The model
has been studied extensively and has found applications in
many fields. Moreover, it is one of the very few nonequilib-
rium stochastic processes that can be solved exactly in any
dimension [9].

Models of opinion dynamics provide useful tools to probe
sociopolitical scenarios, test descriptive theories of collective
behavior for consistency, and explore emergent phenomena
[10]. However, they are based on simplified hypotheses of
human interaction that neglect a lot of psychological and
social factors influencing the decisions of individuals. Thus
a lot of effort has been put into extending the basic models by
incorporating more realistic aspects of opinion making [3,4],
as well as calibrating model features on empirical data [11].
Some models try to incorporate a sort of reluctance of the
agents to change opinion [12], often observed in empirical
studies [13,14]. The extreme example in this direction is the
voter model with “zealots” [3,15], where the presence of
stubborn agents who do not change opinion at all determines

*Contact author: giovanni.palermo@cref.it

the route to the consensus state [16,17]. Other approaches
consider memory-dependent rules for opinion changes. In the
model by Stark et al. [18], changes of opinions are subject
to inertia (the longer an agent maintains her opinion, the less
likely she will change it), which can speed up or slow down
the reaching of consensus. A similar behavior is observed in
the model by Wang et al. [19], characterized by a freezing pe-
riod (agents who changed opinions are less likely to change it
in the short run). In the model with “aging” by Pérez et al. [20]
(and subsequent developments [21,22]), opinions are more or
less likely to change depending on how long they are held
by agents. When agents prefer to adopt the older opinions,
consensus is quickly reached, whereas a coexistence of states
is possible if they prefer the more recent opinions. A simple
mechanism for representing a cost or restriction associated
with changing opinion was first proposed in the “latent” voter
model by Lambiotte et al. [23]: after changing opinion, an
agent sticks to it for a stochastic latency period. This addi-
tional rule drives the system away from the consensus state,
as the two opinions coexist in the system for very long times.
The latent voter model has been further studied in the limit
of small, exponentially distributed latency times [24] and, for
slightly different dynamical rules, in the context of differential
latencies for the two opinions [25,26].

Concerning model validation, election data represent an
ideal test ground to identify which mechanisms are the
most relevant in emulating the opinion dynamics of humans
[28–30]. A handful of studies managed to reproduce some
statistical regularities of how votes in US presidential elec-
tions (a natural binary opinion setup) are distributed in the
population. Fernández-Gracia et al. [28] were able to capture
vote-share fluctuations across counties and long-range spatial
correlations using a noisy voter model with the addition of re-
current mobility of agents. Braha and de Aguiar [29] extended
the voter model with opinion leaders and external influence,
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FIG. 1. (a) Results of U.S. presidential elections in a sample of swing states [27] (we assign +1 to votes for Democrats and −1 for
Republicans; third parties are discarded, as they account for less than 10% of the votes). The dynamic exhibits oscillatory patterns, with similar
periods set by the recurrence of elections every four years. (b) Evolution of the magnetization m(t ) in a single run of VM and VML, for a
population of N = 1000 agents (the VM can be recovered as a special case of the VML by setting a latency time l = 0).

reproducing geographical patterns of vote-share distribution
and social influence. A recurring feature observed in elec-
toral data is the presence of opinion waves, especially for the
so-called swing states [31], whose temporal patterns are deter-
mined by the regular occurrence of elections [see Fig. 1(a) and
Appendix A]. The presence of seemingly regular oscillations
of opinions is widely observed not only for political cycles
[32,33] but also for census data on “partisan” issues [34], such
as being pro or against the death penalty or tax increase, for
trend reversals in fashion, economic cycles [35], and many
more contexts.

In this work we report the emergence of regular opinion
swings in binary models of opinion formation. We do so
using the framework of the latent voter model, introducing
a homogeneous latency time for each agent after a change
of opinion. The assumption of the latency time is realistic
for partisan issues or in political elections, where a voter
switching party will hardly rethink her decision soon [23].
Additionally, in these situations a natural timescale exists (the
regular occurrence of elections) and sets the same latency time
for each agent. The introduction of a homogeneous latency
time in the voter model leads to the emergence of oscilla-
tions in the average opinion which are not a consequence of
stochastic fluctuations but arise from a deterministic drift due
to the non-Markovianity of the update rule.

