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Abstract—In recent advancements in text summarization,
BERT has gained popularity for encoding documents. However,
sentence-based extractive models often lead to redundant or
uninformative phrases in the generated summaries. Additionally,
BERT, which is pretrained on sentence pairs rather than full
documents, struggles to capture long-range dependencies present
within a document. To overcome these challenges, we introduce
DBERT-ELVA, a discourse-aware neural summarization model.
DBERT-ELVA extracts sub-sentential discourse units, offering a
more refined granularity for extractive selection, in contrast to
traditional sentence-based approaches. To learn a compressed
representation of these discourse units while capturing the inter-
dependencies among them, an Autoencoder is designed, utilizing
Extreme Learning for improved generalization performance.
Experimental evaluations on popular summarization benchmarks
demonstrate that the proposed model significantly outperforms
state-of-the-art methods, including other BERT-based models, by
a substantial margin.

Index Terms—Text summarization, Autoencoder, BERT en-
coder, Extreme learning machine

I. INTRODUCTION

The abundance and magnitude of digital documents acces-

sible on the internet have significantly increased as a result

of the expansion of social media and user-generated content.

Consequently, there is a demand for numerous applications

in Natural Language Processing (NLP) to analyze this vast

amount of data. One such application is Automatic Text

Summarization (ATS), which is a progressively expanding and

complex task within the field of NLP. The objective of ATS is

to generate a concise rendition of a lengthy text document

while retaining the key concepts conveyed in the original

source [1].

The proliferation of text-based content from various sources

such as social networks, forums, sensors, and news websites

has led to a significant increase in information volume. As a re-

sult, the importance of text summarization systems has grown

considerably. These systems offer users the ability to grasp the

essence of a text without the need to scroll through extensive

pages, which can save hours of searching and enable users to

focus on their intended goals. By quickly identifying the most

relevant information, text summarization systems eliminate the

necessity of examining the entire document to determine its

relevance [2]. This becomes especially crucial when users have

limited time to make critical decisions. Consequently, there is

a gradual recognition of the need for automatic summarization

software, driven by the potential cost savings resulting from

automation [3]. Moreover, text summarization finds a crucial

application in information retrieval systems, where search

engines display a concise snippet of text summarizing the

ranked page. This assists users in selecting the content that

aligns best with their information requirements.

Text summarization can be broadly classified into two

distinct categories: extractive and abstractive summarization.

Extractive summarization, also known as sentence ranking,

involves the process of ranking and extracting sentences based

on their relevance and importance within the text. On the other

hand, abstractive summarization entails the creation of new

sentences that capture the essential idea of the original text

through a process of rewriting and rephrasing [4].

Abstractive summarization requires extensive linguistic re-

sources and human-created ontologies. However, the scarcity

of natural language resources makes abstractive approaches

challenging, resulting in the widespread adoption of extractive

methods instead [5]. Document representation holds significant

importance in machine learning algorithms employed in the

field of NLP. This critical phase involves converting text into

numerical values, which are then utilized as input vectors for

these algorithms. By transforming text into this numerical

representation, NLP algorithms can effectively process and

analyze the data.

In recent times, the utilization of Bidirectional Encoder

Representations from Transformers (BERT) [6] has become

prevalent for document encoding in cutting-edge text sum-

marization models. BERT incorporates attention mechanisms,

allowing it to focus on important words throughout the entire

document during the encoding process. By taking into account

the broader context and utilizing contextualized representa-

tions, BERT proficiently captures the underlying meaning and

subtleties of the text, resulting in a comprehensive document

encoding.

In this study, our focus is on exploring a text similarity mea-

sure that relies on discourse-aware representations and features

derived from an unsupervised model. The primary objective

is to predict the importance of concepts and subsequently

select the most significant pieces of text to be included in

the summary. To accomplish this, we propose a deep learning
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Fig. 1. An example of discourse segmentation, where sentences are broken
down into Elementary Discourse Units (EDUs)

model that computes the semantic similarity between the text

discourse units. Our approach utilizes BERT representation

and offers an automatic text summarization model. Given

the limited availability of labeled data for training supervised

models, we find unsupervised deep learning techniques more

suitable, especially when there is an abundance of unlabeled

data. Therefore, we propose an unsupervised deep learning

model that can extract meaningful features from unlabeled

data. As a result, the issue of insufficient labeled data becomes

obsolete, and we can overcome this limitation effectively.

This paper introduces DBERT-ELVA, a neural extractive

summarization model that incorporates both BERT and Au-

toencoder while considering discourse information. Unlike

traditional extractive summarization models that operate at the

sentence level, we utilize Elementary Discourse Units (EDUs)

as the minimal selection unit, derived from the concept of

Rhetorical Structure Theory (RST) [7], [8]. This enables us

to simultaneously compress and extract information, reducing

redundancy across sentences.

Fig. 1 illustrates an example of discourse segmentation,

where sentences are broken down into EDUs, indicated by

brackets. By working at the EDU level, our model can

eliminate redundant details within sub-sentences, allowing

for a more concise and informative summary. This approach

provides additional capacity to include essential concepts or

events, resulting in more meaningful summaries. The model

learns a latent representation of the data by using a Autoen-

coder which is trained by an Extreme Learning (EL) technique

[9] .

The main objective of this paper is to evaluate the use-

fulness of fine-tuning BERT with an unsupervised feature

learning model while considering the discourse information

and computing the semantic similarity for text unit selection

in documents summarization task.

To demonstrate the effectiveness of our proposed approach,

we conduct experiments using two distinct publicly available

datasets specifically designed for evaluating the quality of

text summarization systems. This allows us to showcase the

complementarity of our approach across different evaluation

scenarios and datasets. The main contributions are listed

below:

• We propose an extractive summarization model, DBERT-

ELVA, which functions at a granular level called subsen-

tential discourse units. This approach enables the genera-

tion of summaries that are both concise and informative,

while minimizing redundancy.

• The Autoencoder has been utilized with fine-tuned

discourse-aware BERT and Extreme Learning to reduce

the training and generate comprehensive extractive sum-

maries.

• We propose an Extreme Learning technique to enhance

the generalization and performance by utilizing regular-

ization.

• The content of the extractive summary is selected based

on the similarity of the text EDUs’ abstract representation

obtained by the designed deep neural network.

II. RELATED WORK

A. Neural Extractive Summarization

The objective of ETS (Extractive Text Summarization) is

to categorize sentences within a document based on whether

they should be included in the summary. Liu and Lapata [10]

refined BERT by incorporating stacked Transformer layers

and a sigmoid classifier, known as BERTSUMEXT. Instead

of directly utilizing the existing Transformer encoder for

document encoding, Zhang et al. [11] employ a hierarchical

Transformer encoder, comprising a sentence encoder and a

document encoder (HIBERT), which is pre-trained and fine-

tuned for ETS. For lengthy documents, Xiao and Carenini [12]

propose ExtSum-LG, an ETS model that utilizes a recurrent

neural network (RNN) to consider both the global and local

context. To tackle redundancy in extractive summaries, the au-

thors further enhance their research by introducing redundancy

reduction techniques [13].

B. Discourse and Summarization

Louis et al. [14] investigated the advantages of utilizing

discourse relations’ graph structure for summarization pur-

poses. Hirao et al. [15] and Yoshida et al. [16] approached

the summarization problem by considering the pruning of

the document discourse tree. Durrett et al. [17] introduced

a system that combined sentence extraction and compres-

sion, employing ILP (Integer Linear Programming) methods

with discourse structure. Li et al. [18] demonstrated that

employing EDUs for content selection resulted in improved

summarization performance. In comparison to these previous

works, our proposed approach represents a neural end-to-

end summarization model that uses EDUs as the basis for

selection. Xu et al. [19] presented an extractive approach with

structural discourse graphs constructed based on RST trees

and coreference mentions, encoded with Graph Convolutional

Networks.