We explain the reason behind the occurrence of such
opinion waves and provide a mathematical description of
the model in the mean-field regime. Through extensive nu-
merical simulations, we characterize the rich phase space of
the model, featuring a transition from a constantly swinging
opinion to full consensus for finite systems, whereas, in the
thermodynamic limit, opinions keep swinging forever.

II. VOTER MODEL WITH LATENCY

We consider a population of N agents, located on the nodes
of a fully connected graph. Each agent i is assigned with a spin
taking values si ∈ {±1}, representing her binary-state opinion.
At each time step of the dynamics, each agent changes opinion

by adopting that of a randomly chosen neighbor. With respect
to the standard voter model, here we introduce a constant
latency time l: when an agent changes opinion she becomes
inactive and cannot change it further for the subsequent l time
steps (however, she can still influence others).1 We remand the
reader to Appendix B for full details on the simulations.

The voter model with latency (VML) thus formulated has a
completely different behavior than the original voter dynamics
[see Fig. 1(b)]. In the latter the average opinion of the popu-
lation, given by the magnetization m = 1

N

∑N
i=1 si, follows a

stochastic evolution leading to consensus in a time that scales
as

√
N . The VML is instead characterized by a predictable

evolution in which m(t ) oscillates with a specific frequency
and an amplitude that quickly approaches a value close to
1.2 As we will see, such oscillations can eventually reach the
consensus state |m| = 1 as a finite-size effect.

A. Model dynamics

We denote by N+(t ) and N−(t ) the number of agents with
spin-up and -down, respectively, while L+(t ) and L−(t ) are
the agents with spin-up and -down who are in the latency
state. To characterize the evolution of the system, besides
the magnetization m(t ) = [N+(t ) − N−(t )]/N we use the frac-
tion of agents in the latent state with positive and negative
spin, respectively λ+(t ) = L+(t )/N and λ−(t ) = L−(t )/N .
Thus λ(t ) = λ+(t ) + λ−(t ) is the total fraction of agents in
the latent state. Unless differently stated, we consider initial

1Such a modification was originally introduced by Lambiotte et al.
[23], yet in a different fashion, as an agent in the latent state is
reactivated with a fixed probability at each step. Here instead, the
agent exits the latent state after a fixed number of time steps.

2This behavior is also totally different from what is observed in
[23], where the stochastic latency leads to a diffusive dynamics that
remains at around m = 0.
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FIG. 2. Evolution of model variables with l = 2 (a), l = 7 (b), l = 15 (c) and l = 25 (d), for a population of N = 1000 agents. Short
latency times (a) keep the system in a noisy state around m = 0, while high values of latency (d) freeze the agents for too long, altering the
nature of the oscillations. In the intermediate regime (b) and (c), a clear oscillatory pattern quickly arises from noise.

conditions of zero magnetization, m(0) = 0, and no agent in
the latency state, λ(0) = 0.3

Figure 2 provides sample realizations of the system for
different values of latency l . For small values of l [Fig. 2(a)],
oscillations have a small amplitude and are characterized
by a certain level of randomness. For longer latency l , os-
cillations become extremely regular and with an amplitude
close to 1 [Figs. 2(b) and 2(c)], whereas for even larger
values the oscillatory pattern emerges after a long transient
[Fig. 2(d)].

To analytically characterize the model, we start by writing
down the equations for the time evolution of such quantities
in the mean-field regime. We set the timescale so that we have
N opinion updates in each time step of the dynamics (one for
each agent). Denote by φ−+(t ) the probability of a spin-flip
(i.e., that an agent changes her opinion) from −1 to +1 at
time t , and by φ+−(t ) the probability of the opposite flip. The
expected value of λ(t ) is thus given by the sum of all the flip
probabilities in the past l steps:

E [λ(t )] =
l∑

τ=0

[φ−+(t − τ ) + φ+−(t − τ )], (1)

3Opinion swings persist when we put some agents in the latent state
at the beginning of the simulation. Likewise, the role of the initial
magnetization is marginal, as the initial configuration is quickly
forgotten by the dynamics.

where the two terms correspond to the expected values of
λ+(t ) and λ−(t ):

E [λ±(t )] =
l∑

τ=0

φ∓±(t − τ ). (2)