318

Authorized licensed use limited to: Northeastern University. Downloaded on August 12,2024 at 18:03:20 UTC from IEEE Xplore.  Restrictions apply. 



C. Extreme Learning Machine

ELM (Extreme Learning Machine), introduced by Huang et

al. [9], was developed as a means to efficiently and quickly

learn Single-Layer Feedforward Networks (SLFNs). Initially,

ELM was applied to supervised regression and classification

tasks [20]. Subsequently, it was adapted for semi-supervised

tasks through the incorporation of manifold regularization

[21]. In contrast to classical feedforward neural networks

trained using the BackPropagation (BP) learning algorithm,

which often suffer from slow learning speeds and local min-

imum issues, ELM achieves a shorter learning time while

maintaining superior generalization performance. This efficacy

has been demonstrated in various computer vision applications

such as image segmentation and classification [22], human

action recognition [23], and face classification [24]. In a

similar study [25] proposed a novel clustering method that

utilizes ELM as an unsupervised feature learning technique.

Our model uses a similar configuration to encode the

document with BERT as DISCOBERT did, but we use BERT

discourse document encoder with Autoencoders for learning

features and labeling the EDUs based on them while prevent-

ing overfitting.

III. METHODOLOGY

An outline of the proposed model is presented in Fig. 2,

which comprises a Document Encoder, an Autoencoder, and a

voting component based on similarity. The Document Encoder

utilizes a pre-trained BERT model to encode the entire docu-

ment at the token level. Following that, a self-attentive span

extractor is employed to derive EDU representations from the

corresponding text spans. The Autoencoder (AE) module takes

the Document Encoder’s output, mapping it to a latent space

and subsequently refining the EDU representations. These

refined representations are then used for label prediction,

incorporating a voting component that measures the semantic

similarity.

Assume that a document D is divided into a total of

n EDUs, represented as D = {d1, d2, · · · , dn}, where di
represents the i − th EDU. Following the approach of Liu

and Lapata [10], we approach extractive summarization as a

task of sequential labeling. Each EDU di is assigned a score

by neural networks, and decisions are made based on the

scores of all EDUs. A sequence of binary labels is generated,

where 1 indicates selection and 0 indicates non-selection.

These labels are denoted as Y = {y∗1 , y∗2 , · · · , y∗n}. During

training, our objective is to predict the sequence of labels

Y given the document D. During training, we must also

consider discourse dependency to ensure the coherence and

grammatical correctness of the resulting summary.

A. Document Encoder

In this section, we first introduce the Discourse Analysis and

then explain how we construct a discourse aware document

encoder.

1) Discourse Analysis: Discourse analysis focuses on the

relationships between sentences in a document or conversation.

In the framework of RST, the organization of discourse in text

can be depicted as a tree structure. The entire document can be

divided into consecutive and non-overlapping segments of text

known as EDUs. Each EDU is categorized as either Nucleus or

Satellite, indicating its level of importance or salience. Nucleus

nodes typically hold more central positions, while Satellite

nodes are more peripheral and carry less significance in

terms of content and grammatical reliance. The EDUs exhibit

dependencies that represent their rhetorical connections. In this

study, we consider the EDU as the smallest unit for selecting

content in text summarization.

Fig. 3 illustrates an instance of discourse segmentation and

the parse tree of a sentence. Within these EDUs, the rhetorical

relations signify the roles performed by different discourse

units. As noted in the study by Louis et al. [14], the RST

tree structure already provides a strong indication for content

selection. However, the agreement among rhetorical relations

tends to be lower and more ambiguous. Consequently, our

model does not explicitly encode rhetorical relations. When it

comes to content selection in text summarization, our objective

is for the model to choose the most concise and essential

concept in the document, minimizing redundancy. Traditional

extractive summarization methods require the model to select

entire sentences, even if certain parts are unnecessary. In

contrast, our proposed approach enables the selection of fine-

grained EDUs, thereby reducing redundancy in the generated

summaries. This forms the basis of our DBERT-ELVA model.