In these equations, we only sum all flips that occurred in the
last l steps, since agents exit from latency afterwards. On the
contrary, to compute the magnetization we need to account for
all the flips that occurred in the evolution of the system up to
time t :4

E [m(t )] = 2
t∑

τ=1

[φ−+(τ ) − φ+−(τ )]. (3)

We now drop the notation E [...] and switch from discrete
to continuous time. We can connect the equations by showing
how the spin-flip probabilities depend on these variables. To
compute φ∓± we have to consider the probabilities of three
occurrences: pick an agent who is not in the latency state; the
selected agent has spin ∓1; pick a neighbor (i.e., a generic

4To derive this equation we start from the evolution of an in-
dividual spin in a single time step: si(t ) = si(t − 1) + 2[φ−+(t ) −
φ+−(t )]. Iterating the above expression we get si(t ) = si(t − t ′) +
2

∑t
τ=t−t ′+1[φ−+(τ ) − φ+−(τ )], which in the limit t ′ → t leads

to si(t ) = si(0) + 2
∑t

τ=1[φ−+(τ ) − φ+−(τ )]. Averaging over all N
spins, considering that m(0) = 0 and that we make N updates at each
step, we get to Eq. (3).
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FIG. 3. Numerical solution compared to simulation runs of the model, for l = 7 and N = 1000. (a) Fraction of agents in the latency state.
The dashed line is the solution of Eq. (6), whereas the solid band represents simulation results (confidence interval of 2 standard deviations for
100 runs of the model). (b) Magnetization of the system. The dashed line is the numerical solution of Eq. (5), while the solid curves represent
different runs–which oscillate with the same period but have different phase and amplitude growth rates.

agent whatever her latency state) with a spin equal to ±1.
Overall, we then have

φ∓±(t ) = [1 − λ(t )]

[
N∓(t ) − L∓(t )

N − L(t )

][
N±(t )

N

]

= 1 ± m(t )

2

(
1 ∓ m(t )

2
− λ∓(t )

)
. (4)

We can now substitute such expressions into the expected
values of m and λ±, obtaining integral equations whose time
derivative leads to the final system of differential equations de-
scribing the evolution of the VML:

m′(t ) = 2

[
1 − m(t )

2
λ+(t ) − 1 + m(t )

2
λ−(t )

]
, (5)

λ′
±(t ) =

(
1 ∓ m(t )

2

)[
1 ± m(t )

2
− λ∓(t )

]

−
(

1 ∓ m(t − l )

2

)[
1 ± m(t − l )

2
− λ∓(t − l )

]
.

(6)

The system above is a set of delay differential equa-
tions (DDEs with constant delay, which cannot be solved
analytically due to their nonlinearity [36] (see Appendix C
for an approximate solution for small values of m).

B. Numerical solution

As the evolution of m(t ) and λ(t ) ultimately depends only
on the flip probabilities φ∓±(t ), we tackle the system of DDEs
(5) and (6) using the following iterative method. Starting from
λ(0) = 0 and m(0) = 10−6, at each time step t we (i) compute
φ∓± as a function of m and λ±, using Eq. (4); (ii) assess the
number of flips as N φ∓±, since N updates occur in a time step;
and (iii) update m and λ± according to Eqs. (5) and (6), then
increase t . These steps are iterated until consensus or manual
stop.

The proposed algorithm mimics model simulations and
allows obtaining a numerical solution for the expected values

of m(t ) and λ±(t ). Since the model dynamics is characterized
by a deterministic drift, this approach works well in reproduc-
ing the peculiar oscillating behavior of λ(t ) [see Fig. 3(a)].
Additionally, we are able to control for finite-size effects,
since the minimum increment is 2/N for m and 1/N for λ±,
which corresponds to the smallest distance the magnetization
can reach from the full consensus state |m| = 1.

However, stochastic diffusion leads to randomness and
thus plays an important role in determining the evolution of
individual realizations of the VML. Indeed, while the period
of the oscillations depends on the value of the latency time
(see below), fluctuations set the growth rate of the amplitude
and the phase of m(t ) [see Fig. 3(b)]. Therefore it is not
straightforward to compare the evolution of simulations with
the expected value of m(t ) from Eq. (5).