2) Discourse-based BERT: BERT is a pre-trained deep

bidirectional Transformer encoder [6], [26]. Following the

approach of Liu and Lapata [10], we employ BERT to encode

the entire document and fine-tune the model specifically for

summarization purposes. Initially, BERT was trained to encode

either a single sentence or a pair of sentences. However, news

articles typically consist of more than 500 words, necessitating

certain adjustments to utilize BERT for document encoding.

To address this, we insert special tokens, namely 〈CLS〉 at the

beginning and 〈SEP〉 at the end of each sentence. Additionally,

for encoding longer documents like news articles, we extend

the maximum sequence length accepted by BERT from 512

to 768 in all our experiments.

The input document after tokenization is denoted D =
{d1, · · · , dn}, and di = {wi1, · · · , wi�i} where �i is the

number of BPE tokens in the i − th EDU. If di corresponds

to the first EDU in a sentence, an additional 〈CLS〉 token is

added at the beginning of di. Similarly, if dj corresponds to

the last EDU in a sentence, a 〈SEP〉 token is appended to dj
(see Fig. 3 for visualization). This approach of inserting 〈CLS〉
and 〈SEP〉 tokens follows the method employed by Liu and

Lapata [10]. For the sake of simplicity, these two tokens are

not explicitly shown in the equations. Subsequently, the BERT

model is utilized to encode the document:

{
hB
11, · · · ,hB

n�n

}
= BERT ({w11, · · · , wn�n}) , (1)
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Fig. 2. Model architecture of DBERT-ELVA.

Fig. 3. Example of discourse segmentation and RST tree conversion. The
original sentence is segmented into 5 EDUs in box (a), and then parsed into
an RST discourse tree in box (b). The converted dependency based RST
discourse tree is shown in box (c) [19].

The BERT output of the entire document, denoted as{
hB
11, · · · ,hB

n�n

}
, has the same length as the input. In the

BERT encoder, the representation of the 〈CLS〉 token can

typically serve as the sentence representation. However, this

approach is not suitable for our specific context as we require

the extraction of representations for EDUs. To address this, we

employ a Self-Attentive Span Extractor (SpanExt), as proposed

by Lee et al. [27], to learn the representations of the EDUs.

For the i − th EDU with �i words, with the output from

the BERT encoder
{
hB
i1,h

B
i2, · · · ,hB

i�i

}
, we obtain EDU rep-

resentation as follows:

αij = W2 · ReLU
(
W1h

B
ij + b1

)
+ b2 (2)

aij =
exp (αij)∑�i
k=1 exp (αik)

, hS
i =

�i∑
j=1

aij · hB
ij , (3)

In the context of the provided text, the symbol αij represents

the score assigned to the j − th word within an EDU, while

aij denotes the normalized attention of the j − th word with

respect to all the words within the span. The representation hS
i

of the EDU is obtained as a weighted sum of the hidden states

from the BERT output. It’s important to note that throughout

the paper, the matrices W and vectors b are considered as

parameters that are learned during the training process.

We abstract the above Self-Attentive Span Extractor as:

hS
i = SpanExt

(
hB
i1, · · · ,hB

i�i

)
(4)

After the span extraction step, the whole document is

represented as a sequence of EDU representations: hS ={
hS
1 , · · · ,hS

n

} ∈ R
dh×n, which will be sent to the Autoen-

coder.

B. Autoencoder with Extreme Learning

Given an input data point x, a sequnece of EDU rep-

resentations, the output of the Autoencoder with Extreme

Learning (ELVA) model is given by a mapping function to

M-dimensional random feature space:

fM (x) =
M∑
i=1

βihi(x) = h(x)β (5)
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where β = [β1, . . . , βM ]
T

is the output weight matrix

between the hidden nodes and the output nodes, h(x) =
[h1(x), . . . , hM (x)] are the hidden node outputs for input x,

and hi(x) is the output of the ith hidden node. Given N
training samples {(xi, ti)}Ni=1, the following learning problem

is addressed by ELM:

Hβ = T (6)

where
[
t1, . . . , tN

]T
are target labels, and H =[

hT (x1) , . . . , hT (xN )
]T

. The output weights matrix β
is calculated using the following formulas:

β = H†T (7)

where H† is the Moore–Penrose generalized inverse

(pseudoin-verse) of the output matrix H . While ELM (Ex-

treme Learning Machine) offers notable advantages in terms

of generalization and training speed, it often exhibits poor

performance in terms of generalization. Deng et al. [28] tackle

this issue by introducing a novel ELM variant known as

Regularized Extreme Learning Machine (RELM). The RELM

model aims to minimize the cost function associated with least

squares estimation by incorporating a regularization coefficient

C. The formulation incorporating this regularization coeffi-

cient is as follows:

β =

(
1

C
+HTH

)−1

HTT (8)

Algorithm 1 provides an overview of the main steps involved

in ELM. The original version of ELM is primarily designed

to learn features from labeled data. However, with the in-

creasing availability of unlabeled data in the era of digital

transformation, there is a need for unsupervised techniques to

learn, extract features, and reduce the dimensionality of such

data. To address this challenge, Kasun et al. [29] introduced a

new unsupervised variant of ELM called Extreme Learning

Machine Autoencoder (ELAE). ELAE is a neural network

that builds upon the ELM framework. It consists of a single

hidden layer, where the input data is also the output. The initial

weights and biases of the hidden nodes are randomly generated

and should be orthogonal. The network architecture of ELM-

AE is illustrated in Fig. 4.

The training process of an ELAE involves two main stages:

the encoder stage and the decoder stage. In the encoder stage,

the input features are transformed and mapped into an M
dimensional feature space using one of three approaches,

depending on the size of d and M : (1) Sparse architecture:

When d < M , the encoder maps features from a lower-

dimensional input data space to a higher-dimensional feature

space. This allows for the representation of features in a

more expressive and expanded feature space. (2) Compressed

architecture: When d > M , the encoder compresses features

from a higher-dimensional data space into a lower-dimensional

feature space. This compression helps in reducing the di-

mensionality of the features while retaining their essential

information. (3) Equal dimension: When d = M , the encoder

represents features from an input data space dimension that

is equal to the dimension of the feature space. This approach

maintains the same dimensionality for both the input data and

the feature space. These different approaches enable the ELAE

to adapt to the specific requirements of the data and the desired

dimensionality of the feature space.

In this particular study, the focus is on the compressed archi-

tecture of ELAE. In this architecture, the random orthogonal

weights and biases of the hidden nodes are used to map the

input data xi to a lower-dimensional feature space M . This

mapping is achieved using the following formula:

h (xi) = g
(
aTxi + b

)
(9)

aTa = I, bT b = 1 (10)

where a = [a1, . . . , aM ] are the orthogonal random weights,

and b = [b1, . . . , bM ] denotes the orthogonal random biases

between the input and hidden nodes. h (xi) ∈ RM corresponds

to the output vector of the hidden layer concerning the input xi

; g(.) is an activation function which can be sigmoid, Gaussian

function or so on; I is an identity matrix of order M . In this

paper, the sigmoid function is used in the encoder stage of the

ELAE:

min
β∈RM×d

LELM−AE = min
β∈RM×d

LELM−AE
1

2
‖β‖2+C

2
‖X−Hβ‖2

(11)

where C is a penalty coefficient on the training errors. It

balances experiential risk and structural risk. By setting the

gradient of LELM−AE to zero, we have:

β + CHT (X −Hβ) = 0 (12)

According to the above equation, the output weights β of an

ELAE can be computed in three different ways:

• When the number of training samples N is larger than

the number of hidden layer nodes M , output weights are

calculated by 13. This is a compressed ELAE represen-

tation.

• When the number of training samples N is smaller than

the number of hidden layer nodes M , output weights are

calculated by 14. This is a sparse ELAE representation.

• For equal dimension (N = M), output weights can be

expressed as 15. This is an equal ELAE representation.