C. Dynamical origin of the oscillations

To explain why the VML shows an oscillating behavior, we
focus on the flip probabilities of Eq. (4). In the initial config-
uration with m = 0 and no latent agents, the probabilities of
having a flip to +1 or to −1 are equal. Random fluctuations
then drive the evolution of the system. Suppose that at the first
update the selected agent flips from −1 to +1. This means
m increases by 2/N and λ+ by 1/N , while λ− is unchanged.
As a result, φ+− decreases with respect to φ−+, and we have
�φ = φ−+ − φ+− � 1/(2N ). Hence, at the next update, the
magnetization is more likely to increase than to go back to
zero, λ+ grows, and �φ increases as well. This mechanism
determines a drift that does not exist in the original voter
model, where the two flip probabilities are always equal.

By iterating the above reasoning, we see that the agents
in latency tend to have spin +1 (or more generally, the same
spin as the sign of the magnetization). However, after l time
steps, the agents that exit latency determine a decrease of λ+
(higher than that of λ−) and a gradual reequilibration of the
flip probabilities. Since these agents are not frozen anymore
and so can change opinion to −1, the growth of m slows down.
Once some of them flip, λ− starts growing and φ+− becomes
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FIG. 4. (a) The numerical solution of m(t ) and �φ(t ) (here with
l = 5) shows that these quantities oscillate with a quarter-period shift
(markers on peaks of m correspond to zeros of �φ).

larger than φ−+ (i.e., �φ becomes negative). We thus have the
same situation just described but reverted towards the opposite
sign of m. Opinion waves are hence due to agents with the
same spin going into and exiting latency together.

Such a picture is confirmed by Fig. 4, where we plot the
numerical solutions for �φ(t ) and m(t ) at steady state (i.e.,
far from the initial fluctuations); these quantities oscillate with
a quarter-period shift.

D. Shape of the oscillations and asymptotic behavior

We finally investigate how the population size N and the
latency time l influence the dynamics of the VML. First,
we characterize the period and amplitude of the oscillations
of m(t ). Figure 5 shows the period of the oscillations as a
function of latency. The plot is limited to the region of l where
oscillations are actually observed (l � 3) and no consensus is

FIG. 5. Period of m(t ) (computed as the average distance be-
tween peaks over 100 runs per point) as a function of l , for both
numerical solution and simulations. Markers are shifted to be read-
able despite the overlap, error bars represent 2 standard deviations.
For each N we plot the values of l where the system does not reach
consensus.

FIG. 6. (a) Minimum distance from the consensus state, 1 −
maxs�t |m(s)|, achieved by the numerical solution as a function of
the population size N . (b) Time to reach consensus in simulations as
a function of N (averaged over 100 runs).

reached (l � lc, a value that depends on N–see Appendix D).
The period grows almost linearly as a function of l , and the
agreement between simulations and the numerical solution is
good, with simulations having slightly smaller period than the
numerical solution.

Then we investigate whether the model dynamics is able
to reach the consensus state. Figure 6 shows that the numer-
ical solution never reaches |m| = 1; in the thermodynamic
limit, opinions keep swinging forever. For large enough N ,
the amplitude of the oscillations stabilizes around a value that
is smaller than 1 and independent of N . Note that the local
maxima of m can be arbitrarily close to 1 but are always
compatible with Eqs. (5) and (6) (see Appendix E). Impor-
tantly, for fixed N , longer latencies lead to higher oscillation
amplitudes. This facilitates the reach of consensus in simu-
lations for large values of l , as a finite-size effect. Indeed,
as Fig. 6 shows, after a transient for small N , the time to
reach consensus in simulations grows more than exponentially
with the population size. For fixed N , longer latencies l are
characterized by oscillations of higher amplitude and thus
can reach the absorbing consensus state more easily due to
stochastic fluctuations.
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III. CONCLUSIONS

In this work we have shown how the addition of a simple
ingredient in the voter model, namely, a constant latency time
for agents after they change opinion, leads to the spontaneous
emergence of deterministic dynamical oscillations in the av-
erage opinion. This behavior is totally different in nature both
from the diffusive route to consensus of the original model
and from the mean-reverting dynamics of noisy models that
keep the system in a disordered state.

A key to obtain oscillations in the VML is the same latency
time for each agent. Indeed, the higher the variability of indi-
vidual latencies the weaker the oscillations (see Appendix F);
when latency times are completely random, we recover the
setup by Lambiotte et al. [23], characterized by a noisy evo-
lution with no magnetization. The use of a common latency
time for agents is however justified in contexts like political
elections, particularly in the U.S., where they take place every
four years and the voting population is almost equally split
into two opinions only.

We note that an oscillatory pattern of the magnetization
has been previously reported in the model with continuous
aging by Pérez et al. [20], in the case where agents that have
recently changed their opinion tend to impose their opinion
on others. This mechanism thus differs substantially from that
of the VML, where oscillations arise due to latency—that is,
agents’ reluctance to change newly acquired opinions.

The model can be generalized in many directions, for in-
stance, using different interaction structures of the population,
including more than two opinion states, or different rules for
the latency state. For instance, if we consider the alternative
dynamic rule whereby agents who maintain their opinion en-
ter latency (rather than those who change it), we get a model
formulation in which the route to consensus is accelerated by
a deterministic drift (see Appendix G).

Overall, the preference for recently acquired opinions
stands as a possible mechanism to consider for explaining
social contexts characterized by opinion waves, alongside so-
ciological factors such as government policy inertia [37] or
psychological biases [38]. The proposed framework can thus
find many applications within the broad universality class of
the voter model [39].

APPENDIX A: ELECTORAL RESULTS
FOR ALL US STATES

In the main text, we reported the case of 5 swing states
to show their oscillating behavior. Actually, the elections in
all the states show an oscillating patter, as can be inferred by
Fig. 7.

APPENDIX B: DETAILS ON NUMERICAL SIMULATIONS

To perform a simulation run of the model, we start by
placing the N agents on the nodes of a fully connected graph,
assigning each of them a spin si ∈ {±1} (with equal probabil-
ity). Initially, no agent is in the latency state. Then we set the
values of the parameters l (latency time) and tmax (maximum
length of the simulation). Starting from t = 0, at each step
of the simulation (i) we randomly choose one target agent and
one of its neighbors for the update; (ii) if the target agent is not

FIG. 7. Oscillations in elections results for all U.S. states (except
DC). +1 represents a vote for Democrats and −1 for Republicans
(votes for third parties are discarded, as they usually constitute less
than 5% of the total votes). The so-called swing states are those that
oscillate around m = 0 (and so they are crucial in determining the
global outcome), yet all states in fact swing, following a common
trend.

in latency and has a different spin than its chosen neighbor, the
target agent flips (in all other cases, nothing happens); (iii) if
the flip occurs, the target agent is put in latency for the next
l time steps; and (iv) these steps are repeated until all agents
have the same spin or t = tmax.

APPENDIX C: APPROXIMATE SOLUTION
FOR SMALL MAGNETIZATION

We can analyze the behavior of the system of DDEs, de-
scribing the expected values of m(t ) and λ(t ) [Eqs. (5) and
(6)], for small values of m. This approximation leads to linear
DDEs that can be solved with the step method. When m = 0,
Eq. (6) becomes λ′(t ) = 1 − [λ(t ) − λ(t − l )]/2, whose solu-
tion for t < nl with n ∈ N reads

λ(t ) = 1 −
n−1∑
k=0

1

k!

(
t − kl

2

)k

e− t−kl
2 . (C1)

As shown in Fig. 8, this solution works well in predicting the
actual evolution of the system as soon as the magnetization
maintains a value around 0, which is true for a significant
amount of time. More importantly, it works as a proof of con-
cept to understand the features and behavior of typical DDE
solutions. As common in these cases, the function obtained
is not a smooth C∞ function but a piecewise one, as evident
from Eq. (C1). Indeed each term of the sum turns on until
the nth one, where t < nl . The curve plotted in Fig. 8 has
n = 4 and therefore corresponds to the approximate solution
(for 3l < t < 4l):

λ(t ) = 1 − e− t
2 − 1

2

(
t − 2l

2

)2

e− t−2l
2 − 1

4

(
t − 3l

3

)3

e− t−3l
3 .