β =

(
IM
C

+HTH

)−1

HTX (13)

β = HT

(
IN
C

+HHT

)−1

X (14)

β = H−1X (15)

where Ik is an identity matrix of dimension k. The primary

objective of this paper is to utilize compressed data rather than

the original input data for the automatic summarization task.

Dimensionality reduction is achieved through the unsupervised

ELAE, which involves projecting the input data X in the

decoder stage. The new representation of the input data X
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Fig. 4. ELAE model. The input X is the same as the output X̂ , (a, b) are
the randomly generated hidden node parameters which are made orthogonal.

in the feature space of dimension nh is determined by the

following formula:

Xnew = XβT (16)

Thereafter, the original data (X) is replaced by the new

generated data (Xnew) in the summarization task.

C. Voting based on Similarity and Summary generation

Each sentence EDU is projected into a concept space by

a mapping function given by a specific model. An abstract

representation h∗
i is produced and used in order to compute

the similarity between two EDUs using the cosine similarity

metric.

sim
(
h∗
i , h

∗
j

)
=

h∗
i h

∗
j

‖h∗
i ‖

∥∥h∗
j

∥∥ (17)

After measuring semantic similarity between the refined

representations of EDUs, we sort the similarities in descending

order, and select EDUs accordingly. Note that the dependen-

cies between EDUs are also enforced in prediction to ensure

grammacality of generated summaries.

IV. EXPERIMENTS

In this section, we present the experimental results obtained

from two widely used news summarization datasets. Our

proposed model is compared against state-of-the-art baselines,

and we perform a comprehensive analysis to validate the

effectiveness of BERT-ELVA.

A. Datasets

We evaluate our models using two datasets: New York

Times (NYT) and CNN and Dailymail (CNNDM). To extract

summaries from the raw data, we utilize the script provided by

See et al. [30]. For sentence boundary detection, tokenization,

and parsing, we employ Stanford CoreNLP [31]. It’s worth

noting that BERT has a limitation in encoding up to 768 BERT

BPEs. Regarding CNNDM, the dataset consists of 287,226

samples for training, 13,368 samples for validation, and 11,490

samples for testing. We utilize the un-anonymized version of

CNNDM and for NYT, which is licensed by LDC6, we use

137,778 samples for training, 17,222 samples for validation,

and 17,223 samples for testing, following the approach of

Zhang et al. [11] and Xu et al. [32].

B. State-of-the-art Baselines

We compare our model with the following state-ofthe-art

neural text summarization models.

• Extractive Models: BanditSum, introduced by Dong

et al. [33], approaches extractive summarization as a

contextual bandit problem and employs policy gradient

methods for training. On the other hand, NeuSum, pro-

posed by Zhou et al. [34], is an extractive model that

utilizes a sequence-to-sequence (seq2seq) architecture. In

NeuSum, the attention mechanism is utilized to score the

document and determine the index of the selected content

for summarization.

• Compressive Models: JECS is a neural text

compression-based summarization model using BLSTM

as the encoder [32]. The first stage is selecting sentences,

and the second stage is sentence compression by pruning

the constituency parsing tree.

• BERT-based Models: BERT-based models have achieved

significant improvement on CNNDM and NYT, when

compared with LSTM counterparts. BERTSUM is the

first BERT-based extractive summarization model [10].

It is built on top of BERT encoder by stacking several

inter-sentence Transformer layers. PNBERT, introduced

by Zhong et al. [35], is a BERT-based model that in-

corporates reinforcement learning and Pointer Networks.