(C2)

The typical solutions of DDEs are subject to smoothing [36].
It can in fact be proven that Eq. (C1) has a discontinuity of its
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FIG. 8. The simulation and approximate solution [Eq. (C2)] for
λ(t ) have good overlap for a large amount of time.

first derivative at t = l , a discontinuity of the second derivative
at t = 2l , of the third at t = 3l , and so on, which makes the
function smoother and smoother as time increases. Moreover,
it can be easily proved that Eq. (C1) has a limit smaller than 1
for t → +∞, since (being all the terms positive)

1 − e− t
2 − 1

2

(
t − 2l

2

)2

e− t−2l
2 − · · · < 1 − e− t

2 , (C3)

and the right side of the equation asymptotically reaches 1.
Yet this solution works well in predicting the actual value of λ

only for a short time. When the oscillations of m reach a large
amplitude, λ begins oscillating as well, as shown in Fig. 8.

APPENDIX D: MEASUREMENTS OF THE PERIOD

To detect the period of the oscillations of the main fre-
quency of m(t ), we used the average distance between peaks.
The period reaches its stationary value after a transient region,
which lasts much longer in simulations than in the numerical
solution (see Fig. 9). We sample after the transient to obtain

FIG. 9. Period of the oscillations for simulations and numerical
solutions (N = 10 000), computed on a moving time window of
width 100. In these cases, simulations reach consensus before the
period reaches a steady value.

FIG. 10. Simulation with same parameters used in Fig. 2(a) but
with agents having heterogeneous latency times.

reliable measurements (those reported in Fig. 5); however, for
l � 10 the period is not able to reach a stable value before con-
sensus is reached due to random fluctuations, compromising
its detection. Therefore we report only results until the region
l � 10 for N = 10 000.

APPENDIX E: EXISTENCE OF LOCAL MAXIMA
OF THE MAGNETIZATION SMALLER THAN 1

In the main text we provide evidence that the model dy-
namics can reach the consensus state only as a finite-size
effect. Here we show that the model admits local maxima of m
that are arbitrarily close to consensus. To this end we rewrite
our equations in terms of �λ(t ) = λ+(t ) − λ−(t ). We then get

m′(t ) = λ(t )

[
�λ(t )

λ(t )
− m(t )

]
. (E1)

The stationary points of m are thus defined by m = �λ/λ,5 a
condition that can be rewritten as

m(t ) = 1 − 2λ−(t )

λ(t )
. (E2)

As m grows towards +1, λ− also decreases so that m even-
tually reaches a value satisfying Eq. (E2) and smaller than 1.
This is not an inflection point because m′ changes sign there.
We can conclude that the solutions of the model equations are
compatible with the existence of local maxima at an arbitrarily
small distance from 1. The same argument, of course, applies
to the opposite case, m = −1.

APPENDIX F: HETEROGENEOUS LATENCY TIMES

Here we investigate what happens when the latency time is
not the same for all agents. Figure 10 refers to the same con-
figuration of Figs. 2(b), 3(a), and 3(b) but with agents having

5The fact that the solution of DDEs is not a C∞ function is not
a limitation, because it only has a corner at t = l and then gets
smoother as time goes by. So we can rely on the condition on the
first derivative to find the stationary points.
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FIG. 11. Single run of the VML dynamics with opposite effect
of latency [parameters N = 1000 and l = 7, the same setup used in
Figs. 2(b), 3(a), and 3(b)].

heterogeneous latencies, distributed as a Gaussian centered at
μ = 7 with σ = 1. The dynamics become fuzzy, oscillations
have higher frequencies, and the growth in amplitude changes

drastically. The broader the distribution of latencies the noisier
the dynamics. For very heterogeneous latencies we retrieve
the behavior observed in [23], where the magnetization re-
mains around zero. This confirms that the swinging behavior
emerges due to the synchronization of agents going into and
exiting latency together.

APPENDIX G: OPPOSITE EFFECT OF LATENCY

Here we study an alternative model where agents go into
latency when they are chosen for the update but do not flip.
According to the discussion provided in Sec. II C, on the
origin of oscillations in the VML, oscillations should not be
present in this setup. Indeed, the evolution in the first l time
steps is the same in the two versions of the model. Now at
t = l , m has grown (say towards +1) and it is more likely
to pick for the update an agent with s = +1. Since there are
also more neighbors with s = +1, this agent is more likely
to remain in her state than to flip, and so it goes into latency.
Overall, agents with the same spin of the sign of m are likely to
be in the latent state; they cannot change opinion and therefore
the upward trend of m is locked and does not go back to
0. Thus in this opposite setup, latency gives rise to a drift
that quickly pushes the system to the consensus state. This
is confirmed by numerical simulations, reported in Fig. 11.
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