This model aims to enhance the performance of extractive

summarization. HiBERT, proposed by Zhang et al. [11],

is a hierarchical BERT-based model specifically designed

for document encoding. It extends the pretraining process

to include unlabeled data, enabling the model to learn

more comprehensive representations. DiscoBERT [19]

presented an extractive approach with structural discourse

graphs constructed based on RST trees and coreference

mentions, encoded with Graph Convolutional Networks.
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C. Implementation Details

In our implementation, we utilize AllenNLP [36] as the code

framework. The length of each document is truncated to 768

BPEs to fit the model’s input requirements. We employ the

pre-trained ’bert-base-uncased’ model and fine-tune it for all

our experiments. The models are trained for a maximum of

80,000 steps. For evaluation, we utilize ROUGE [37] as the

evaluation metric, specifically focusing on the ’R-2’ measure

for validation purposes. The realization of discourse units and

structure plays a crucial role in the preprocessing of EDUs.

This process involves two main steps: discourse segmentation

and RST parsing. In the segmentation phase, we employ

a neural discourse segmenter based on the BiLSTM CRF

(Bidirectional Long Short-Term Memory Conditional Random

Fields) framework, as proposed by Wang et al. [38]. ELAE

indicates the system based on the extreme learning machine

Autoencoder model. In this paper, the ELAE is composed of

one hidden layer with 50 hidden units.

D. Experimental Results

Results on CNNDM Table I shows results on CNNDM.

Among all the baselines, DiscoBERT demonstrates the best

performance, which can be attributed to its approach of

proposing a BERT discourse graph. BERTSUM, on the other

hand, ranks second among the baselines due to its utilization

of BERT and inter-sentence Transformer layers. BanditSum,

employing policy gradient methods, exhibits the worst perfor-

mance among the baselines. In contrast, NueSum outperforms

BanditSum by leveraging attention mechanisms and a seq2seq

architecture. JECS surpasses both BanditSum and NueSum in

R-1 measure by incorporating sentence compression through

the pruning of the constituency parsing tree. PNBERT out-

performed HiBERT by utilizing Reinforcement Learning. In

comparison, our proposed model outperforms all the baselines

and achieves improvements in the R-1, R-2, and R-L. This

improvement is attributed to the combination of a discourse

BERT encoder and an Autoencoder with Extreme Learning for

updating EDU presentations while capturing their long-range

dependencies.

Results on NYT Table II shows results on NYT. Simi-

lar to results on the CNNDM dataset, DiscoBERT demon-

strates the best performance. HiBERT is in second place

and outperformed JECS because of utilizing unlabeled data

and proposing a pretraining process on BERT. The proposed

model (DBERT-ELVA) surpasses the previous state-of-the-

art baseline models due to integrating the BERT discourse

document encoding and Extreme Learning Autoencoder.

V. CONCLUSION

In this paper we introduced DBERT-ELVA, a novel ap-

proach that employs discourse units as the minimal selection

basis to mitigate redundancy in summarization. The model

utilizes an Autoencoder with Extreme Learning to generate

compressed representations and effectively capture long-range

dependencies among the discourse units. To validate the ef-

fectiveness of our proposed approach, we conduct experiments

TABLE I
RESULTS ON THE TEST SET OF THE CNNDM DATASET. ROUGE-1, -2

AND -L F1 ARE REPORTED.

Model R-1 R-2 R-L

NeuSum [34] 41.59 19.01 37.98

HiBERT [11] 42.37 19.95 38.83

BanditSum [33] 41.50 18.70 37.60

JECS [32] 41.70 18.50 37.90

PNBERT [35] 42.39 19.51 38.69

PNBERT w. RL 42.69 19.60 38.85

BERTSUM [10] 43.25 20.24 39.63

DiscoBERT [19] 43.77 20.85 40.67

BEET-ELVA 43.92 20.88 41.01

TABLE II
RESULTS ON THE TEST SET OF THE NYT DATASET.

Model R-1 R-2 R-L

JECS [32] 45.50 25.30 38.20

HiBERT [11] 48.38 29.04 40.53

DISCOBERT [19] 50.00 30.38 42.70

BERT-ELVA 50.44 30.67 43.11

on two well-known summarization datasets, and consistently

observe improvements compared to baseline models. As future

directions, we aim to explore the potential of large language

models and graph encoding techniques. Additionally, we plan

to extend the application of discourse encoding to other tasks

that involve encoding lengthy documents.
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